
electronics

Article

Lossy Hyperspectral Image Compression on a
Reconfigurable and Fault-Tolerant FPGA-Based
Adaptive Computing Platform †

Yubal Barrios 1,* , Alfonso Rodríguez 2 , Antonio Sánchez 1 , Arturo Pérez 2 ,
Sebastián López 1 , Andrés Otero 2 , Eduardo de la Torre 2 and Roberto Sarmiento 1

1 Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria,
35001 Las Palmas de Gran Canaria, Spain; ajsanchez@iuma.ulpgc.es (A.S.); seblopez@iuma.ulpgc.es (S.L.);
roberto@iuma.ulpgc.es (R.S.)

2 Centre of Industrial Electronics, Universidad Politécnica de Madrid, 28006 Madrid, Spain;
alfonso.rodriguezm@upm.es (A.R.); arturo.perez@upm.es (A.P.); joseandres.otero@upm.es (A.O.);
eduardo.delatorre@upm.es (E.d.l.T.)

* Correspondence: ybarrios@iuma.ulpgc.es
† This paper is an extended version of our paper published in “Hyperspectral Image Lossy Compression on a

Reconfigurable and Fault-Tolerant Architecture Implemented over a COTS FPGA-Based System-on-Chip”
presented at the 6th International Workshop on On-Board Payload Data Compression (OBPDC 2018).

Received: 25 August 2020; Accepted: 22 September 2020; Published: 26 September 2020
����������
�������

Abstract: This paper describes a novel hardware implementation of a lossy multispectral and
hyperspectral image compressor for on-board operation in space missions. The compression algorithm
is a lossy extension of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless
standard that includes a bit-rate control stage, which in turn manages the losses the compressor may
introduce to achieve higher compression ratios without compromising the recovered image quality.
The algorithm has been implemented using High-Level Synthesis (HLS) techniques to increase design
productivity by raising the abstraction level. The proposed lossy compression solution is deployed
onto ARTICo3, a dynamically reconfigurable multi-accelerator architecture, obtaining a run-time
adaptive solution that enables user-selectable performance (i.e., load more hardware accelerators to
transparently increase throughput), power consumption, and fault tolerance (i.e., group hardware
accelerators to transparently enable hardware redundancy). The whole compression solution is
tested on a Xilinx Zynq UltraScale+ Field-Programmable Gate Array (FPGA)-based MPSoC using
different input images, from multispectral to ultraspectral. For images acquired by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS), the proposed implementation renders an execution
time of approximately 36 s when 8 accelerators are compressing concurrently at 100 MHz, which in
turn uses around 20% of the LUTs and 17% of the dedicated memory blocks available in the target
device. In this scenario, a speedup of 15.6× is obtained in comparison with a pure software version
of the algorithm running in an ARM Cortex-A53 processor.

Keywords: hyperspectral imaging; lossy data compression; hardware acceleration; on-board
processing; CCSDS; fault-tolerance

1. Introduction

The use of hyperspectral sensors on-board satellites is taking relevance for environmental studies.
In the last years, Earth Observation (EO) space missions are incorporating this kind of sensors
with identification and detection purposes. Besides, spectroscopy is proposed to be integrated into
deep-space missions to analyse cosmic bodies, such as the surface of Mars [1]. Their main disadvantage

Electronics 2020, 9, 1576; doi:10.3390/electronics9101576 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6186-9971
https://orcid.org/0000-0001-6326-743X
https://orcid.org/0000-0002-2142-7885
https://orcid.org/0000-0002-6629-1002
https://orcid.org/0000-0002-2360-6721
https://orcid.org/0000-0003-4995-7009
https://orcid.org/0000-0001-5697-0573
https://orcid.org/0000-0002-4843-0507
http://www.mdpi.com/2079-9292/9/10/1576?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9101576
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1576 2 of 23

is that acquired images demand too many memory resources to be stored because they include the
complete spectral information in a range of wavelengths for every single pixel. This tremendous
amount of data prevents from sending them directly to ground stations due to downlink bandwidth
limitations [2]. Therefore, on-board image compression techniques become a must to reduce image
size before sending them to the on-Earth facilities where they are processed.

In the image compression state-of-the-art, two categories are distinguished: lossless and lossy
compression. Lossless compression preserves all the data of the acquired image, fully recovering it
after decompression. Consequently, the achieved compression ratios are limited (typically 4:1, or even
less) and insufficient for large-distance space missions with high-resolution hyperspectral sensors
on-board. On the other hand, lossy compression reaches higher compression ratios introducing losses
in the data; i.e., the original image cannot be recovered, obtaining an approximation that depends
on the applied error threshold [3]. Although getting a specific compression ratio is the primary goal,
the computational complexity of the compression algorithm must also be considered, taking into
account the limited computational resources available on-board.

Currently, on-board compression algorithms are implemented on Field-Programmable Gate
Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs). FPGAs are increasing their
presence as part of space payloads because of their reconfiguration capabilities, high performance,
low-power consumption and cost reduction compared to ASICs. In addition, FPGAs allow to execute
simultaneously certain operations if no data dependencies are presented, supposing an advantage
compared to the sequential behaviour of embedded microprocessors. FPGAs also have the ability
to change all or some parts of the functionality dynamically to adapt it to new requirements that
can appear during the mission lifetime or even if corruption takes place, because of radiation effects.
Although there are Rad-Hard By Design (RHBD) FPGAs available in the market, specially designed
for working in critical environments under radiation, Commercial Off-The-Shelf (COTS) SRAM-based
FPGAs are gaining increasing interest due to their higher performance in comparison with RHBD
devices, which belong to former technological generations.

These FPGAs can be combined with microprocessors in the same die, forming heterogeneous
Systems-on-Chips (SoCs), which increase system capabilities in terms of computational performance
without compromising its power consumption. The space industry is integrating these SoCs in
SmallSats for Low-Earth Orbit (LEO) missions where the radiation effects are reduced, to demonstrate
the viability of this technology for short-time experiments [4]. As it is well-known, radiation can cause
errors in the FPGAs configuration memory, which may derive in a progressive or even complete
malfunctioning of the device. Nevertheless, some techniques, such as scrubbing and hardware
redundancy at different levels, are currently available to prevent or mitigate radiation effects and to
preserve data integrity and system functionality [5].

FPGA design has been addressed in the last decades at Register Transfer Level (RTL), but with the
increasing design complexity, it is necessary to use other approaches that allow the reduction of both the
development time and the re-design costs. In this way, High-Level Synthesis (HLS) methodologies can
be used, starting from an algorithmic model in a high-level language that is automatically transformed
by HLS tools into its equivalent RTL description [6]. The generated RTL model should match the design
constraints defined at higher abstraction levels to achieve the goals in terms of timing, resources and
power consumption. If these objectives are not achieved, it is possible to come back to a previous stage
and modify specific parts of the algorithm with total flexibility and without additional manufacturing
costs. Moreover, this design flow considers the possibility of working at RTL, if particular targets in
terms of clock-cycling accuracy are required.

In this paper, we propose the implementation of a lossy extension of the CCSDS 123.0-B-1
lossless compression standard [7] for multispectral and hyperspectral images. This extension consists
in adding a quantizer and a bit-rate feedback loop, to control the losses for achieving the targeted
compression ratios without deteriorating in excess the quality of the decompressed image. This solution
has been developed using HLS techniques, and it is implemented over a reconfigurable, scalable



Electronics 2020, 9, 1576 3 of 23

and fault-tolerant architecture named ARTICo3 [8], which provides run-time adaptive computing
performance, energy efficiency, and robustness against radiation when used as a payload processing
system in short-time missions with COTS devices. As a result, a configurable number of lossy
compressor cores can be placed in the FPGA fabric and then set to work not only with different input
data to maximise performance and energy efficiency, but also with the same data to maximise fault
mitigation by using hardware redundancy techniques. A brief introduction about this compression
solution ans some preliminary results can be found in [9].

The rest of this paper is organised as follows. A review of the state-of-the-art in hyperspectral
image compression is provided in Section 2. Section 3 provides an overview of the CCSDS
123.0-B-1 lossless standard and the proposed extension to work in the near-lossless and lossy modes.
The ARTICo3 framework is presented in Section 4, while the mapping of the compression application
onto this architecture is detailed in Section 5, together with an impact study about the influence
of the image partitioning in the quality of the reconstructed image. Then, experimental results are
shown in Section 6, including timing, area and compression results. Finally, Section 7 summarizes the
conclusions and the future work.

2. Related Work

Hyperspectral image compression is a hot topic in the space industry and, consequently, there is a
significant amount of research works available in the specialised literature.

Regarding compression algorithms, the preference of the scientific community is the use of
lossless solutions, to preserve as much essential information as possible from the acquired scene.
The implementation of this kind of algorithms, generally based on a predictive stage, must take
into account important constraints, such as low-complexity and low-power consumption, in order
to fit well with the limited computational resources available on-board satellites. In this category,
the CCSDS 123.0-B-1 standard must be highlighted [7], as it provides a low-complexity solution
for on-board compression of multispectral and hyperspectral images. Different implementations
of this algorithm on FPGAs can be found in the state-of-the-art, in both RHBD [10–15] and COTS
devices [16,17], and dealing with different strategies to optimise either the throughput or the resources
consumption. All the implementations mentioned above refer only to one compression instance;
however, works described in [10,15,17] and further extended in [18–20], respectively, follow a parallel
approach, where multiple compression instances work simultaneously, improving the results in terms
of throughput. Finally, it is also possible to find some implementations of this algorithm on GPUs such
as [21,22], although their high power consumption and lack of tolerance to ionising radiation make
GPUs unfit for space applications.

