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Abstract: Sentinel-2 satellites provide multi-spectral optical remote sensing images with four
bands at 10 m of spatial resolution. These images, due to the open data distribution policy,
are becoming an important resource for several applications. However, for small scale studies,
the spatial detail of these images might not be sufficient. On the other hand, WorldView commercial
satellites offer multi-spectral images with a very high spatial resolution, typically less than 2 m,
but their use can be impractical for large areas or multi-temporal analysis due to their high cost.
To exploit the free availability of Sentinel imagery, it is worth considering deep learning techniques
for single-image super-resolution tasks, allowing the spatial enhancement of low-resolution (LR)
images by recovering high-frequency details to produce high-resolution (HR) super-resolved
images. In this work, we implement and train a model based on the Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN) with pairs of WorldView-Sentinel images to generate
a super-resolved multispectral Sentinel-2 output with a scaling factor of 5. Our model, named
RS-ESRGAN, removes the upsampling layers of the network to make it feasible to train with
co-registered remote sensing images. Results obtained outperform state-of-the-art models using
standard metrics like PSNR, SSIM, ERGAS, SAM and CC. Moreover, qualitative visual analysis
shows spatial improvements as well as the preservation of the spectral information, allowing the
super-resolved Sentinel-2 imagery to be used in studies requiring very high spatial resolution.

Keywords: super-resolution; generative adversarial network; deep learning; Sentinel-2; WorldView

1. Introduction

Satellite remote sensing is used in various fields of application such as cartography, agriculture,
environmental conservation, land use, urban planning, geology, natural hazards, hydrology,
oceanography, atmosphere, climate, etc. In this context, a fundamental parameter to take into account
when addressing a specific application is the spatial resolution.

With the recent launch of advanced instruments, the spatial resolution of satellite imagery has
been enhanced. For instance, nowadays, WorldView-3/4 satellites [1] can collect 8-band multispectral
data with 1.2 m of ground sample distance (GSD). Unfortunately, the cost to use such very high
spatial resolution (VHSR) imagery can make it impractical when large areas have to be covered or if
multi-temporal analysis have to be undertaken. Consequently, in these scenarios, it would be desirable
to consider using open access data with acceptable spatial quality, like these provided by satellites such
as Landsat or Sentinel. In particular, the Copernicus Sentinel-2 mission [2] comprises a constellation
of two polar-orbiting satellites providing high revisit time and its Multi Spectral Instrument (MSI)
records data in 13 spectral bands ranging from the visible to the shortwave infrared. This sensor
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acquires imagery at a spatial resolution of 10 m for the red, green, blue and near infrared channels.
The previous technical characteristics make Sentinel-2 a very suitable candidate in a wide variety of
applications related to the monitoring of land and coastal waters. Unfortunately, the excellent spatial
detail available may not be sufficient for certain applications. In these challenging scenarios, the only
solution is to purchase VHSR imagery acquired from commercial satellites or to consider lower altitude
platforms, such as airplanes or drones. For this reason, in recent decades, the improvement of the
spatial resolution of remote sensing images has been a very active research area with the aim of saving
considerable amounts of money when addressing studies requiring periodic imagery or to cover large
areas with such fine spatial detail.

One of the options to achieve a superior spatial resolution has been the application of
pansharpening techniques. This enhancement of the multispectral (MS) or hyperspectral (HS) bands is
feasible when the remote sensing platform includes an additional panchromatic (PAN) instrument
providing better spatial resolution, typically with a scaling factor of 2 or 4. These methods aim to
improve spatial quality without introducing spectral distortion in the original data. Quite a lot of
pansharpening algorithms have been developed for MS and HS images in the last decades [3–10].
Recently, with the advent of deep learning (DL), new approaches have also been developed to address
pansharpening [11–16], mainly, using architectures based on convolutional neural networks. As some
platforms do not incorporate the supplementary PAN sensor, i.e. Sentinel-2, the alternative solution is
the application of advanced super-resolution (SR) techniques to improve the spatial detail [17].

SR methods can be categorized into multi-image or single-image. Multi-image SR is based on
the reconstruction of a higher resolution image by using a set of LR images, typically captured with
different angles or at different satellite passes [18]. These LR images have sub-pixel misalignments
and, thus, the land cover represented by a pixel in an image will not correspond exactly to that same
pixel in a subsequent image. In practical applications it is not easy to obtain an adequate number of
images from the same scene; therefore, single-image techniques are of greater interest. Regarding the
single-image super-resolution domain, two different types of methods can be identified: supervised
and unsupervised techniques. Even though unsupervised SR methods [19,20] have the benefit of not
requiring a pair of input-target for a training dataset, its performance in remote sensing scenarios
normally turns out to be quite limited because of the lack of spatial information in the LR data. In this
context, supervised SR techniques can provide a more efficient approach using a training dataset to
learn the relationships between high and low-resolution imagery.

In the last decade, some supervised SR techniques were developed based on dictionary approaches.
In particular, Yang et al. [21,22], Dong et al. [23] or Gou et al. [24] provided effective solutions by
considering sparse coding techniques. Pan et al. [25] used structural self-similarity and compressive
sensing for super-resolution tasks. Other authors [26,27] used different image characterization spaces
to achieve higher performance. However, in general, these approaches consider low-level features of
the images.

Recently, deep learning has been applied to address the super-resolution topic [28]. For example,
the use of high-level features from the optical data has provided significant improvement with
the application of convolutional neural networks (CNN) for image super-resolution. Dong et al.
introduced SRCNN [29], a three-layer CNN, and since then, many other CNN approaches have been
explored [30–33].

