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Simple Summary: Antibiotics are used to prevent and treat bacterial infections in both animals
and humans. If bacteria become resistant to them, in particular as the result of the misuse and
overuse of antibiotics, the infections that they cause are harder to treat. Therefore, the detection of
microorganisms resistant to antimicrobial drugs is an important issue, considering the interaction
among domestic animals, human, the ecosystem and wild animals. Wild birds, and particularly
birds-of-prey, are sentinels, reservoirs, spreaders and a source of infection for human beings and other
animals. Wildlife can also act as an asymptomatic reservoir for zoonotic bacteria (e.g., Salmonella).
The presence of antimicrobial-resistant microorganisms was investigated for a period of three years
and the differences between chicks in the nest (n = 81) and adult and immature birds (n = 61) were
analyzed. Gram negative bacteria were isolated in all the samples. Escherichia coli was obtained in
80.28% of the samples, where the prevalence of Salmonella in our study was 6.3%. The results of our
study support the idea that raptors could act as reservoirs of Salmonella and antimicrobial-resistant
bacteria, posing a risk not only to wildlife but also to livestock and the human population.

Abstract: Due to their predatory habits, raptors may serve as indicators of the presence of
antimicrobial-resistant bacteria in the environment, but they also represent a public health risk
for livestock and humans because they can act as reservoirs, sources and spreaders of these
bacteria. Our objective was to determine the presence of antimicrobial-resistant bacteria in cloacal
samples of Canarian Egyptian vultures (Neophron percnopterus majorensis), an endemic bird of prey.
One hundred and forty-two cloacal swabs were obtained; Escherichia coli was isolated from 80.28%
and Salmonella from 6.3% of these samples. Low levels of susceptibility to ampicillin, tetracycline
and trimethoprim/sulfamethoxazole were found. About 20% of the isolates were resistant or
presented intermediate susceptibility to fluoroquinolones. Surprisingly, we found isolates resistant
to imipenem (6.96%). Isolates from chicks were more susceptible to antimicrobial drugs than adult
and immature birds. About 50% of E. coli isolates were resistant to ampicillin, tetracycline and
trimethoprim/sulfamethoxazole, and about 20% to piperacillin, enrofloxacin and marbofloxacin.
High percentages of isolates of Salmonella were found to be resistant to cephalexin (88%) and
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aminoglycosides (greater than 77%). Our results support the idea that raptors could act as reservoirs
of Salmonella and antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to
livestock and the human population, thus reinforcing the need to minimize the exposure of wildlife
to antimicrobial agent through human and livestock waste.

Keywords: antimicrobials; antibiotic; resistance; Escherichia coli; Salmonella; Canarian Egyptian
vulture; Neophron percnopterus majorensis; vulture; guirre

1. Introduction

The Canarian Egyptian vulture (Neophron percnopterus majorensis) is an endemic bird-of-prey in the
Canary Islands, known locally as the “guirre”. Based on its morphological and genetic characteristics,
this vulture is a subspecies of the Egyptian vulture (Neophron percnopterus) [1]. It is a necrophagous
bird that feeds to a large extent on the remains of dead animals, assiduously visiting farms and
supplementary feeding stations [2]. In addition, it is known to hunt small prey and feed on animal
excrements. This source of anthropogenic food has a direct influence on the diet, behavior, distribution,
density and health of the population, thus resulting in variability in terms of their demographics and
population dynamics [2,3]. The Neophron percnopterus majorensis (“guirre” or “alimoche canario”) is
included under the category of “In Danger of Extinction” in the Spanish Catalogue of Endangered
Species [4]. Neophron percnopterus is included under the category of “Endangered” in the International
Union for Conservation of Nature’s (IUCN) Red List of Threatened Species.