However, if higher compression ratios need to be achieved in order to reduce the on-board
storage demands, lossy compression solutions should be adopted. Generally, lossy algorithms are
transform-based, such as the Discrete Wavelet Transform (DWT) [23] or the Karhunen–Loève Transform
(KLT) [24], the latter being the one that provides the best results in terms of rate-distortion [25].
Despite the suitable results presented, the KLT approach has some disadvantages, such as a
high computational and memory demands, its higher implementation costs and its lack in terms
of scalability, preventing its use for specific applications with strong constraints, like on-board
compression. The Pairwise Orthogonal Transform (POT) derives from the KLT but reducing the
complexity of the operations and still obtaining at the same time better results than the Wavelet-based
approaches [26]. The CCSDS has also defined the CCSDS 122.1-B-1 spectral preprocessing transform
for 3D image compression [27], based on the Integer Wavelet Transform (IWT), the same used by the
JPEG2000 standard, and an encoding stage where multiple instances of a 2D encoder apply a DWT
to a band of the downshifted transformed image. In addition, there are other lossy algorithms in the
literature [28–32], which try to adapt the complex transform-based solutions to be able to compress
hyperspectral images, taking into account the hardware limitations on-board satellites.



Electronics 2020, 9, 1576 4 of 23

An intermediate point between lossless and lossy solutions is the use of near-lossless algorithms,
whose complexity is similar to lossless algorithms but at the same time are able to achieve compression
ratios in the same order of magnitude than lossy solutions. Recently, the CCSDS has extended the
CCSDS 123.0-B-1 lossless algorithm for working in the near-lossless range, introducing a quantizer
and a local decompressor for estimating the reconstructed samples in the prediction loop. This new
standard, named CCSDS 123.0-B-2 [33], it is based on the Fast Lossless Extended (FLEX) algorithm [34]
and defines a low-complexity compression architecture that provides backward compatibility with
the lossless counterpart. Still, at the same time, it is also capable of performing lossy compression,
providing results in terms of rate-distortion similar to other lossy algorithms. As this standard has been
recently published, the implementation presented in [35] is the only one available in the state-of-the-art.

With respect to hardware implementations of near-lossless and lossy compression algorithms
for hyperspectral images, some works are found targeting both FPGAs [36–40] and also GPUs [41,42].
However, none of these implementations provides a way to smartly adapt the compression
performance under certain anomalous situations, aiming at enhancing the system with extra features,
such as robustness against faults defining modular redundancy or reprogramming a specific part of the
FPGA in case of complete corruption due to radiation effects. In addition, the work presented
in this paper takes as starting point a standard solution, adapting its structure to extend its
compression capabilities.

For these reasons, the proposed work represents a new solution for short-time and Low-Orbit
missions, providing not only good results in terms of rate-distortion but also including some dynamic
techniques to adapt the architecture to the extreme conditions existent in the space environment.
This latter feature supposes an added value in comparison with other works available in the specialised
literature, at the expense of a small penalty in terms of timing capabilities. In addition, taking into
account the results provided in Section 6, the complexity of the presented solution fits well with
the hardware resources available on SmallSats, which makes the solution proposed in this paper a
convenient option for this kind of satellites.

3. Compression Algorithm Description

The CCSDS 123.0-B-1 lossless compression standard [7] is intended for compressing multispectral
and hyperspectral images on-board satellites, achieving a trade-off between compression efficiency
and computational demands. The output data is a variable-length encoded bitstream from which the
original image can be fully recovered. It comprises two main stages: prediction and entropy coding of
the prediction residuals (i.e., the differences between the current sample and the predicted one).

Some of the authors have previously developed SHyLoC [14], a set of two technology-independent
Intellectual Property (IP) cores described in VHDL. One of these IP cores implements the functionality
described in the CCSDS 123.0-B-1 lossless standard and currently it is part of the ESA IP Cores
Library [43]. The high-level model developed as a proof-of-concept for the IP mentioned above is used
as the starting point in this work, extending its functionality to work in near-lossless and lossy ranges.

3.1. Predictor

The prediction stage decorrelates redundant information in the acquired image, using a spatial
and spectral neighbourhood of previously processed samples to predict the value of the current one,
as shown in Figure 1. This decorrelation stage helps to reduce the compressed data size, dealing with
differences among pixels instead of the real pixel values. Therefore, if sz,y,x is a sample located in
the spatial coordinates (y, x) and band z, the predicted sample ŝz,y,x is calculated using previously
pre-processed neighbouring samples in the current and in the P previous bands. The number of
previous bands P used for prediction is a tunable parameter between 0 and 15, although it has been
demonstrated in [44] that there is not a significant improvement from P = 3 onward.



Electronics 2020, 9, 1576 5 of 23

current band z

z

y

x

current sample

s
z-P,y-1,x-1

s
z-P,y-1,x

s
z-P,y-1,x+1

s
z-P,y,x-1

s
z-P,y,x

s
z-1,y-1,x-1

s
z-1,y-1,x

s
z-1,y-1,x+1

s
z-1,y,x-1

s
z-1,y,x

s
z,y-1,x-1

s
z,y-1,x

s
z,y-1,x+1

s
z,y,x-1

s
z,y,x

current band z

z

y

x

current sample

s
z-P,y-1,x-1

s
z-P,y-1,x

s
z-P,y-1,x+1

s
z-P,y,x-1

s
z-P,y,x

s
z-1,y-1,x-1

s
z-1,y-1,x

s
z-1,y-1,x+1

s
z-1,y,x-1

s
z-1,y,x

s
z,y-1,x-1

s
z,y-1,x

s
z,y-1,x+1

s
z,y,x-1

s
z,y,x

P previous 

bands

Figure 1. Sample neighbourhood considered for prediction.

The predictor first computes a local sum σz,y,x of neighbouring sample values in the current
band as well as for each one of the P previous bands. This computation can be done using either
a neighbour- or a column-oriented approach. If the neighbour-oriented mode is selected, all the
previously processed adjacent samples are used (see Equation (1)), while in the column-oriented mode
just the sample right above is used, as it is reflected in Equation (2).

σz,y,x =


sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1, y > 0, 0 < x < Nx − 1

4sz,y,x−1, y = 0, x > 0

2(sz,y−1,x + sz,y−1,x+1), y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x, y > 0, x = Nx − 1

(1)

σz,y,x =

{
4sz,y−1,x, y > 0

4sz,y,x−1, y = 0, x > 0
(2)

These local sums are then used to compute the local differences dz,y,x, subtracting the value of the
samples in the neighbourhood of the current one from the calculated local sum. The central difference
is computed as dz,y,x = 4sz,y,x − σz,y,x, while the directional differences are computed according to
Equations (3)–(5), if the full prediction mode is selected. Under the reduced mode, only the central
difference is considered to shape the differences vector Uz,y,x.

Then, the predicted sample ŝz,y,x is calculated using the local sum σz,y,x in the current spectral
band and a weighted sum of the elements in Uz,y,x. A weight vector is maintained separately for
each band, and its components are updated considering the prediction residual ∆z,y,x and the local
differences dz,y,x. Finally, the prediction residual ∆z,y,x is mapped into an unsigned integer δz,y,x, the
mapped prediction residual, which is subsequently encoded by the selected entropy coder.

dN
z,y,x =

{
4sz,y−1,x − σz,y,x, y > 0

0, x > 0, y = 0
(3)

dW
z,y,x =


4sz,y,x−1 − σz,y,x, x > 0, y > 0

4sz,y−1,x − σz,y,x, x = 0, y > 0

0, x > 0, y = 0

(4)



Electronics 2020, 9, 1576 6 of 23

dNW
z,y,x =


4sz,y−1,x−1 − σz,y,x, x > 0, y > 0

4sz,y−1,x − σz,y,x, x = 0, y > 0

0, x > 0, y = 0

(5)

3.2. Entropy Coder

Regarding the encoding stage, the CCSDS 123.0-B-1 standard allows selecting between a
sample-adaptive entropy encoder and the block-adaptive entropy encoder defined by the CCSDS
121.0-B-2 lossless compression standard [45]. In this work, the sample-adaptive encoder has been
selected because it generally achieves a higher compression ratio than the block-adaptive one [46].
These results are even better in the case of calibrated images, where streaking artefacts do not appear.

The sample-adaptive encoder uses a Golomb power-of-two variable-length binary codeword to
encode the mapped prediction residuals δz,y,x one by one. The code selected for each input residual
depends on some image statistics, represented by a counter and an accumulator that are updated with
every new sample according to some user-defined parameters, summarized in Table 1.

Table 1. Sample-adaptive encoder parameters.