On the other hand, lately, Generative Adversarial Networks (GANs) [34] have attracted an
increasing attention from the research community, as the work of Ledig et al. [35] where they proposed
SRGAN, a GAN based network that produced a more photo-realistic output but with lower quantitative
metrics. It is a seminal work dealing with perceptual approach in SR. The generator’s architecture is
composed of 16 residual blocks and 2 upsampling layers to produce a SR image with a scaling factor
of 4. Besides, they divided the training stage by first training the generator and later in an adversarial
mode combining adversarial and perceptual losses [36]. ESRGAN [37] is a model based on SRGAN
that introduced some improvements like the use of a more complex and dense combination of residual
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layers in the generator and the removal of batch normalization layers, as they are prone to introduce
artifacts. In addition, relativistic GAN [38] was used to improve the performance of the discriminator.

Super-resolution models based on CNNs face some challenges when applied to remote sensing,
mainly related to the lack of training datasets. Ma et al. [39] proposed TGAN (Transferred Generative
Adversarial Network) to solve the drawback of the poor quantity and quality of remote sensing data.
Other authors like Haut et al. [40,41] and Lei et al. [42] downgraded public remote sensing images to
form the LR-HR pairs and tested different network architectures. However, models trained only with
synthetic LR-HR pairs tend to fail in generalization since the LR images are not only a consequence
of Gaussian noise, blurring or compression artifacts [28,43]. More recently, Ma et al. [44] introduced
DRGAN (Dense Residual Generative Adversarial Network) for the super-resolution of remote sensing
imagery. Pouliot et al. [45] used a combination of Landsat (30 m GSD ) and Sentinel-2 (10 m GSD)
imagery to train CNNs architectures for SR of Landsat imagery and Beaulieu et al. [46] have tested
different CNNs and GANs networks with only one pair of Sentinel-2 (10 m GSD) and WorldView
(2.5 m GSD) images with a scaling factor of 4. They have trained the models with 3 channels (Red,
Green, and NIR) and the results were promising, especially using GAN-based networks. They believed
that the radiometric and geometric differences between both satellites images could be an explanation
of the low-value metrics obtained. Some authors have applied ESRGAN architectures as well, to solve
different remote sensing SR problem applications [47,48]

This work focuses in the analysis of single-image supervised SR techniques using the DL paradigm.
Specifically, we present a GAN-based super-resolution model to enhance the 10 m channels of the
Sentinel-2 sensor to 2 m with a similar quality as produced by the WorldView satellite. The spatial
enhancement process is achieved by exploiting the synergy existing in the spectral domain between
the Sentinel-2 and Worldview-2/3 missions.

To train our model, image pairs coming from the Sentinel-2 and WorldView satellites were
used. These LR and HR pairs are hard to obtain because, even though Sentinel imagery is freely
available, the commercial aspect of the Worldview data and its non-systematic sensing of the Earth
surface make it difficult to get enough image pairs to train the model. To overcome this problem,
we decided to conduct the training in two stages. First, we used an artificially generated set of
LR-HR image pairs with WorldView data to pre-train the model and, then, we fine-tuned the model
using the WorldView-Sentinel pairs. To make it feasible to work with different satellite sources,
we have removed the upsampling module of the ESRGAN architecture, as the images needed to
be co-registered (see Section 3.2). Besides, the input and output layers were adapted to work with
four bands (see Section 3.1). Another important contribution of our model is that before training,
we standardize the data by channels, i.e. subtracting the mean and dividing by the standard deviation
on each channel, in order to obtain an output image where the spectral characteristics of the LR
Sentinel-2 image are preserved (see Section 4.1). Finally, once trained, our proposed RS-ESRGAN can
be applied to obtain a super-resolved multispectral Sentinel-2 output with a scaling factor of 5.

The performances achieved have been compared to other super-resolution algorithms available
in the literature in order to study the effectiveness of the proposed SR method, as well as to analyze
the spectral/spatial quality trade-off obtained.

2. Satellite Images

Sentinel-2 is a satellite mission developed within the Copernicus program, a joint initiative of
the European Commission, the European Space Agency and the European Environment Agency,
to provide operational information of our planet for safety and environmental applications. It is
composed of two identical satellites: Sentinel-2A (launched on June 2015) and Sentinel-2B (launched
on March 2017) flying in the same orbit but phased at 180° to give a high revisit frequency of 5 days at
the Equator. Each satellite carries a multispectral payload (MSI) that provides a set of 13 spectral bands
ranging from visible and near infrared (VISNIR) to shortwave infrared (SWIR). In particular, four of
these bands (B2, B3, B4 and B8) record data at a spatial resolution of 10 m, six bands at 20 m and three
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bands at 60 m. Basically, bands at lower resolution are devoted to the analysis of the vegetation status,
discrimination of snow, ice and clouds and to retrieve information about aerosols, water-vapor and
cirrus. Data is available at [49]

To improve the spatial resolution of the Sentinel-2 10 m bands using super-resolution techniques,
multispectral WorldView data was used to produce the LR-HR training dataset. Worldview-2, launched
on October 2009, was the first high-resolution 8-band multispectral commercial satellite [50]. Operating
in a nearly circular sun-synchronous orbit at an altitude of 770 km, it provides a 1.84 m resolution
for the VISNIR multispectral bands and a panchromatic band of 46 cm. WorldView-3 was launched
on August, 2014 at an altitude of approximately 617 km, providing 8 multispectral bands at 1.24 m
in the VISNIR plus additional shortwave infrared bands at 3.7 m and a panchromatic band of 31
cm. Table 1 lists the technical characteristics of Sentinel-2 and Worldview-2/3 spectral bands in the
VISNIR spectrum.

Table 1. Spatial and spectral characteristics of Sentinel-2 and WorldView-2/3 satellites (visible and
near infrared multispectral bands).

