EXTRACTION AND DETERMINATION OF PERSONAL **CARE PRODUCTS ADSORBED ON MICROPLASTICS**

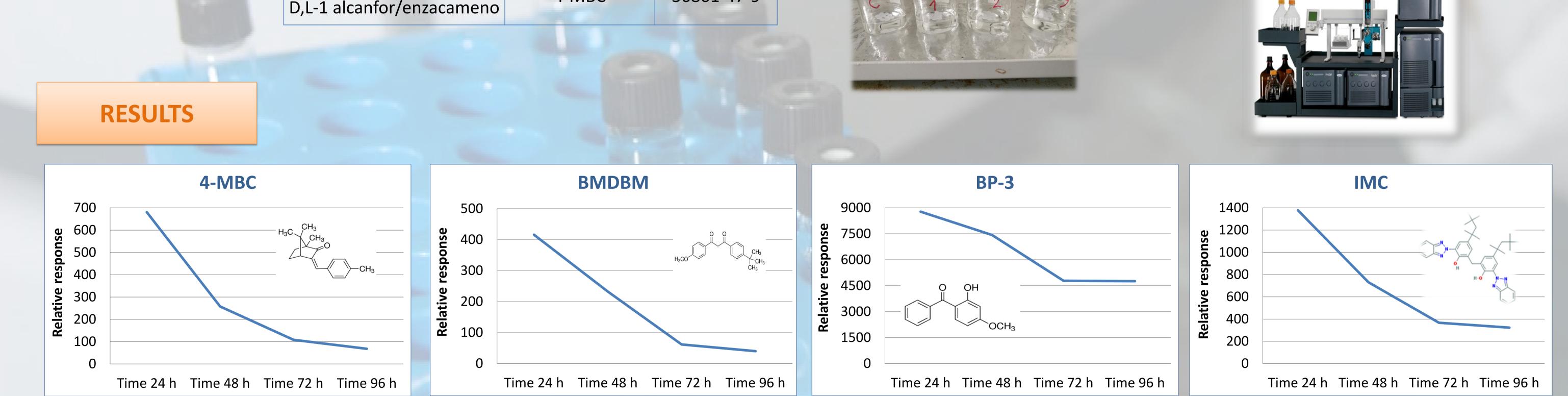
M.C. Pardo-Castillo, R. Guedes-Alonso, S. Montesdeoca-Esponda, S. Santana-Viera, Z. Sosa-Ferrera, J.J. Santana-Rodríguez

Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Spain

- Plastics in the ocean and marine organisms have attracted media attention as a real evidence of human impacts on environment.
- + From the huge variety of plastics which arrive to water body, microplastics (MPs, plastics) with a size lower than 5 mm) are the most concerning ones.
- MPs are found, not only in waters but also in sediments or aquatic organisms of all water bodies of the globe [1].
- MPs are toxic for aquatic organisms, however the possibility that other pollutants as organic molecules could be adsorbed on microplastics have been not studied enough.
- We propose a study to know if the surface of MPs could acts as a pollution vector of

Personal Care Products (PCPs) in marine ecosystem.

Among PCPs, UV filters are added in sunscreens and cosmetics and they could be harmful for biota [2].



UV Filters

Emerging contaminants used in Personal Care Products to absorb UV light Described as bioaccumulative, pseudo-persistent and mutagenic Great interest to know their **presence** and **distribution** in the environment

	EXPERIMENTAL	Chemical name	Abbreviation	Nº CAS	SHAKING		UHPLC-MS/MS DETERMINATION	
		2-Hidroxi-4-	n BP-3	131-57-7	SPEED	30 rpm	COLUMN	Oasis HLB
		metoxibenzofenona/oxiben zona			TEMPERATURE	room	COLOIVIN	(2.1 x 30 mm, 20 µm)
		Isopentil-4-	IMC	207574-74-1	SOLVENT	MilliQ water	рН	2.5
		metoxicinamato/amiloxato 1-[4-(1,1-Dimetietil)fenil]-	BMDBM	70356-09-1			MOBILE	MeOH 0.1 % ac. Formic
		3-(4-metoxyfenil)propan- 1,3-diona/avobenzona					PHASE	(0.4 mL/min)
		3-(4'-Metilbencilideno)-	4-MBC	36861-47-9		xodda) ImOg		

The absorption experiments carried out by putting pellets of MPs in an aqueous solution containing target UV filters revealed a decrease in their concentrations after 24, 48, 72 and 96 h.

CONCLUSIONS

The decreasing of the UV filters concentrations in the aqueous solution could indicate their

absorption on MPs.

- The level of removing from solution depends on the characteristics of the compound. - Subsequent studies are required to found a optimum methodology to extract the

pollutants from MPs and to know their real impact in marine ecosystems.

[1] Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Marine pollution bulletin, 62, 2588. [2] Sánchez-Quiles, D., A. Tovar-Sánchez, A. (2015). Environmental International, 83, 158.

Project CTQ2015-C2-1-R