Parameter Allowed Values Description

Umax [8:32] Unary Length Limit
γ∗ [max(4,γ0+1):9] Rescaling Counter Size
γ0 [1:8] Initial Count Exponent
k [0:D-2] Accumulator Initialization Constant

The encoded image starts with a header that includes the necessary information to decompress
the bitstream, followed by the encoded body itself. This body is generated by encoding the mapped
prediction residuals δz,y,x with the disposition specified by the user and encoded in the header.
Three possible arrangements are considered: Band-Sequential (BSQ) order, where the samples in
a band are managed before processing the next one, and Band-Interleaved (BI) order. Two possible
orders are identified in this latter case: Band-Interleaved-by-Pixel (BIP), where a sample is processed
with all its spectral information before handling the next one, and Band-Interleaved-by-Line (BIL),
in which a complete line of samples in the spatial domain is processed before starting the next band.
These samples arrangements are reflected visually in Figure 2.

Figure 2. Samples arrangements: (a) Band-Sequential (BSQ); (b) Band-Interleaved-by-Pixel (BIP);
(c) Band-Interleaved-by-Line (BIL).

3.3. Lossy Extension

The baseline lossless architecture has been extended to work in a near-lossless to lossy range,
adding two extra modules: a quantizer and a bit-rate control. Figure 3 shows an overview of the
compression solution after inserting these two modules. The proposed extension is based on the



Electronics 2020, 9, 1576 7 of 23

modifications described in [47,48], which yield higher compression ratios than the lossless solution
without incurring penalties in terms of resources and memory usage, but features a novel and
hardware-friendly rate control mode.

Input 
image

Bit rate 
control

MapperQuantizer-
Sample adaptive 

entropy coder

Spatial/spectral 
predictor

Local 
decompressor

Q

Compressed 
stream

Reconstructed 
sample

Predicted sample

Prediction 
residual

Actual bit rate

Rate-control stages

Predictor

Entropy coder

Figure 3. General overview of the lossy solution architecture.

3.3.1. Quantizer

In the proposed architecture, the uniform scalar quantizer from [47] is placed in the predictor
architecture prior to the mapping stage. This module provides support for near-lossless compression,
taking the prediction residual ∆z,y,x as input and generating a quantized residual qz,y,x according to
Equation (6) (where Q is the quantization step value).

qz,y,x = sgn(∆z,y,x) ·
⌊∣∣∆z,y,x

∣∣+ (Q+1
2 )

Q

⌋
(6)

A dequantizer is also necessary to correctly reconstruct the samples before updating the weights
in the prediction stage.

3.3.2. Bit-Rate Control

Selection of the Quantization Step Size

The compressor works internally in BIL order, performing the compression line by line,
and considering as a spectral line a row of pixels in the spatial domain with all their spectral information.
Following the approach proposed in [48], a single quantization step is applied to each spectral line.
Depending on the compression rate reached for the current spectral line, the rate control determines
the step to be used in the next line to achieve the compression ratio specified by the user.

The calculation of the suitable quantization step Qz for the next line is done through the statistical
characterization of the quantized residuals qz,y,x in each band of the current line, considering that the
differences between two adjacent lines are small. Thus, the whole image can be processed in a single
pass, enabling a pipeline between the prediction and encoding stages.

In our proposal, the median is used as statistical estimator instead of the mean, because the latter
is not robust against outliers, as it is justified in [48]. Regarding the implementation complexity, it must
be noted that one estimator per line and band is required. Therefore, in every line, Nz estimators of Nx

samples each must be computed. If the mean was to be used as the estimator, a division by Nx would
be required, which depends on the input image dimensions.

To compute these medians, different categories are assigned to the image pixels according
to their position, as shown in Figure 4. Each category is handled in a particular way along the
rate-control process:



Electronics 2020, 9, 1576 8 of 23

• Type A: these quantized residuals are propagated to the sample-adaptive encoder and, at the
same time, they are stored in a local memory.

• Type B: after L − 1 type-A pixels, a type-B pixel is reached. At this point, the median of the
whole segment (L − 1 type-A pixels plus the type-B pixel) is calculated and stored in an array of
medians.

• Type C: the end of a row in the spatial domain is denoted with a type-C pixel. At this point,
both the median of the last (possibly incomplete) type-A segment and the median of medians for
the whole spectral band are computed, storing the latter in a global array.

• Type D: the type-D pixel denotes the end of an image for a given line (x = Nx and z = Nz);
i.e., it is the type-C pixel of band Nz. At this point, all the medians of medians calculated for each
band are used to decide the proper quantization step for the next spectral line.

As it is demonstrated in [48], a value of L = 17 represents a good trade-off between the medians
calculated at type-B and type-C pixels, without increasing in excess the complexity of the calculations.
In our implementation, a segment is stored locally using registers, reducing the latency compared to
solutions where memory blocks are used. In the latter case, an extra cycle is needed for each access,
either for reading or writing.

A A A D

A A A DA A A B A A A B

z = Nz - 1

A A A CA A A B A A A B

z = 1A A A C

A A A CA A A B A A A B

A A A CA A A B A A A B

L pixels

z = 0

z

y

x

Figure 4. Pixel classification in the lossy compression scheme.

Besides, a sorting function has been included to correctly arrange the residuals of a segment
each time a new residual is generated, to reduce latency in the median computation. This is possible
because prediction residuals are generated at a rate enough to perform sorting operations in parallel
with the processing of the next samples, without incurring in a penalty in terms of throughput. By the
time the last prediction residual in a group is generated, it is only necessary to place this value in an
already sorted set, which is simpler than a full arithmetic division.

This technique uses a rate LUT to find the suitable quantization step size that provides, for the
next spectral line, the closest bit-rate to the target one, based on the statistical characterization of the
current line. As a result, a complex computation is substituted by a fast indexing operation, which in
turn reduces the complexity of the algorithm. How this lookup table is indexed is also detailed in [48].

The selected quantization steps need to be included in the header of the encoded bitstream to
ensure proper image recovery on the decompressor side. Hence, the inclusion of the Qz values in
the header is a non-standard solution that implies an overhead proportional to the number of rows
in the image Ny, since a different quantization step value is used per image line. As the maximum
quantization step size accepted by our architecture is 511 (this value has enabled very low target
bit-rates under experimental evaluation), the overhead of encoding each Qz is 9 bits, in the worst case.



Electronics 2020, 9, 1576 9 of 23

Feedback Loop

The real bit-rate achieved when compressing a spectral line may differ from the target bit-rate
estimated according to the selected quantization step. Two different rate strategies are proposed in [47]
to deal with this issue: mode A and mode B. While mode A does not include a feedback loop to use
information from previous lines (i.e., achieved bit-rate) to adjust the quantization steps, mode B takes
into account these results.

Mode B adjusts the target bit-rate in a line by line basis employing two terms: local correction
and global correction. The first term is a function of the difference between target and real bit-rates for
the previous line, while the global correction depends on the accumulated bit-rate deviation and a
configurable time constant. In addition, both terms make use of an accuracy ratio, computed as the
quotient between the real and target bit-rates for a given line, averaged over a configurable number of
previous lines.

The bit-rate control proposed in this work is based on the aforementioned mode B, which has
been conveniently modified to obtain a hardware-friendly solution with lower complexity and latency.
This method, named Simplified-B (SB) mode, is a lightweight version of mode B that avoids complex
arithmetic operations not suitable for hardware implementations, such as divisions. In this way,
a lower resources utilization is achieved.

In particular, mode B performs divisions to obtain the bit-rate for the current line and also to
calculate the local and global corrections. In the SB mode, on the other hand, the global correction is
neglected and the accuracy ratio is omitted. Thus, only a simplified local correction is performed taking
into account the bit-rate specified by the user and the excess or saving regarding the bit-rate used in
the previous spectral line. In this way, the high correlation between spectral lines in a hyperspectral
image is exploited. Then, the difference between target and real bit-rates, denoted as the bit-rate error,
is computed to adjust the target bit-rate of the next line, together with the selected quantization step
value. Therefore, there is a feedback from the sample-adaptive encoder output to the bit-rate control
module, adapting the bit-rate by dynamically applying these local corrections.

Finally, it is assumed that the introduction of the feedback loop to control the losses generates a
degradation in timing features (especially throughput) since the length of the critical path is extended.

4. The ARTICo3 Framework

ARTICo3 is an open source framework for run-time adaptive multi-accelerator system design
and management. (Further information in https://des-cei.github.io/tools/artico3) The framework
provides three different components: an FPGA-based reconfigurable processing architecture,
an automated toolchain to build reconfigurable multi-accelerator systems, and a runtime library
to manage device reconfiguration and parallel computation offloading transparently.

The ARTICo3 architecture [8] is a hardware-based processing architecture for high-performance
embedded reconfigurable computing. ARTICo3 enables run-time adaptive implementations of
data-parallel algorithms on SRAM-based FPGAs using Dynamic and Partial Reconfiguration (DPR),
a technique that allows online circuit modification and replacement after system deployment
(i.e., during execution). Moreover, application adaptivity is user-driven, generating a solution
space defined by dynamic trade-offs between computing performance, power consumption and
fault tolerance.