Satellite Spectral Band Central Wavelenght
(nm)

Bandwidth
(nm)

Spatial Resolution-GSD
(m)

B1: Coastal Aerosol 443 20 60
B2: Blue 490 65 10
B3: Green 560 35 10
B4: Red 665 30 10

Sentinel-2 B5: Red-edge 1 705 15 20
B6: Red-edge 2 740 15 20
B7: Red-edge 3 783 20 20
B8: Near-IR 842 115 10
B8A: Near-IR narrow 865 20 20
B9: Water Vapor 945 20 60

B1: Coastal Blue 425 47.3 Nadir
WV-2: 1.84 m
WV-3: 1.24 m

B2: Blue 480 54.3
B3: Green 545 63.0

WorldView-2/3 B4: Yellow 605 37.4
B5: Red 660 57.4 20° off Nadir

WV-2: 2.40 m
WV-3: 1.38 m

B6: Red-edge 725 39.3
B7: Near-IR 1 833 98.9
B8: Near-IR 2 950 99.6

3. Materials and Methods

3.1. Datasets

We used two datasets to train the models, the WorldView European Cities dataset [51] and a
collection of pairs of WorldView-Sentinel images. A third dataset of WordView-Sentinel image pairs
was used as an independent test set, to evaluate the performance of the model. In the following,
we will refer to the two WordView-Sentinel datasets as W-S Set1 and W-S Set2, respectively.

The European Cities dataset is a large collection of publicly available WorldView-2 images
provided by the European Space Agency (ESA). These images were sensed by the satellite from July
2010 to July 2015 covering several areas of Europe. Some examples are shown in Figure 1. Care was
taken in selecting scenes with little or no cloud cover in the image. We used 32 large images covering
part of Ireland, France, the United Kingdom, Malta, Italy, Spain and others areas, aiming to provide a
variety of covers like agriculture landscapes, cities, shores, forest areas, etc.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 1. European cities WorldView-2 dataset. Scenes corresponding to regions of: (a) Malta,
(b) United Kingdom, (c) France, (d) Spain, (e) Finland, (f) France, (g) Ireland and (h) Spain.

The W-S Set1 used to train the model consisted of pairs of WorldView-Sentinel images that were
sensed on the Canary and Balearic Islands in Spain. Images were provided by the ARTEMISAT-2
project [52] and correspond to regions of the Maspalomas Natural Reserve, Teide National Park,
and Cabrera archipelago. Sensing dates and the original resolution of the WorldView images can be
seen at Table 2. The W-S Set2 dataset was composed with pairs of WorldView and Sentinel-2 images
that were used to test the robustness of the model to unseen images during training. Details are
provided in Table 3.
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Table 2. W-S Set1: WorldView and Sentinel-2 pairs.

Location Year Sentinel-2 WorldView-2 WorldView-3 Resolution

Maspalomas
2015 29 September 4 June - 2.0 m
2017 10 June 10 June - 1.6 m
2017 31 May - 31 May 1.6 m

Cabrera 2016 5 September 1 September - 2.0 m

Teide 2017 10 June - 13 June 1.2 m
2018 31 May 1 June - 2.0 m

Table 3. W-S Set2: WorldView and Sentinel-2 pairs.

Location Year Sentinel-2 WorldView-2 WorldView-3 Resolution

Cabrera 2019 10 May 10 May - 2.0 m

Maspalomas 2018 31 May - 22 May 1.2 m

3.2. Image Pre-Processing

The WorldView ortho-ready standard level 2 product was used in the study as the target
data. These standard imagery products are radiometrically corrected (relative radiometric response
between detectors, non-responsive detector fill, and a conversion for absolute radiometry), sensor
corrected (internal detector geometry, optical distortion, scan distortion and any line-rate variations),
geometrically corrected (spacecraft orbit position and attitude uncertainty, Earth rotation and curvature
and panoramic distortion) and projected [50].

To obtain true radiance values from the digital values of the image, it was necessary to perform a
radiometric calibration applying the correct gains and offsets of the sensor for each band. After this
calibration, Top Of Atmosphere (TOA) radiances were obtained. TOA radiance includes distortions
produced by the absorption and scattering of the atmospheric gases and, in consequence, correction
algorithms are necessary to minimize these effects for the different wavelength of the spectrum.

After a thorough assessment of different advanced atmospheric corrections models, comparing
Worldview-2 estimated reflectances with real ones measured by a field spectroradiometer [53], most of
the radiative models tested achieved good performance but the Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) algorithm [54] provided the highest accuracy with Root Mean
Square Error (RMSE) values around 3%.

The FLAASH model was applied and the corresponding parameters (atmosphere type, aerosol
model and thickness, height, flight time and date, sensor geometry, adjacency, etc.) were properly
set using climatic and field data besides the information included in the metadata file of each image.
Next, to transform the perspective of a satellite-derived image to an orthogonal view of the ground,
which removes the effects of sensor tilt and terrain relief, orthorectification was applied using rational
polynomial coefficients and a high-resolution digital elevation model.

On the other hand, the available Sentinel-2 Level-2A products, that already provide Bottom Of
Atmosphere (BOA) reflectance images, were considered for the analysis. Specifically, the Level-2A
processing protocol mainly includes an atmospheric correction applied to the TOA Level-1C and the
orthorectification [2]. The atmospheric correction model used is Sen2Cor [55], which is a combination
of state-of-the-art techniques tailored to the Sentinel-2 environment.

Once Worldview and Sentinel images were properly pre-processed, both sets were modified to
have the same spatial resolution of 2 m and properly co-registered. The process included locating and
matching a number of ground control points (GCP) in both images and then performing a geometric
transformation. Automatic and manual GCP were extracted to derive a representative and well
distributed set of points. Next, a polynomial warping algorithm was applied to the Sentinel image
to match the reference Worldview image [56]. We only considered those channels that overlap each
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other, specifically bands B2, B3, B4 and B8 of Sentinel-2 and bands B2, B3, B5 and B7 of WorldView as
detailed in Table 1.

