IMEPA 2014

AN APPROACH TO MICROEXTRACTION TECHNIQUES APPLIED TO THE DETERMINATION OF EMERGING CONTAMINANTS IN ENVIRONMENTAL LIQUID SAMPLES

Sergio Santana Viera

INDEX

- 1. The water cycle.
- 2. Objective
- 3. Microextraction techniques.

The Water Cycle

OBJECTIVE

 Review the state of art of the microextraction techniques for liquid samples for the extraction and preconcentration of emerging contaminants.

Solid Phase Microextraction (SPME)

Application: analysis of perfluorinated compounds in surface and wastewater.

Stir Bar Sorptive Extraction (SBSE)

Application: analysis of polybrominated diphenyl ethers (PBDEs), nonilphenols, synthetic fragrances, estrogens

Liquid Phase Microextraction (LPME)

- Quick.
- > Cheap.
- It uses minimal volumes of solvent.
- Allows higher preconcentration
- It is generally between a small volume of a immiscible solvent in water and an aqueous phase containing the analytes of interest.

Liquid Phase Microextraction (LPME)

Single Drop Microextraction (SDME)

- Direct Inmersion(DI-SDME)
- Liquid-liquidMicroextraction (LLLME)
- Continuos Flow
 Microextraction (CFME)
- Headspace Microextraction (HS-SDME)

Liquid Phase Microextraction (LPME)

- Hollow Fiber Liquid Phase Microextraction (HF-LPME)
- Dispersive Liquid-Liquid Microextraction (DLLME)
- Directly-Suspended Droplet Microextraction (DSDME)
- Solid Drop Liquid Phase Microextraction (SD-LPME)

- > The extraction medium is a single drop.
- A drop of immiscible extracting solvent is suspended from a syringe into the medium.
- After extracting, the organic drop is retracted back into the microsyringe and is injected into the chromatographic system.
- Application: analysis of phthalate esters (PEs).

* Application: analysis of organophosphorus pesticide

* Application: Analysis of Bisphenol A (BPA) in river water.

Hollow Fiber Liquid Phase Microextraction (HF-LPME)

* Application: Analysis of flame retardants and pharmaceuticals.

Dispersive Liquid-Liquid Microextraction (DLLME)

Applications: surfactants, flame retardants, pharmaceuticals and personal care products.

Directly-Suspended Droplet Microextraction (DSDME)

Application: Analysis of PBDEs and PEs.

Solid-Drop Liquid-Phase Microextraction (SD-LPME)

Application: polycyclic aromatic hydrocarbons (PAHs), Organochlorine pesticides, PEs

Conclusions

- Classical techniques used for sample preparation (LLE and SPE), despite being the most employed techniques currently, have some limitations.
- Very powerful techniques, able to reach levels of up to tens or hundreds of ng / mL or ng / g.
- Normally, it is employed liquid or gas chromatography coupled to a mass spectrometer for the determination of the analytes.

THANKS