As in most DPR-enabled architectures, ARTICo3 is divided into two different regions: static,
which contains the logic resources that are not modified during normal system execution, and dynamic
(or reconfigurable), which contains a certain number of slots that can be changed at run time without
interfering with the rest of the system. The number, size, and distribution of the reconfigurable slots
is specified at design time, and has strong technology dependencies (e.g., FPGA size, logic resources
distribution). Despite these restrictions, the architecture is described in target-independent VHDL
code, which ensures portability across Xilinx devices.

https://des-cei.github.io/tools/artico3


Electronics 2020, 9, 1576 10 of 23

The communication infrastructure in ARTICo3 is built around a configurable module that behaves
as a bridge between the static region and the reconfigurable multi-accelerator system, enabling efficient
data transfers between both domains. The memory-mapped communication with the hardware
accelerators varies depending on the purpose of the transactions: application data (i.e., data used for
processing) are moved in burst-based transfers, whereas configuration data (i.e., data used for control
purposes) are transferred using register-based accesses. The top-level block diagram of the ARTICo3

architecture is shown in Figure 5.

Host
P

Reconfiguration
EngineCore Core

Control Bus (AXI4-Lite)

D
M

A-
En

ab
le

d
D

at
a 

Bu
s 

(A
XI

4-
Fu

ll)

RAM

Flash

ARTICo3

R
ed

uc
ti

on
En

gi
ne

Vo
te

r
U

ni
t

In
te

rc
on

ne
ct

io
n

Performance
Monitors

Error
Monitors

Registers

Local
Memory

Accelerator
Logic

Accelerator
Logic

Accelerator
Logic

Local
Memory

Local
Memory

Registers

Registers

Figure 5. ARTICo3 architecture overview.

DPR-powered module replication in the reconfigurable partitions (or slots) is combined with
an optimized and DMA-capable datapath, whose internal structure can be dynamically modified to
support different processing profiles. Hence, performance-oriented or fault-tolerant processing can be
selected on-demand. Assuming that multiple copies of a given hardware accelerator have been loaded
in the FPGA fabric using DPR, the former would use different input data for each replica to exploit
SIMD-like execution. In contrast, the latter would deliver the same input data to each copy and vote
the obtained results to mask faults, following redundancy strategies such as Dual or Triple Modular
Redundancy (DMR or TMR, respectively) to get a more robust system against radiation in space
environments. It is worth noting that these processing profiles enable scalable execution performance
(i.e., several accelerators executing in SIMD-like fashion are faster than a single one, provided that there
are no bandwidth limitations) and adaptive fault tolerance levels (i.e., three accelerators executing in
TMR are more dependable than a single one with no redundancy, while keeping the same performance)
during normal system execution. Besides, an embedded monitoring infrastructure allows users to
analyze system performance and error rates per slot.

Traditionally, both the design and management of dynamically reconfigurable hardware systems
have been complex tasks. Two additional components complement the processing architecture
to reduce development effort and make the ARTICo3 architecture accessible to embedded system
engineers with little or no previous experience on hardware design: a toolchain to automate system
generation from source code to application binaries, and a runtime library to hide parallelism
deployment and DPR from programmers.

ARTICo3-based processing follows a processor-coprocessor approach, where an application runs
on a host processor and data-parallel computations are offloaded to the kernels, implemented as
hardware accelerators with a configurable number of registers and memory banks. The ARTICo3

toolchain takes an already partitioned hardware/software application as input and generates both the
executable to be run on the host processor and the configuration files to program the FPGA. While the



Electronics 2020, 9, 1576 11 of 23

host code needs to be specified using C/C++ descriptions, hardware accelerators can be designed
using low-level RTL models (for highly optimized and timing-accurate designs) or high-level C/C++
code, since High-Level Synthesis (HLS) is also supported within the toolchain.

Two different types of parallelism can be exploited using ARTICo3: on the one hand, its execution
model provides transparent data-level parallelism by using several replicas of the same hardware
accelerator working in a performance-oriented profile; on the other hand, DPR enables task-level
parallelism by using different hardware accelerators at the same time. The ARTICo3 runtime library
hides all low-level details of FPGA reconfiguration, as well as any parallelism management other than
the initial partitioning of the application. A simplified C-based API acts as an interface between user
code running on the host processor and the hardware accelerators. As part of this API, functions to
manage shared memory buffers, accelerator execution, internal monitors, or additional register-based
configuration are also provided.

5. Application Mapping onto ARTICo3

The initial description of the proposed lossy extension of the CCSDS 123.0-B-1 algorithm was
written in pure ANSI C language. After that, modifications were applied to obtain a hardware-friendly
description suitable to be implemented on an FPGA using HLS techniques. The main changes are
described next.

First of all, the memory architecture was modified to process the samples in BIL instead of BSQ
order, as it did initially. The main reason, as it was mentioned in Section 3.3, is that the bit-rate control
works in a spectral line, one by one. The design has been partitioned into separate modules that
correspond to the different stages of the algorithm. This partitioning allows the verification of the
different parts of the algorithm independently. The C-language constructs that are not synthesisable
in hardware were redefined, such as dynamic memory allocations or C functions to manage strings.
Besides, the use of pointers was modified for avoiding illegal memory accesses.

Taking into account that the target device of this work is a Xilinx Zynq UltraScale+ device, we have
exploited the possibilities of applying hardware/software co-design. Functions that are executed a
few times every algorithm invocation, such as the header creation or the SB bit-rate control mode,
are run in software, using one of the ARM Cortex-A53 cores available in the Processing System (PS).
Also, the rate LUT used to determine the suitable quantization step value for the next spectral line is
stored in the external RAM. Due to its large size (16-bits integers and a total of 256 × 1024 elements,
supposing 512 kB of memory storage), this approach enables an optimised utilisation of the internal
memory elements in the FPGA.

The remaining stages of the compression algorithm, on the other hand, are implemented in
hardware using the HLS-based implementation flow of the ARTICo3 toolchain. In this flow, C-based
descriptions are automatically translated into VHDL code using Vivado HLS, and instantiated
in a common wrapper with predefined interfaces. Then, a block diagram that contains the
processing architecture and the HLS-based accelerators is automatically generated in Vivado. Finally,
the Xilinx DPR flow is automatically invoked to create the bitstreams for the static system
(i.e., the ARTICo3 architecture and the bus-based communication infrastructure) and the reconfigurable
slots (i.e., the hardware accelerators with part of the compression algorithm). In principle, this approach
only needs minor modifications (e.g., replace function calls by proper ARTICo3 kernel invocations) in
the host code (i.e., software functions), while the accelerator code (i.e., hardware functions) remains
unmodified. However, the initial algorithm specification required some refinements to enable full
compatibility between the accelerator and the ARTICo3 execution model.

The original compressor code did not support data-level parallelism, since the input hyperspectral
image was compressed sequentially, iteratively processing one line at a time and updating the
optimal quantification step accordingly. As a result, that solution would not exploit more than one
hardware accelerator. To enable data-level parallelism, an image partitioning approach similar to the
one implemented in [18] has been developed (i.e., input images are partitioned along both spatial



Electronics 2020, 9, 1576 12 of 23

axes). With the proposed scheme, every hyperspectral image is partitioned in a variable number of
fixed-size image segments, which are then independently compressed. The local memory storage in
each ARTICo3-compatible accelerator (i.e., 64 KiB) limits the size of each image segment.

In lossless compression, performing the partitioning mentioned above led to slightly worse
compression ratios, but the increase in compression throughput justified its implementation.
In the proposed lossy compression algorithm, on the other hand, the effect of image partitioning
is negligible in terms of compression ratio, since that parameter is an input of the algorithm.
However, the partitioning scheme does affect the quality of the reconstructed images. Figure 6
shows the Signal-to-Noise Ratio (SNR) value of the reconstructed output (i.e., the result of a
compression-decompression flow) with different partitioning schemes and target compression ratios.
These results have been obtained using a modified AVIRIS image from flight f080927t01p00r10 with
512 samples, 512 lines and 256 bands. As it can be seen, partitioning over the x-axis (b) generates more
considerable differences in the obtained results than partitioning over the y-axis (a) or following a
segmentation in square blocks (c), especially when using small target compression ratios. The main
reason is that the bit-rate control can get closer to the target bpppb when more spectral lines have
been pre-processed and when the length of these lines is enough to perform the median of a different
set of L pixels. In addition, the results of the whole prediction stage are also enhanced when the
number of pre-processed samples increases, achieving accurate weights updating. Nevertheless,
results are acceptable in all compression scenarios, achieving a good trade-off between image quality
and compression ratio, even when the image is processed in segments.

32 64 128 256 512

Block Size (n 512)

45

50

55

S
N

R
 (

dB
)

a) Y-Axis Partitioning

4.0 bpppb

3.0 bpppb

2.5 bpppb

2.0 bpppb

32 64 128 256 512

Block Size (512 n)

40

45

50

55

S
N

R
 (

dB
)

b) X-Axis Partitioning

4.0 bpppb

3.0 bpppb

2.5 bpppb

2.0 bpppb

32 64 128 256 512

Block Size (n n)

30

35

40

45

50

55

S
N

R
 (

dB
)

c) Square Partitioning

4.0 bpppb

3.0 bpppb

2.5 bpppb

2.0 bpppb

256 32 512 512

Block Size

40

45

50

55

S
N

R
 (

dB
)

d) ARTICo3 vs. No Partitioning

4.0 bpppb

3.0 bpppb

2.5 bpppb

2.0 bpppb

Figure 6. Image partitioning impact on Signal-to-Noise Ratio (SNR) (input versus reconstructed).