WorldView images in the European Cities dataset have a GSD of 1.6 m. Corrections were
made to obtain the BOA reflectance images as well. To form LR-HR pairs, we used the BOA
images as the HR and down-sampled them to obtain the LR image, preserving the same scaling
factor as the WorldView-Sentinel pairs, as shown in Figure 2. Then, the LR European Cities images
were interpolated using bicubic interpolation. Finally, we selected the same set of bands as for the
WorldView-Sentinel dataset.

Figure 2. Low-resolution-high-resolution (LR-HR) pairs from the European-City dataset.

3.3. Network Architecture

Since the work of [35], GANs have been used in super-resolution tasks due to their ability
to generate realistic outputs with rich textures and quality. The idea of using two models trained
simultaneously was proposed in [34], where a Generator network (G) is trained aiming to produce
new data-samples by capturing the data distribution from the training data. At the same time,
a Discriminator network (D) is trained aiming to verify the authenticity of the generated samples by
evaluating the probability of this data to correspond to the training distribution rather than being
generated by G. This training process involves minimizing the error between the generated and
real samples on one hand, and maximizing the chances of distinguishing between the real and the
generated (fake) samples on the other, making the cost function to depend on both networks, G and
D. Figure 3 shows the relationship between the networks, where the Generator has only access to the
input data while the Discriminator has access to both, generated and real data [57].

Input
sample

Real 
sample

Discriminator

Generator

Real or
Generated ?

Generated 
sample

Figure 3. General scheme of a Generative Adversarial Network.

When GANs are used for super-resolution, a generator is trained to produce a realistic version of
a HR image from a LR version. In this work we based our model on the Enhanced Super-Resolution
Generative Adversarial Network [37] due to its high performance in super-resolution of natural images.

The architecture of the Generator network can be seen in Figure 4 with the corresponding
configuration of kernel size (k), feature maps (n) and stride (s) for each convolutional layer. A single
convolutional layer is used as a feature extractor to generate 64 feature maps with 3 × 3 kernels with
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stride 1. These maps are the input of a deeper feature extractor composed by 23 Residual-in-Residual
Dense Blocks (RRDB) and, finally, three convolutional layers are used to reconstruct the output. A long
range skip-connection transfers low-level features that are combined with high-level features learned
by the RRDB.

The residual learning block RRDB has a more dense and complex structure of convolutional layers
with 3 × 3 kernels and 32 feature maps. All convolutional layers use stride 1 to maintain the resolution
of the images throughout the generator. The nonlinear activation is the leaky-ReLU with a negative
slope of 0.2. Each Dense Block allows the propagation of the information learned by preceding layers,
increasing the network capacity by using effectively this residual and local information. The concept
of Residual Scaling [58] was used to down scale feature maps by factor given by a hyperparameter Xb
(see Figure 4b) to prevent instability in training very deep networks.

Since we use an interpolated version of the LR image as an input image (see Section 3.2),
the upsampling modules of the original ESRGAN implementation were removed from the Generator.
Besides, the input and output layers were adapted to work with the four bands.

a)

b) c)

(a)

(b)

(b)(c)

(a)

(b)

Figure 4. The general architecture of the Generator and its modules (figure based on [37]).
A configuration with 3 × 3 kernels, 64 feature maps and a stride 1 is maintained for the main path
of the generator denoted as (k3n64s1). (a) General scheme of the Generator, (b) RRDB module, (c)
Dense module.

Figure 5 shows the architecture of the Discriminator network (D). It contains 8 blocks formed by
convolution, batch-normalization and leaky-ReLU layers. The blocks contain an increasing number of
feature maps, reaching 512 filters with alternating kernel sizes, a 3 × 3 kernel for a convolutional layer
with stride 1, and a 4 × 4 kernel with stride 2 for reducing the size of the images when the number of
feature maps is increased. The last layers are two dense fully-connected layers together with a final
sigmoid output to produce the final score.
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Figure 5. Architecture of the Discriminator.
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3.4. Methodology and Loss Functions

We train the model in three stages. First, we train the generator using the European Cities dataset,
then, in a second stage, we fine tune the generator using image pairs from the W-S Set1. For these two
stages, we use the L1 loss (Equation (1)), that measures the mean absolute error between the generated
output G(Xi) and the target Yi for each ith image.

L1 = EXi ‖G(Xi)−Yi‖ (1)

After training the Generator with the European Cities dataset and the WorldView-Sentinel image
pairs, the third and final stage consists in training the Generator along with the Discriminator with an
adversarial approach, using the weights learned from previous stages, and only training the models
with WorldView-Sentinel pairs. In this stage, a combination of losses is used for updating the weights
of the Generator (Equation (2)) and the Discriminator (Equation (6)). The Generator loss LG is a sum
of three terms: the adversarial loss LRa

G (Equation (5)), the content loss L1 (Equation (1)), and the
perceptual loss Lpercep (Equation (3)).

LG = ηL1 + λLRa
G + γLpercep (2)

The perceptual loss Lpercep, introduced by [36], uses the VGG-19 network [59] as feature extractor,
and measures the difference between feature maps obtained in two different points in the network. It
computes the mean absolute error between feature maps obtained after the 4th convolutional layer
and before the 5th max-pooling layer (φ54(.)), for each target image Yi and output G(Xi).

Lpercep = EXi ‖φ54(G(Xi))− φ54(Yi)‖ (3)

The adversarial loss LRa
G is calculated taking into account the concept of the Relativistic average

GAN (Ra) scheme introduced by Jolicoeur-Martineau in [38]. Relativistic average GAN improves the
performance of a standard GAN by encouraging the discriminator to not only distinguish between
input real images (xr) and fake images (x f ), but instead to distinguish that a real input image is
relatively more realistic than a fake one.

A standard GAN computes the probability that the generic input data x is real as D(x) = σ(C(x)),
where σ(.) is the sigmoid function and C(x) is the non-transformed discriminator output. By using the
relativistic scheme, the probability of a real data to be classified as real decreases while increases the
probability of fake data being classified as real. The relativistic discriminator (DRa) takes into account a
priori knowledge that half of the mini-batch samples are even fake or real. So, the (DRa) is formulated
as shown in Equation (4), where Ex f [.] represents the operation of computing the mean of all fake data
in the mini-batch [38].

DRa(xr, x f ) = σ(C(xr)−Ex f [C(x f )]) (4)

Cross-entropy is used to calculate the adversarial loss LRa
G as shown in Equation (5). Due to the

mini-max behavior of GANs, as one of the networks wants to minimize the probability of fake data to
be detected and the other wants to increase its probability to discriminate between fake and real data,
cross-entropy is used in a symmetrical form to update the weights of the Generator and Discriminator
(Equation (6)), since both networks benefit from the information of real and generated data in an
adversarial training, making results more realistic and with more details [37].

LRa
G = −Exr [log(1− DRa(xr, x f ))]−Ex f [log(DRa(xr, x f ))] (5)

LRa
D = −Exr [log(DRa(xr, x f ))]−Ex f [log(1− DRa(xr, x f ))] (6)
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3.5. Training Details and Network Interpolation

Due to the large size of satellite images, around 10 K × 10 K pixels in European Cities dataset
and over 1 K × 1 K in the WorldView-Sentinel dataset, images were divided into tiles of 140 × 140
pixels to form the train-validation-test subsets. The European Cities dataset contains 32 large images of
different parts of Europe, that were tiled and used for pre-training the model. The WorldView-Sentinel
dataset W-S Set1 contains 5293 tiles for training, 278 for validation and 296 for test. We performed
horizontal and vertical flips for data augmentation as well as random crops of 128 × 128 pixels. Adam
optimization [60] was used, with an initial learning rate of 10−4, halved every 20K iterations. The
hyperparameters that weight the different losses in Equation (2) are η = 10−2, γ = 1 and λ = 5−3 as
in [37]. The batch size is 2 and the residual scaling parameter is Xb = 0.2.

As indicated, the networks were trained in three stages, first with images from the European
Cities dataset, then using the WorldView-Sentinel (W-S) Set1 for training the generator network alone
and finally fine-tuning the model with adversarial training and using the same W-S Set1. We have
used Pytorch framework training the models with a Nvidia GTX Titan X 12GB and 12GB of RAM
memory, taking each stage 21 h to be completed.

The final SR image from a LR image X is obtained as a linear combination between a generator
trained in adversarial mode Gadv(X) and a generator trained alone GPSNR−oriented(X) (Equation (7)).
This linear combination is done to remove unpleasant noise produced by purely GAN-based methods
while maintaining a good perceptual quality [37]. The interpolation parameter α is a real number
within the [0, 1] range.

G(X) = (1− α)GPSNR−oriented(X) + αGadv(X) (7)

3.6. Quality Assessment

To perform a quantitative comparison of the results obtained by the Generator (G(X)) using
the input LR image (X) from the test set, and compared to its target HR image (Y), several metrics
were considered.

• Peak Signal to Noise Ratio (PSNR): it is one of the standard metrics used to evaluate the quality of
a reconstructed image. Here, MaxVal is the maximum value of the HR image (Y). Higher PSNR
generally indicates higher image quality.

PSNR(G(X), Y) = 20log10

(
MaxVal

RMSE[G(X), Y]

)
(8)

• Structural Similarity (SSIM) [61]: it is a metric that measures the similarity between two images
taking into account three aspects: luminance, contrast and structure. It is in the range [−1, 1],
where a SSIM equal to 1 corresponds to identical images. Constants C1 = k1L and C2 = k2L are
values that depends on the dynamic range (L) of the pixels values, with k1 = 0.01 and k2 = 0.03
by default.

SSIM(G(X), Y) =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ
2
X + σ2

Y + C2)
(9)

• Erreur relative globale adimensionnelle de systhese (ERGAS) [62]: it measures the quality of the output
G(X) image by taking into consideration the scaling factor (S) as well as the normalized error per
channel, considering the mean Y j of each band. Contrary to the PSNR and SSIM metrics for this
index a lower value implies higher quality.

ERGAS(G(X), Y) = 100S

√√√√ 1
nbands

nbands

∑
j=1

[
RMSE(G(X)j, Yj)

Y j

]2

(10)
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• Spectral Angle Mapper (SAM) [63]: it calculates the angle between two images by computing the
dot product divided by the 2-norm of each image. This index indicates higher similarity between
images as it approaches zero.

SAM(G(X), Y) = arccos
(

G(X).Y
‖G(X)‖2 ‖Y‖2

)
(11)

• Correlation Coefficient (CC): it computes the linear correlation between the images. It is in
the range [−1, 1], where 1 is total positive linear correlation and n is the number of pixel in
each channel.

CC(G(X), Y) =
1

nbands

nbands

∑
j=1

 ∑n
k=0(G(X)kj − G(X)j)(Ykj −Y j)√

∑n
k=0[G(X)kj − G(X)j]

2
√

∑n
k=0[Ykj −Y j]2

 (12)

For a qualitative comparison, true RGB and false-color composites were used to evaluate the
overall spatial and spectral performance of the methods. The false-color image is composed of the
NIR, Red and Green channels, in that order.

4. Experiments and Results

In this section we present numerical and visual results of our model applied to the test subset
of the W-S Set1, for several values of the interpolation parameter α (Equation (7)). Next, we evaluate
the robustness of the model on an independent set of images using W-S Set2. Finally, a comparison
with other state-of-the-art super-resolution algorithms is presented. In all cases quantitative results
are given in terms of mean and standard deviation of the quality metrics on the test sets. In addition,
statistical tests were performed to analyse the statistical significance of the difference in performance
of our method and other state-of-the-art models.

4.1. Data Standardization

Data normalization is typically performed prior to training a neural network to speed up learning
and lead to faster convergence. The usual approach in SR models consists in dividing all image
pixels by the largest pixel value, adjusting pixel values to the [0,1] range. This is performed across
all channels, regardless of the actual range of pixel values that are present in the image. The inverse
process is done at the output, re-scaling pixels to the original range.