In any case, using input image partitioning to support data-level parallelism is not enough
to enable full compatibility with ARTICo3. The fact that the algorithm iteratively processes input
segments line by line, and using information from the previously compressed lines, goes against the
requirement of data independence between execution rounds in ARTICo3. Hence, the internal state
(e.g., weights) of each hardware accelerator after processing one line of a given segment has to be



Electronics 2020, 9, 1576 13 of 23

saved and immediately restored when the next line of the same segment needs to be processed. This
context save and restore mechanism has been implemented using some of the local memory banks
available inside an ARTICo3 accelerator.

As a consequence, the local memory map is divided into four different banks: one to store the
current input line, two to implement the context save and restore, and one to store the compressed
bitstream that is obtained as output. Taking into account the local memory limitation to 64 KiB and
that banks are of equal size in each accelerator, a maximum of 16 KiB is available to store input data.
This leads to a predefined size of 32 samples and 256 bands per execution round, assuming that two
16-bit integer values are packed in one 32-bit word. The impact of this partitioning approach on the
reconstructed image can be seen in Figure 6d.

Further optimizations have been made in the accelerator code by applying static configurations
(i.e., predefined parameters for the compressor core, and its prediction and encoder stages at design
time) rather than supporting them at run time. Note that this approach does not limit flexibility,
since DPR can still be used to change among different compressor configurations, but reduces
area overhead by simplifying the internal logic of the accelerators. Table 2 shows the predefined
configuration (main parameters) for the lossy compressor core.

Table 2. Main configuration parameters.

Parameter Value

Samples 32
Lines 256
Bands 256

Dynamic Range 16
Signed Yes

Endianess Little Endian
Encoding Order BIL

Bands for Prediction 3
Local Sum Mode Neighbour-Oriented
Prediction Mode Full Prediction

Finally, control and status parameters are sent to or received from the accelerators using the
register-based interface featured by the ARTICo3 architecture. Up to 8 32-bit registers are used to store
information such as the index of the current line, or the quantization step size.

6. Experimental Results

6.1. Bit-Rate Control

First of all, the SB bit-rate control mode is compared against modes A and B detailed in
Section 3.3.2, to analyse its accuracy for obtaining the targeted bit-rate. Besides, the quality of the
reconstructed image after the decompression stage is measured in terms of PSNR, taking into account
the bit-rate control used. The results are summarized in Table 3.

As it can be observed, the SB mode achieves similar results than the B one in terms of accuracy
to reach the targeted bit-rate, obtaining a maximum error of 0.023 bpppb when targeting 4 bpppb.
Regarding the PSNR results, the selection of the best bit-rate control mode is dependent on the target
bit-rate and the image nature. In this sense, the best results for AVIRIS images are obtained by the SB
mode targeting 2 bpppb; otherwise, the B mode achieves higher PSNR, with a maximum difference
of around 3.2 dB targeting 4 bpppb. Nevertheless, taking into account the higher computational
complexity of mode B, the SB mode can be considered as a trade-off between the quality of the
obtained results and complexity. In general, the A mode provides the worst results in terms of both
achieved bpppb and PSNR. This is due to the absence of feedback from the entropy coding stage,



Electronics 2020, 9, 1576 14 of 23

indicating the differences between the targeted and the reached bit-rate, later used to adapt the
quantization step for compressing the next spectral line.

Table 3. Bit-rate accuracy depending on the selected control mode.

Targeted Bit-Rate Mode Reached Bit-Rate (bpppb) PSNR (dB)

A 2.268 80.610
2 bpppb B 2.003 73.762

SB 2.011 76.571

A 2.475 82.218
3 bpppb B 3.001 85.533

SB 2.999 84.618

A 2.632 83.358
4 bpppb B 4.011 91.823

SB 3.977 88.589

6.2. Resource Utilization and Performance Results on ARTICo3

The proposed implementation of the lossy hyperspectral compressor has been evaluated on a
Xilinx ZCU102 development board, which features a Zynq UltraScale+ device (XCZU9EG-2FFVB900).
A template with 8 reconfigurable slots has been created to support that specific device in the ARTICo3

toolchain. The layout of the implemented system can be seen in Figure 7, with the static region
highlighted in orange and the reconfigurable accelerators in blue. Each reconfigurable region is
highlighted in red. Table 4 shows the resources utilization report for the ARTICo3 infrastructure
(i.e., static region) and one instance of the lossy compression kernel after implementing the
multi-accelerator system with the predefined configuration parameters, as discussed in the previous
section. Relative utilization values (i.e., the percentage of used versus total resources available in the
target device) are also provided.

Table 4. Resource utilization.

Component ARTICo3 Lossy Compressor Kernel

Info
8 slots

VHDL (Vivado)
Zynq UltraScale+

64 KiB memory, 4 banks
8 registers

C + HLS (Vivado)
Zynq UltraScale+

LUTs 5560 (2.03%) 6405 (2.34%)
FFs 3763 (0.69%) 4876 (0.89%)

DSPs 2 (0.08%) 3 (0.12%)
BRAMs - 19.5 (2.14%)

Figure 8 shows the execution time of the lossy hyperspectral compressor when changing the
number of hardware accelerators (quad-core ARM Cortex-A53 @ 1.2 GHz, FPGA fabric @ 100 MHz).
The host application code runs on a Linux-based OS and compresses hyperspectral images of
512 samples, 512 lines, and 256 bands (a modified AVIRIS image from flight f080927t01p00r10.).
The host application divides the input image into several segments of 32 samples, 256 lines,
and 256 bands, and uses the pool of available hardware accelerators to iteratively compress all the image
segments one line at a time. This partition scheme should be taken into account on the decompression
side, to properly join the different fractions for recovering the whole decompressed image.

Experimental results show execution times of 174.5 and 35.92 s using 1 and 8 ARTICo3 accelerators,
respectively. Taking into account that the reference software implementation (i.e., initial C code without
any acceleration libraries) running as a single-core application on an ARM Cortex-A53 @ 1.2 GHz takes
roughly 560 s to process the same input image, the multi-accelerator system provides speedups of up



Electronics 2020, 9, 1576 15 of 23

to 15.6×. Notice, however, that the performance scalability is not entirely linear (i.e., the speedup is
roughly 5× when using 8 hardware accelerators instead of only one).

Figure 7. Layout of the implemented system on the ZCU102 development board.

0 1 2 3 4 5 6 7 8 9

Accelerators

0

20

40

60

80

100

120

140

160

180

200

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Figure 8. Performance versus number of accelerators.

Figure 9 shows the execution time of the lossy hyperspectral compressor when changing the size
of the input images. This setup uses the same input image and operating frequencies from the previous
test, but a variable number of segments (each of them with the fixed size of 32 samples, 256 lines,



Electronics 2020, 9, 1576 16 of 23

and 256 bands imposed by ARTICo3) is fed to the compression system. In addition, the number of
accelerators is modified accordingly to enable maximum parallelism during the processing stage.

0 50 100 150 200 250 300 350 400 450 500 550

Samples

0

5

10

15

20

25

30

35

40

45

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

256 lines

512 lines

8 accelerators

2 sequential rounds

8 accelerators

1 sequential round

8 accelerators

2 sequential rounds

8 accelerators

4 sequential rounds

8 accelerators

1 sequential round

8 accelerators

3 sequential rounds
1 accelerator in 1 round processes

32 samples, 256 lines, and 256 bands

Figure 9. Performance versus image size.

A linear evolution is observed in the execution times when the number of hardware accelerators
loaded in the FPGA is enough to allow parallel compression of different image segments. Moreover,
sharp transitions appear when the previous condition is not met, and the compression of different
image segments needs to be serialized. Once sequential processing is forced, the system shows linear
behaviour again until extra serial iterations are required. This particular evolution can be seen in the
following example: execution time increases linearly when compressing images with 256 lines whose
samples range from 32 to 256 (i.e., 1 to 8 segments with up to 8 accelerators) and when compressing
images with 256 lines whose samples range from 288 to 512 (i.e., 9 to 16 segments with 8 accelerators),
with an abrupt change in between due to the number of iterations going from 1 to 2. Notice that
the small variations in the graph are due to the non-deterministic nature of the Linux-based OS,
although results are averaged over several executions.

6.3. Analysis of the Compression Ratio

Finally, to verify the results in terms of achieved compression ratio, the proposed solution was
validated with hyperspectral images coming from different types of sensors, such as the AVIRIS
mentioned above (aircraft), the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
and Landsat spacecrafts, and a subset of an image captured directly by a Headwall Hyperspec
VNIR E-Series hyperspectral camera, available in our hyperspectral image acquisition facilities.
Table 5 summarizes the main features of these images. This way, the implementation is tested in
different real-world scenarios varying the number of spectral components, from multispectral to
ultraspectral images.

The compression ratio achieved for each one of the targeted images in terms of bpppb is shown in
Figure 10, against the quality of the reconstructed image after the decompression stage. The quality
of the image is measured using the SNR, obtaining higher values (a maximum of 90 dB for the
CRISM sensor) when the images have undergone any kind of pre-processing (e.g., calibration) after its
acquisition and before being compressed. Results reported for the Landsat image demonstrate that
the behaviour of the lossy compression algorithm is improved when it has more spectral information
for performing the statistical operations (i.e., the median calculation). In the case of the AVIRIS



Electronics 2020, 9, 1576 17 of 23

scene, results in terms of image quality are in line with the ones provided by the CCSDS 123.0-B-2
algorithm using different prediction configurations, as it is reported in [31]. In addition, the proposed
implementation overcomes the SNR results provided not only by the CCSDS 122.1-B-1 standard,
based on the use of a spectral transform for reducing the decorrelation between adjacent bands, but also
by the well-known JPEG2000 standard, reducing at the same time the implementation complexity.
For the particular case of the AVIRIS dataset, our proposal achieves better results than both the IWT
and the POT alternatives, targeting compression ratios higher than 2 bpppb [49]. Notice that the
maximum compression ratio achieved by our work (i.e., 2 bpppb) is a constraint introduced by both
the selected entropy coder, based on a sample-adaptive scheme, and the maximum quantization step
size (i.e., 511). Higher compression ratios can be obtained using a rate LUT with higher quantization
step values or implementing alternative encoding options, such as the new hybrid encoder presented
in [33].

Table 5. Images to validate the algorithm implementation.

Image Nx × Ny × Nz D Signed Endianness State

AVIRIS 680×512×224 16 No BIG ProcessedYellowstone sc0
CRISM 640×420×107 12 No LITTLE Calibratedscn164VNIR
Landsat 1024×1024×6 8 No BIG RawMountain

Hyperspec 400×400×300 16 Yes LITTLE RawVNIR E-Series

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

bpppb

20

30

40

50

60

70

80

90

S
N

R
 (

d
B

)

AVIRIS

CRISM

Hyperspec

Landsat

Figure 10. Compression ratio versus SNR for different sensor images.

In all the analysed cases, the design reaches the targeted compression ratio specified by the user
with accuracy. Notice that beyond the limits defined for each image in Figure 10, the compressor works
in lossless mode.

6.4. Comparison with Other Implementations

In this section, results obtained for the proposed architecture are compared with previous FPGA
implementations available in the state-of-the-art. The comparison is limited to implementations of
near-lossless and lossy compression algorithms, since lossless solutions are generally less complex
at the expense of lower compression ratios. It is worth noting that the diversity of algorithms in the



Electronics 2020, 9, 1576 18 of 23

selected works and the fact that different FPGA technologies are used, make it necessary to include
qualitative parameters, apart from quantitative results, for a fair comparison.

The implementations analyzed are summarized in Table 6, including both performance results
and resource utilization metrics for each one of them, when available. A fair comparison in terms of
throughput is provided, considering samples with a precision of 16 bits for all the cases.

Table 6. Comparison with other Field-Programmable Gate Array (FPGA) implementations of lossy
compression solutions.

Implementation Device Run-Time Bit-Rate CCSDS123 LUTs FFs DSPs BRAMs Freq. Throughput
Adaptability Control Based (MHz) (MSamples/s)

Keymulen (1 core) [35] XC7VX690T No Yes Yes 13,134 9158 31 36 200 9
Keymulen (15 cores) [35] XC7VX690T No Yes Yes 297,807 260,750 465 556 200 95

Abrardo et al. [50] XQR4VLX200 No No No 10,306 - 9 21 81 70
Santos et al. [38] XQR5VFX130 No No No 7836 4208 4 17 80.2 30.25
García et al. [51] XC5VFX100 No No No 7746 - 25 4 86 27.7

Báscones et al. [40] XQR5VFX130 No No No 6837 - 5 10 247.35 119.96
This work (1 core) XCZU9EG Yes Yes Yes 11,965 8639 5 19.5 100 0.4
This work (8 cores) XCZU9EG Yes Yes Yes 56,800 42,771 26 156 100 1.7

The implementation of the FLEX algorithm proposed by Keymulen [35] introduces a feedback
branch with an inverse predictor, as defined in the CCSDS 123.0-B-2 standard. In this way, it is
possible to accurately estimate the value of the subsequent samples without compromising the
image quality, which is controlled by a maximum error defined by the user. This architecture
can achieve up to 95 MSamples/s when 15 cores are working simultaneously in a Xilinx Virtex-7
(XC7VX690T), even though it also shows high area occupation. This architecture has been successfully
validated on-board in the ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS), which acquires images with 6 spectral components and it is currently at
the ISS for scientific data collection. In this scenario, the Digital Processing Unit (DPU) is a
radiation-hardened Virtex-5 (XQR5VFX130), and the compressor works at 100 MHz, reaching a
throughput of 1 MSamples/s [34]. Although this solution is scalable, the addition of parallel
compression instances to increase the throughput is done neither at run-time nor taking into account
other necessities identified during the algorithm execution, as it is done in the proposed ARTICo3-
based implementation.

The rest of the hardware implementations taken into account in this comparison are based on
the prediction scheme detailed in [28]. This algorithm is based on the independent compression of
small image blocks in the spatial domain, named slices, with all the spectral components. This division
allows the parallelisation of the compression process because different slices can be compressed
simultaneously. However, a small penalty is observed in terms of performance, since the state of the
different compression statistics has to be reset at the end of each slice. The work in [28] introduces
a Uniform-Threshold Quantizer (UTQ), instead of the scalar uniform quantizer employed in our
implementation. With this change, better performance is obtained for high bit-rates. Nevertheless,
this algorithm does not include a true bit-rate control; it only defines a threshold to guide the
compression process and to skip the encoding of the next slices if the prediction is considered
“good enough”, writing the prediction error in the output bitstream directly. This algorithmic trait
prevents an accurate control of the rate-distortion figure. Our implementation, on the contrary,
does enable this precise control, but at the expense of an increased resource utilisation and a
reduced throughput.

Four different FPGA implementations of this predictive algorithm are considered in the
comparison: two described in VHDL [40,50], and the other two using HLS techniques [38,51].
In this case, it is observed that there are not too many differences regarding resource utilisation
(typically, an HLS implementation employs 3× the resources consumed by the equivalent application
described using VHDL), even though better results in terms of throughput are obtained by the
VHDL implementations, which in turn allow a more precise scheduling of the algorithm operations.
Concretely, the best timing results are obtained by the implementation proposed in [40], a highly



Electronics 2020, 9, 1576 19 of 23

optimized solution that reaches a maximum throughput of almost 120 MSamples/s when it is mapped
onto a radiation-hardened Virtex-5 (XQR5VFX130).

Quantitatively speaking, the throughput of our proposal is limited when compared with the
rest of the works shown in Table 6. These differences were foreseeable for the implementations
of the predictive algorithm described in [28], since the associated compressor architectures do not
include a feedback loop to control both image quality and target bpppb. The work proposed by
Keymulen et al. [35], on the other hand, does feature a feedback branch in the predictor. However,
and although the resource utilisation values are in the same order of magnitude, there are still
differences in terms of throughput. There are two main reasons that explain these differences: the first
one is that the hardware implementation of the proposed compression solution is not fully optimized
(i.e., there is still room for improvement by applying HLS-based optimization directives in the hardware
accelerator code), since algorithm-wise modifications (e.g., achieving the target bpppb value without
incurring a significant degradation of the image quality) were prioritised over implementation-wise
modifications (e.g., loop pipelining or unrolling); the second one is that the hardware/software
partitioning of the implementation still exhibits inefficient parts (e.g., excessive accelerator state save
and restore operations).

However, the key contributions of the proposed ARTICo3-based lossy compressor need to be
evaluated qualitatively. In this regard, two aspects can be highlighted: first, that our proposal is based
on the CCSDS-123 standard solution (as it is the work reported by Keymulen et al. [35]), but modified
to reach specific compression ratios; second, that our proposal is the only solution also capable of
providing run-time adaptive behaviour. The reconfigurable multi-accelerator substrate of the ARTICo3

architecture, together with its runtime management infrastructure, enables user-selectable performance
(i.e., load more hardware accelerators to transparently increase throughput), power consumption,
and fault tolerance (i.e., group hardware accelerators to transparently enable hardware redundancy).
The fact that it is implemented on top of COTS FPGA devices makes it a suitable solution for low-cost
scientific missions under extremely changing conditions, both external (e.g., solar storms require
increased fault tolerance in the system) and internal (e.g., low battery levels require energy-efficient
operation modes). Moreover, the DPR support in ARTICo3 allows different applications to coexist
within the same FPGA device, which effectively reduces cost (e.g., two mutually exclusive algorithms
can be time-multiplexed on the hardware resources and thus, smaller FPGAs can be used without
incurring actual performance losses) and enables system updates after deployment (e.g., send new
processing cores from Earth to update the FPGA bitstream).

7. Conclusions and Future Work

In this paper, a lossy extension of the CCSDS 123.0-B-1 Lossless Multispectral and Hyperspectral
Image Compression algorithm is presented. This solution is implemented on a Xilinx Zynq
UltraScale+ FPGA-based MPSoC, running on ARTICo3, a reconfigurable, scalable and fault-tolerant
computing architecture.