However, we have observed that this type of normalization does not perform well in our scheme
that is trained with images from two different sensors, leading to results where the distribution of the
SR Sentinel image is shifted towards the spectral distribution of the original WorldView HR image.

To address this issue, we standardize the input and target data. Standardization is done by
channel j, subtracting the mean X̄j and dividing by the standard deviation σXj . To obtain the final SR
image G(X), the inverse process is applied, using the mean and standard deviation of the input image
X, as shown in Equations (13) and (14).

X̂j =
Xj − X̄j

σXj

(13)

G(Xj) = G(X̂j)σXj + X̄j (14)

Figure 6 illustrates the difference between the two methods. We have trained both models, one
normalizing and the other one standardizing the data, and we generated SR results for two samples
from the W-S Set1 corresponding to Cabrera and Maspalomas. We present the normalized histograms
per band. Each plot shows the original distribution of the LR Sentinel (orange), HR WordView (blue),
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the SR output using normalization (green) and standardization (red). We clearly observe that the
standardization approach helps to preserve the spectral content of the low resolution image.

(a) Cabrera 2016 (b) Maspalomas 2015
Figure 6. Normalized histograms between the LR, HR and super-resolution (SR) images for each
channel: (a) Cabrera 2016, (b) Maspalomas 2015.

4.2. Performance on the W-S Set1

Table 4 shows the quantitative assessment results of our SR model for several values of the
interpolation parameter α (Equation (7)), as well as baseline results obtained using nearest neighbor
(LR_nn) and bicubic (LR_cub) interpolations of the LR images. The best results are highlighted in bold.
Better metrics are obtained for low values of α, achieving an improvement over bicubic interpolation
of 2.05 dB on PSNR, 0.097 on SSIM, a decrease of 1.116 on ERGAS, a decrease of 0.026 on SAM and an
improvement of 0.025 on CC. Figures 7–10 provide visual results for several values of α and different
land covers. It can be observed that as the influence of the network with adversarial training increases
(with α > 0.5) more texture appears in the SR image. This behaviour is helpful in regions with
small details like forest and urban areas, though lower metrics are obtained as a trade-off. However,
very large values of α may introduce some artifacts. This is consistent with the typical hallucination
effect that has been reported in GAN models [35,37]. It is important to emphasize that only the Sentinel
LR image is applied to the trained model and the Worldview HR image is just used as a reference to
assess the quality.

Table 4. Quality metrics results on the W-S Set1 for nearest neighbor (LR_nn) and bicubic (LR_cub)
interpolation and our method SR_α for different values of α.

LR_nn LR_cub SR_0 SR_0.1 SR_0.2 SR_0.5 SR_0.7 SR_1

PSNR mean 26.048 26.049 28.099 28.036 27.893 27.476 27.160 26.099
std 2.368 2.368 2.249 2.287 2.326 2.369 2.357 2.323

SSIM mean 0.527 0.527 0.622 0.624 0.621 0.605 0.585 0.514
std 0.103 0.103 0.093 0.092 0.093 0.093 0.094 0.096

ERGAS mean 26.504 26.502 25.389 25.386 25.463 25.75 25.943 26.440
std 9.072 9.071 8.359 8.319 8.327 8.435 8.496 8.847

SAM mean 0.121 0.121 0.095 0.096 0.098 0.103 0.107 0.121
std 0.054 0.054 0.041 0.042 0.043 0.047 0.049 0.055

CC mean 0.934 0.934 0.959 0.958 0.956 0.951 0.948 0.934
std 0.053 0.053 0.032 0.033 0.035 0.04 0.042 0.052
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 7. Results of a region of Cabrera from W-S Set1. (a) HR, (b) LR with NN interpolation, (c) LR
with bicubic interpolation, (d) SR with α = 0, (e) SR with α = 0.1, (f) SR with α = 0.2, (g) SR with
α = 0.5, (h) SR with α = 0.7, (i) SR with α = 1. Image size: 140 × 140 pixels.

(a) (b) (c)
Figure 8. Cont.



Remote Sens. 2020, 12, 2424 14 of 25

(d) (e) (f)

(g) (h) (i)
Figure 8. Results of a region of Maspalomas-2015 from W-S Set1. (a) HR, (b) LR with NN interpolation,
(c) LR with bicubic interpolation, (d) SR with α = 0, (e) SR with α = 0.1, (f) SR with α = 0.2, (g) SR
with α = 0.5, (h) SR with α = 0.7, (i) SR with α = 1. Image size: 140 × 140 pixels.

(a) (b) (c)

(d) (e) (f)
Figure 9. Cont.
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(g) (h) (i)
Figure 9. Results of a region of Teide-2017 from W-S Set1. (a) HR, (b) LR with NN interpolation, (c) LR
with bicubic interpolation, (d) SR with α = 0, (e) SR with α = 0.1, (f) SR with α = 0.2, (g) SR with
α = 0.5, (h) SR with α = 0.7, (i) SR with α = 1. Image size: 140 × 140 pixels.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 10. False Color [NIR-R-G] results of a region of Teide-2017 from the W-S Set1. (a) HR, (b) LR
with NN interpolation, (c) LR with bicubic interpolation, (d) SR with α = 0, (e) SR with α = 0.1, (f) SR
with α = 0.2, (g) SR with α = 0.5, (h) SR with α = 0.7, (i) SR with α = 1. Image size: 140 × 140 pixels.
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4.3. Performance on the W-S Set2

We also tested our model on pairs of WorldView-Sentinel images that were not used for the
training, the W-S Set2. Quantitative results are summarized in Table 5.