According to the obtained results, we conclude that the proposed implementation provides
an efficient and flexible solution for on-board processing applications without compromising the
compression quality. The intrinsic benefits of using the ARTICo3 architecture as the main computing
platform enable run-time adaptive performance and fault tolerance levels, a must-have feature in
space missions with changing requirements (e.g., communication link quality in alternative points
of a satellite orbit might be different). Moreover, its associated DPR mechanisms, which can be used
to change not only the number but also the type of hardware accelerators, favour reduced resource
utilisation values by time-multiplexing the FPGA fabric. The system achieves a maximum speed up
of 15.6× when the maximum number of available accelerators is used, in comparison with the pure
software version of the algorithm running on an ARM Cortex-A53. However, there is still a margin to
improve the throughput of the design. Therefore, the next step is to perform an exhaustive study of
the algorithm loops to be able to exploit the parallel nature of FPGAs, applying techniques such as



Electronics 2020, 9, 1576 20 of 23

unrolling or pipelining, if possible, without incurring an excessive increment of the resource utilisation
(Figure 7 shows that there is still space available in the reconfigurable slots).

In addition, this implementation will be evaluated against radiation effects using a fault-injection
engine, being able to emulate the conditions of the space environment and reducing time and costs in
comparison with traditional beam campaigns. In this way, it is possible to characterise the design and
identifying specific parts of the logic that must be hardened. For this purpose, the fault-management
engine relies on the Xilinx Soft Error Mitigation (SEM) IP [52] both to inject Single Event Upsets (SEUs)
and to perform SEU detection and correction, followed by a classification of the faults present in the
configuration memory (scrubbing tasks) [53]. The dual-core ARM Cortex-R5 available in the Zynq
UltraScale+ device will be used to manage the execution of this tool and to monitor the results of the
fault-injection process, respectively.

Author Contributions: Conceptualization, S.L. and A.O.; methodology, Y.B. and A.R.; investigation, Y.B., A.R.
and A.S.; validation, Y.B., A.R. and A.P.; software, A.S. and A.P.; writing—original draft preparation, Y.B. and
A.R.; writing—review and editing, Y.B., A.R., A.S. and A.O.; supervision, S.L. and A.O.; project administration,
R.S. and E.d.l.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been conducted within the ENABLE-S3 project that has received funding from the
ECSEL Joint Undertaking under grant agreement No 692455. This Joint Undertaking receives support from the
European Union’s Horizon 2020 research and innovation program and Austria, Denmark, Germany, Finland,
Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,Netherlands, United Kingdom, Slovakia,
Norway. This work was also partially supported by the Spanish Ministry of Economy and Competitiveness under
the project PLATINO, with reference numbers TEC2017-86722-C4-1-R and TEC2017-86722-C4-2-R.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Staenz, K.; Mueller, A.; Heiden, U. Overview of terrestrial imaging spectroscopy missions. In Proceedings
of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC,
Australia, 21–26 July 2013; pp. 3502–3505. [CrossRef]

2. Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation
Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [CrossRef]

3. Christophe, E. Hyperspectral Data Compression Tradeoff. In Optical Remote Sensing, Advances in Signal
Processing and Exploitation Techniques; Springer: Berlin/Heidelberg, Germany, 2011; pp. 9–29.

4. George, A.D.; Wilson, C.M. Onboard Processing With Hybrid and Reconfigurable Computing on Small
Satellites. Proc. IEEE 2018, 106, 458–470. [CrossRef]

5. Wirthlin, M. High-Reliability FPGA-Based Systems: Space, High-Energy Physics, and Beyond. Proc. IEEE
2015, 103, 379–389. [CrossRef]

6. Zhu, J.; Dutt, N. Electronic System-Level design and High-Level Synthesis. In Electronic Design Automation:
Synthesis, Verification, and Test; Elsevier: Amsterdam, The Netherlands, 2009; pp. 235–298.

7. The Consultative Committee for Space Data Systems. Lossless Multispectral and Hyperspectral Image
Compression, CCSDS 123.0-B-1; Blue Book ed.; CCSDS: Reston, VA, USA, 2012; Volume 1.

8. Rodríguez, A.; Valverde, J.; Portilla, J.; Otero, A.; Riesgo, T.; de la Torre, E. FPGA-Based High-Performance
Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo3 Framework.
Sensors 2018, 18, 1877. [CrossRef] [PubMed]

9. Barrios, Y.; Sánchez-Clemente, A.J.; Sarmiento, R.; Rodríguez, A.; Otero, A.; de la Torre, E. Hyperspectral
Image Lossy Compression on a Reconfigurable and Fault-Tolerant Architecture Implemented over a COTS
FPGA-Based System-on-Chip. In Proceedings of the 6th International Workshop on On-Board Payload Data
Compression (OBPDC), Matera, Italy, 20–21 September 2018; European Space Agency: Paris, France, 2018;
pp. 1–7.

10. Santos, L.; Berrojo, L.; Moreno, J.; Lopez, J.F.; Sarmiento, R. Multispectral and Hyperspectral Lossless
Compressor for Space Applications (HyLoC): A Low-Complexity FPGA Implementation of the CCSDS 123
Standard. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 757–770. [CrossRef]

http://dx.doi.org/10.1109/IGARSS.2013.6723584
http://dx.doi.org/10.3390/rs10020157
http://dx.doi.org/10.1109/JPROC.2018.2802438
http://dx.doi.org/10.1109/JPROC.2015.2404212
http://dx.doi.org/10.3390/s18061877
http://www.ncbi.nlm.nih.gov/pubmed/29890644
http://dx.doi.org/10.1109/JSTARS.2015.2497163


Electronics 2020, 9, 1576 21 of 23

11. Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sarture, C.; Dolman, D. Airborne demonstration of
FPGA implementation of Fast Lossless hyperspectral data compression system. In Proceedings of the
2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–18 July 2014;
pp. 278–284. [CrossRef]

12. Tsigkanos, A.; Kranitis, N.; Theodorou, G.A.; Paschalis, A. A 3.3 Gbps CCSDS 123.0-B-1 Multispectral
Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA. IEEE Trans.
Emerg. Top. Comput. 2019, 1. [CrossRef]

13. Santos, L.; Gomez, A.; Sarmiento, R. Implementation of CCSDS Standards for Lossless Multispectral
and Hyperspectral Satellite Image Compression. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1120–1138.
[CrossRef]

14. Barrios, Y.; Sánchez, A.; Santos, L.; Sarmiento, R. SHyLoC 2.0: A versatile hardware solution for on-board
data and hyperspectral image compression on future space missions. IEEE Access 2020, 8, 54269–54287.
[CrossRef]

15. Bascones, D.; Gonzalez, C.; Mozos, D. FPGA Implementation of the CCSDS 1.2.3 Standard for Real-Time
Hyperspectral Lossless Compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1158–1165.
[CrossRef]

16. Pereira, L.M.V.; Santos, D.A.; Zeferino, C.A.; Melo, D.R. A Low-Cost Hardware Accelerator for CCSDS 123
Predictor in FPGA. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
Sapporo, Japan, 26–29 May 2019; pp. 1–5. [CrossRef]

17. Fjeldtvedt, J.; Orlandic, M.; Johansen, T.A. An Efficient Real-Time FPGA Implementation of the CCSDS-123
Compression Standard for Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11, 3841–3852. [CrossRef]

18. Rodríguez, A.; Santos, L.; Sarmiento, R.; de la Torre, E. Scalable Hardware-Based On-Board Processing for
Run-Time Adaptive Lossless Hyperspectral Compression. IEEE Access 2019, 7, 10644–10652. [CrossRef]

19. Bascones, D.; Gonzalez, C.; Mozos, D. Parallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral
Lossless Compression. Remote Sens. 2017, 9, 973. [CrossRef]

20. Orlandic, M.; Fjeldtvedt, J.; Johansen, T.A. A Parallel FPGA Implementation of the CCSDS-123 Compression
Algorithm. Remote Sens. 2019, 11, 673. [CrossRef]

21. Davidson, R.L.; Bridges, C.P. GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless
compression implementation. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA,
4–11 March 2017; pp. 1–12. [CrossRef]

22. Hopson, B.; Benkrid, K.; Keymeulen, D.; Aranki, N. Real-time CCSDS lossless adaptive hyperspectral image
compression on parallel GPGPU multicore processor systems. In Proceedings of the 2012 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), Erlangen, Germany, 25–28 June 2012; pp. 107–114.
[CrossRef]

23. Penna, B.; Tillo, T.; Magli, E.; Olmo, G. Progressive 3-D coding of hyperspectral images based on JPEG 2000.
IEEE Geosci. Remote Sens. Lett. 2006, 3, 125–129. [CrossRef]

24. Egho, C.; Vladimirova, T. Adaptive hyperspectral image compression using the KLT and integer KLT
algorithms. In Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
Leicester, UK, 14–17 July 2014; pp. 112–119.

25. Penna, B.; Tillo, T.; Magli, E.; Olmo, G. Transform Coding Techniques for Lossy Hyperspectral Data
Compression. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1408–1421. [CrossRef]

26. Blanes, I.; Serra-Sagristà, J. Pairwise Orthogonal Transform for Spectral Image Coding. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 961–972. [CrossRef]

27. The Consultative Committee for Space Data Systems. Spectral Preprocessing Transform for Multispectral and
Hyperspectral Image Compression, CCSDS 122.1-B-1; Blue Book ed.; CCSDS: Washington, DC, USA, 2017;
Volume 1.