The proposed model outperforms nearest-neighbor and bicubic interpolation in all the metrics
considered. In line with the results achieved with the W-S Set1, low values of α provide, in general,
better quality metrics. In this experiment, α = 0.1 is the optimal value with improvements of 1.612 dB
on PSNR and 0.087 on SSIM over bicubic interpolation.

Visual results are presented in Figures 11 and 12 for two images of Maspalomas and Cabrera.
It can be inferred from these results a good recovery of the textures in dense forest areas. For images
with high density of households, objects are clearly defined, recovering the delimitation of roads and
roundabouts. Moreover, there is good spectral agreement between LR images and the SR results,
despite of using test images not belonging to the training set.

In accordance with the results of the previous experiments, as we get more influence from the
adversarial network (with higher values of α), more spatial details appear in the results, at the expense
of a slight spectral distortion measured by the quality metrics.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 11. Results of a region of Cabrera from the W-S Set2. (a) HR, (b) LR with NN interpolation,
(c) LR with bicubic interpolation, (d) SR with α = 0, (e) SR with α = 0.1, (f) SR with α = 0.2, (g) SR
with α = 0.5, (h) SR with α = 0.7, (i) SR with α = 1. Image size: 378 × 256 pixels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 12. Results of a region of Maspalomas from the W-S Set2. (a) HR, (b) LR with NN interpolation,
(c) LR with bicubic interpolation, (d) SR with α = 0, (e) SR with α = 0.1, (f) SR with α = 0.2, (g) SR
with α = 0.5, (h) SR with α = 0.7, (i) SR with α = 1. Image size: 378 × 256 pixels.

Table 5. Quality metrics results on the W-S Set2 for nearest neighbor (LR_nn) and bicubic (LR_cub)
interpolation and our method SR_α for different values of α.

LR_nn LR_cub SR_0 SR_0.1 SR_0.2 SR_0.5 SR_0.7 SR_1

PSNR mean 26.280 26.30 27.851 27.912 27.848 27.455 27.085 26.019
std 1.617 1.657 1.498 1.530 1.572 1.612 1.616 1.605

SSIM mean 0.588 0.589 0.673 0.676 0.675 0.661 0.644 0.579
std 0.075 0.077 0.062 0.061 0.061 0.063 0.065 0.070

ERGAS mean 29.773 29.795 29.909 29.810 29.830 29.726 29.673 29.301
std 9.072 9.071 8.359 8.319 8.327 8.435 8.496 8.847

SAM mean 0.176 0.175 0.147 0.146 0.147 0.154 0.161 0.183
std 0.041 0.040 0.033 0.034 0.036 0.039 0.041 0.047

CC mean 0.929 0.929 0.950 0.951 0.950 0.945 0.939 0.922
std 0.053 0.052 0.036 0.036 0.037 0.042 0.046 0.059
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4.4. Comparison with Other SR Models

In this subsection we compare the performance of our proposed RS-ESRGAN model (using α = 0)
with the baseline bicubic interpolation and some state-of-the-art SR methods: SRCNN [64], EDSR [65],
RCAN [66] and SRGAN [35].

For a fair comparison, all SR models considered were trained in the same way in two stages,
first with European-Cities and then with WorldView-Sentinel Set1, with training details as described
in Section 3.5. The upsampling modules of the EDSR, RCAN and SRGAN were removed from the
original architectures and input images were pre-upsampled by a factor of 5 using bicubic interpolation.
In addition, the architectures of were adapted to work with the four input channels considered. Quality
metrics results on the W-S Set1 are summarized in Table 6. The best results are highlighted in bold.

Our model outperforms the others in all the metrics considered. The statistical analysis of the
results on the W-S Set1 shows that differences between the proposed model and the other SR models
are significant (all p-values smaller than 0.01).

Table 6. Quality metrics results on W-S Set1 for different methods.

LR_cub SRCNN [64] EDSR[65] RCAN[66] SRGAN[35] RS-ESRGAN RS-ESRGAN
(α = 0) (α = 0.5)

PSNR mean 26.049 26.528 26.481 27.029 26.898 28.099 27.476
std 2.368 2.315 2.337 2.269 2.248 2.249 2.369

SSIM mean 0.527 0.586 0.600 0.617 0.602 0.622 0.605
std 0.102 0.092 0.094 0.092 0.091 0.093 0.093

ERGAS mean 26.503 26.746 26.421 26.401 26.717 25.389 25.750
std 9.072 9.070 8.758 8.579 9.021 8.359 8.435

SAM mean 0.121 0.115 0.115 0.107 0.110 0.0954 0.103
std 0.053 0.051 0.045 0.042 0.046 0.040 0.047

CC mean 0.934 0.942 0.942 0.949 0.947 0.958 0.951
std 0.053 0.046 0.039 0.034 0.039 0.031 0.040

In addition to the quantitative comparisons, we also performed visual comparisons among our
method and the above-listed methods, presented in Figures 13 and 14. The proposed model with α = 0
and α = 0.1 produces a clean image, with fine details, less artifacts and consistent with the target.

(a) (b) (c)
Figure 13. Cont.
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(d) (e) (f)

(g) (h) (i)
Figure 13. Results of a region of Maspalomas 2015 from the W-S Set1. (a) HR, (b) LR with NN
interpolation, (c) LR with bicubic interpolation, (d) SR convolutional neural network (SRCNN), (e)
EDSR, (f) RCAN, (g) SRGAN with α = 0, (h) RS-Enhanced Super-Resolution Generative Adversarial
Network (RS-ESRGAN) (α = 0), (i) RS-ESRGAN (α = 0.1). Image size: 140 × 140 pixels.

(a) (b) (c)

(d) (e) (f)
Figure 14. Cont.
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(g) (h) (i)
Figure 14. Results of a region of Teide 2017 from the W-S Set1. (a) HR, (b) LR with NN interpolation,
(c) LR with bicubic interpolation, (d) SRCNN, (e) EDSR, (f) RCAN, (g) SRGAN with α = 0,
(h) RS-ESRGAN (α = 0), (i) RS-ESRGAN (α = 0.1). Image size: 140 × 140 pixels.

5. Discussion

Single-Image SR with GANs is a complex task requiring a great quantity of diverse image pairs
for training. In addition, in the remote sensing context, the pre-processing steps applied to the data
play a key role during the network training.

Aiming to exploit the open policy of Sentinel-2 and the very high spatial resolution that a
WorldView imagery offers, we trained our model with real data from both satellite sensors. However,
the generation of LR-HR image pairs is not easy mainly due to the high cost and availability of archived
data for WorldView, as well as the difficulty of obtaining pairs of similar dates and lighting conditions.
To alleviate this inconveniences, the network was pre-trained using LR-HR image pairs artificially
generated from a collection of publicly available WorldView images.

One crucial pre-processing step is co-registration, necessary to compensate the miss-alignment
of pixels between both datasets. The ability of WorldView to record images with different off-nadir
angles may add spatial distortions in comparison with Sentinel imagery, that only senses in the nadir
viewing direction, making more complex the generation of LR-HR pairs and requiring the application
of orthorectification tasks with a precise digital elevation model. To perform an accurate co-registration,
images must have the same GSD to define the ground control points and to apply the subsequent
geometric transformation. We performed a bicubic interpolation on the LR images followed by the
co-registration. Thus, the upsampled versions of the LR images were input to the network and we
removed the upsampling module that is typically used in super-resolution networks like the ESRGAN.

Another important aspect to consider during the generation of LR-HR image pairs is the spectral
information, particularly when dealing with sensors having bands with different spectral range.
We used the four bands (RGB-NIR) that presented spectral overlap between both satellites. We observed
that the standardization of the input and target images before the training was critical to produce SR
images preserving the spectral information from the LR counterpart.

The proposed RS-ESRGAN model achieves a significant improvement in all the quality metrics
compared to recent models like RCAN and SRGAN. Also, the subjective evaluation shows that the
proposed RS-ESRGAN produces finer details and textures. The false color scheme, using the NIR band,
shows that improvements are consistent in the four channels considered.

The final SR image is obtained as a linear combination of the results produced by the model trained
with and without the adversarial scheme. The interpolation parameter α controls the trade-off between
images with high-frequency details and texture, and higher visual quality in general (but also possible
artifacts), or images without noise but with less spatial details producing higher quantitative metrics.

The performance on the independent test set W-S Set2 was also excellent. The model was trained
with samples containing several structures like building, roads, shrubbery, arid zones and dense
vegetation areas and, therefore, can generalize to images from geographical areas that are not included
in the training sets. Actually, RS-ESRGAN was also tested with Sentinel-2 images from other parts
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of the world with satisfactory visual results. To avoid extending this article further, such additional
results are not included.

The proposed single-image SR model produces HR images that can enable the use of Sentinel-2
imagery in several studies where fine detail is needed. Moreover, the user can decide about exploiting
the spatial detail or preserving the spectral agreement by just tuning the interpolation parameter α.

The improvement in spatial quality at the expense of generating some noise in the SR image,
and the computational burden due to the combination of different loss functions and the dense
combination of feature maps in the generator might be a limitation of the model. These issues are
currently unsolved and are certainly good topics to be explored in a near future.

Another issue that deserves attention is the presence of artifacts in SR images, that tend to appear
with the fully adversarial mode, i.e. with higher values of α. Artifacts make roads appear more
sinuous when they should be straight or produce the hallucination of connected dense vegetation
areas, when HR images demonstrate the opposite. These are important problems to tackle in future
works, although network interpolation seems to be a valid workaround in obtaining a SR image less
blurry and with texture recovered.

6. Conclusions

In this paper we propose a single-image super-resolution method based on a deep generative
adversarial network to enhance the spatial resolution of Sentinel-2 10 m bands to a resolution of
2 m. The proposed model, RS-ESRGAN, was adapted to work with co-registered remote sensing
images and it was trained using the four channels (RGB and NIR) that overlap on both satellites, with
Sentinel-2 images as input and WorldView images as target. Several pre-processing steps were needed
to obtain the dataset of image pairs ready for training. The model was first trained with synthetic
LR-HR pairs from the WorldView European Cities dataset and, next, with real LR-HR image pairs from
Sentinel-2 and WorldView satellites. An important aspect for the training was the standardization of
the images by channels, that proved to be a crucial step to preserve the spectral information between
the low-resolution and the super-resolved images. The behaviour of the α parameter was analyzed,
showing the trade-off between visual quality and quantitative metrics of the results. Finally, results
show significant improvements, both quantitative and qualitatively, of RS-ESRGAN compared to other
state-of-the-art deep learning SR models.
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Abbreviations

The following abbreviations are used in this manuscript:

Bic Bicubic interpolation
BOA Bottom Of Atmosphere
CC Correlation Coefficient
CNN Convolutional Neural Network
D Discriminator network
DL Deep Learning
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ERGAS Erreur Relative Globale Adimensionelle de Systhèsis
ESA European Space Agency
FC False Color
FLAASH Fast Line-of-sight Atmospheric Analysis of Hypercubes
G Generator Network
GAN Generative Adversarial Network
GCP Ground Control Points
GSD Ground Sampling Distance
HS Hyperspectral
HR High-resolution image
LR Low-resolution image
MS Multispectral
MSE Multi Spectral Instrument
NIR Near Infrared
NN nearest neighbour
PAN Panchromatic band
PSNR Peak Signal to Noise Ratio
RGB Red-Green-Blue
RMSE Root Mean Square Error
RRDB Residual-in-Residual Dense Blocks
SAM Spectral Angle Mapper
SR Super-resolution image
SSIM Structural Similarity
std Standard Deviation
TOA Top Of Atmosphere
VISNIR Visible and Near Infrared
VHSR Very high spatial resolution
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