28. Abrardo, A.; Barni, M.; Magli, E. Low-complexity predictive lossy compression of hyperspectral and
ultraspectral images. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 797–800.

29. Guerra, R.; Barrios, Y.; Díaz, M.; Santos, L.; López, S.; Sarmiento, R. A New Algorithm for the On-Board
Compression of Hyperspectral Images. Remote Sens. 2018, 10, 428. [CrossRef]

http://dx.doi.org/10.1109/AHS.2014.6880188
http://dx.doi.org/10.1109/TETC.2018.2854412
http://dx.doi.org/10.1109/TAES.2019.2929971
http://dx.doi.org/10.1109/ACCESS.2020.2980767
http://dx.doi.org/10.1109/JSTARS.2017.2767680
http://dx.doi.org/10.1109/ISCAS.2019.8702428
http://dx.doi.org/10.1109/JSTARS.2018.2869697
http://dx.doi.org/10.1109/ACCESS.2019.2892308
http://dx.doi.org/10.3390/rs9100973
http://dx.doi.org/10.3390/rs11060673
http://dx.doi.org/10.1109/AERO.2017.7943817
http://dx.doi.org/10.1109/AHS.2012.6268637
http://dx.doi.org/10.1109/LGRS.2005.859942
http://dx.doi.org/10.1109/TGRS.2007.894565
http://dx.doi.org/10.1109/TGRS.2010.2071880
http://dx.doi.org/10.3390/rs10030428


Electronics 2020, 9, 1576 22 of 23

30. Penna, B.; Tillo, T.; Magli, E.; Olmo, G. Hyperspectral Image Compression Employing a Model of Anomalous
Pixels. IEEE Geosci. Remote Sens. Lett. 2007, 4, 664–668. [CrossRef]

31. Valsesia, D.; Magli, E. High-Throughput Onboard Hyperspectral Image Compression With Ground-Based
CNN Reconstruction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9544–9553. [CrossRef]

32. Báscones, D.; González, C.; Mozos, D. Hyperspectral Image Compression Using Vector Quantization, PCA
and JPEG2000. Remote Sens. 2018, 10, 907. [CrossRef]

33. The Consultative Committee for Space Data Systems. Low-Complexity Lossless and Near-Lossless Multispectral
and Hyperspectral Image Compression, CCSDS 123.0-B-2; Blue Book ed.; CCSDS: Washington, DC, USA, 2019;
Volume 1.

34. Keymeulen, D.; Dolman, D.; Shin, S.; Riddley, J.; Klimesh, M.; Kiely, A.; Thompson, D.R.; Cheng, M.;
Dolinar, S.; Liggett, E.; et al. High Performance Space Data Acquisition, Clouds Screening and Data
Compression with modified COTS Embedded System-on-Chip Instrument Avionics for Space-based Next
Generation Imaging Spectrometers (NGIS). In Proceedings of the 6th International Workshop on On-Board
Payload Data Compression (OBPDC), Matera, Italy, 20–21 September 2018; European Space Agency: Paris,
France, 2018; pp. 1–25.

35. Keymeulen, D. FPGA Implementation of Lossless and Lossy Compression of Space-based Multispectral
and Hyperspectral Imagery. In Proceedings of the Military and Aerospace Programmable Logic Devices
(MAPLD) Workshop, La Jolla, CA, USA, 21–24 May 2018; Jet Propulsion Laboratory, National Aeronautics
and Space Administration: Pasadena, CA, USA, 2016; pp. 1–28.

36. Santos, L.; Blanes, I.; García, A.; Serra-Sagristà, J.; López, J.; Sarmiento, R. On the hardware implementation
of the arithmetic elements of the pairwise orthogonal transform. J. Appl. Remote Sens. 2015, 9, 097496.
[CrossRef]

37. Guerra, R.; Barrios, Y.; Díaz, M.; Baez, A.; López, S.; Sarmiento, R. A Hardware-Friendly Hyperspectral
Lossy Compressor for Next-Generation Space-Grade Field Programmable Gate Arrays. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2019, 12, 4813–4828. [CrossRef]

38. Santos, L.; López, J.F.; Sarmiento, R.; Vitulli, R. FPGA implementation of a lossy compression algorithm for
hyperspectral images with a high-level synthesis tool. In Proceedings of the 2013 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS-2013), Torino, Italy, 24–27 June 2013; pp. 107–114.

39. García, A.; Santos, L.; López, S.; Callicó, G.M.; López, J.F.; Sarmiento, R. FPGA implementation of
the hyperspectral Lossy Compression for Exomars (LCE) algorihtm. In High-Performance Computing in
Remote Sensing IV; Huang, B., López, S., Wu, Z., Eds.; International Society for Optics and Photonics, SPIE:
Bellingham, WA, USA, 2014; Volume 9247, pp. 27–34. [CrossRef]

40. Báscones, D.; González, C.; Mozos, D. An Extremely Pipelined FPGA Implementation of a Lossy
Hyperspectral Image Compression Algorithm. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7435–7447.
[CrossRef]

41. Santos, L.; Magli, E.; Vitulli, R.; López, J.F.; Sarmiento, R. Highly-Parallel GPU Architecture for Lossy
Hyperspectral Image Compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 670–681.
[CrossRef]

42. Díaz, M.; Guerra, R.; Horstrand, P.; Martel, E.; López, S.; López, J.F.; Sarmiento, R. Real-Time Hyperspectral
Image Compression Onto Embedded GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2792–2809.
[CrossRef]

43. ESA. SHyLoC IP Core. Available online: https://www.esa.int/Our_Activities/Space_Engineering_
Technology/Microelectronics/SHyLoC_IP_Core (accessed on 14 September 2018).

44. Augé, S.; Sánchez, J.E.; Kiely, A.; Blanes Garcia, I.; Serra Sagrisà, J. Performance impact of parameter tuning
on the CCSDS-123 lossless multi- and hyperspectral image compression standard. J. Appl. Remote Sens. 2013,
7, 074594. [CrossRef]

45. The Consultative Committee for Space Data Systems. Lossless Data Compression, CCSDS 121.0-B-2;
Blue Book ed.; CCSDS: Washington, DC, USA, 2012; Volume 1.

46. CCSDS. Lossless Multispectral and Hyperspectral Image Compression, Informational Report CCSDS 120.2-G-1;
Green Book; CCSDS: Washington, DC, USA, 2015.

47. Valsesia, D.; Magli, E. A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and
Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6341–6355. [CrossRef]

http://dx.doi.org/10.1109/LGRS.2007.903976
http://dx.doi.org/10.1109/TGRS.2019.2927434
http://dx.doi.org/10.3390/rs10060907
http://dx.doi.org/10.1117/1.JRS.9.097496
http://dx.doi.org/10.1109/JSTARS.2019.2919791
http://dx.doi.org/10.1117/12.2069493
http://dx.doi.org/10.1109/TGRS.2020.2982586
http://dx.doi.org/10.1109/JSTARS.2013.2247975
http://dx.doi.org/10.1109/JSTARS.2019.2917088
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
http://dx.doi.org/10.1117/1.JRS.7.074594
http://dx.doi.org/10.1109/TGRS.2013.2296329


Electronics 2020, 9, 1576 23 of 23

48. Valsesia, D.; Magli, E. Fast and Lightweight Rate Control for Onboard Predictive Coding of Hyperspectral
Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 394–398. [CrossRef]

49. CCSDS. Spectral Pre-Processing Transform for Multispectral & Hyperspectral Image Compression, Informational
Report CCSDS 120.3-G-1; Green Book; CCSDS: Washington, DC, USA, 2019.

50. Abrardo, A.; Barni, M.; Bertoli, A.; Grimoldi, R.; Magli, E.; Vitulli, R. Low-Complexity Approaches for
Lossless and Near-Lossless Hyperspectral Image Compression. In Satellite Data Compression; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 47–65.

51. García, A.; Santos, L.; López, S.; Marrero, G.; López, J.F.; Sarmiento, R. High level modular implementation
of a lossy hyperspectral image compression algorithm on a FPGA. In Proceedings of the 2013 5th Workshop
on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville,
FL, USA, 26–28 June 2013; pp. 1–4.

52. Xilinx Inc. Soft Error Mitigation Controller v4.1. In LogiCORE IP Product Guide; Xilinx: San Jose, CA,
USA, 2018.

53. Pérez, A.; Rodríguez, A.; Otero, A.; Arjona, D.G.; Jiménez-Peralo, Á.; Verdugo, M.A.; De La Torre, E.
Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation. IEEE Access
2020, 8, 59891–59905. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2016.2644726
http://dx.doi.org/10.1109/ACCESS.2020.2983308
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Compression Algorithm Description
	Predictor
	Entropy Coder
	Lossy Extension
	Quantizer
	Bit-Rate Control


	The ARTICo3 Framework
	Application Mapping onto ARTICo3
	Experimental Results
	Bit-Rate Control
	Resource Utilization and Performance Results on ARTICo3
	Analysis of the Compression Ratio
	Comparison with Other Implementations

	Conclusions and Future Work
	References