Antimicrobial resistance is a “One Health” issue [5]. “One Health” is an emerging concept
that sustains that the human, animal and environmental health are all interconnected, and that a
global strategy is needed to face this challenge [6]. Even when it is accepted that the most important
factor triggering the appearance and spread of antimicrobial-resistant bacteria in human medicine
is the use of antibiotic therapies in human patients, we have to consider that the antimicrobials
used in Veterinary Medicine contribute to worsening the problem [7]. Therefore, the detection of
microorganisms resistant to antimicrobials is important, because of the interaction among domestic
animals, human, the ecosystem and the wild animals [8]. Moreover, the “One Health” approach and
the role of biodiversity in promoting the human health ought to be examined and requires further
research [9].

Regarding to antimicrobial resistance, wild birds can be important as sentinels, reservoirs,
spreaders and sources of infection for human beings and other animals [10,11]. The migratory behavior
of raptors has been proposed as a mechanism for disseminating antimicrobial-resistant bacteria [8].
Our study is focused on the Canarian Egyptian vulture, which is not migratory and inhabits two
islands (Fuerteventura and Lanzarote) of the Canary Island Archipelago

Microorganisms present in the vulture may exhibit resistance to antibiotics, which could constitute
a threat to global health, food security and development, as defined by the WHO [12]. Over the last
decade, an increase in extended-spectrum β-lactamases (ESBL) and pAmpC producing Escherichia coli
has been detected in humans, pets, food-producing animals and derived meat products [13,14]. In Spain,
a high percentage of birds are carriers of ESBL or pAmpC Escherichia coli, especially in the case of storks
(Ciconia spp.), kites (Milvus spp.) and vultures. This research showed that birds could contribute to the
global spread of ESBL/pAmpC producing E. coli in natural ecosystems [15].

Wildlife can act as an asymptomatic reservoir for zoonotic bacteria, such as Salmonella, and this
bacterium can also be a cause of disease [16]. A study conducted at a Wildlife Rehabilitation Center [16],
showed a prevalence of 33.3% of this bacterium in the Griffon Vulture (Gyps fulvus), as well as a
high percentage of multiresistant Salmonella isolates. Vidal et al. [17] found that E. coli was the most
common microorganism recovered from necropsies of raptors with clinical signs of septicemia or
respiratory disorders. In this research, 50% of all the isolates, and 71% of E. coli, showed multidrug
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resistance. Fecal contamination of the environment by wild birds could play a role in the transmission
of pathogens to humans, via livestock or water supplies. Some important mechanisms of resistance
are encoded by genes located on mobile elements and this allows the transference of resistance genes
from commensal or opportunistic bacteria like E. coli to pathogenic ones [18]. Investigations on the
prevalence and drug resistance of Salmonella in birds-of-prey could help us to understand the role of
birds-of-prey in its epidemiology in terms of the wildlife–human interface [19].

Information on antimicrobial resistance pertaining to Gram-negative bacteria from wild raptors
has been obtained mainly from birds at rescue centers, but only a few studies have investigated this
topic in raptors living in their natural ecosystems. This knowledge is needed to assess the importance
of wild raptors as reservoirs and transmitters of antimicrobial-resistant bacteria, to determine their
potential impact on public health and their role as a potential health threat to workers involved in the
protection of this animal species [20]. Therefore, the main objective of this study was to determine the
presence of antimicrobial-resistant bacteria in cloacal samples of Canarian Egyptian vultures, with a
special focus on E. coli and Salmonella. We also compared the resistance throughout the three years
of the study and analyzed the differences among chicks in the nest and adult or immature birds.
(Figure 1).

Figure 1. Canarian Egyptian vulture inhabits only two islands (Fuerteventura and Lanzarote) of the
Canary Island Archipelago. (From: Leaflet|Powered by Esri|Esri, HERE, Garmin, FAO, NOAA, USGS).

2. Materials and Methods

Cloacal samples of vultures were collected during the years 2015 (30 samples), 2016 (62 samples)
and 2017 (50 samples), as part of a long-term monitoring program of this population [21].

The birds were classified by age as chicks, immature birds—which include juveniles (less than
2 years of age) and sub-adults (between 2 and 5 years of age)—and adults (over 5 years of age). The age
of the animals was determined according to the plumage characteristics and the color of the beak and
the eye [22]. Adult and immature birds (juveniles and sub-adults) were trapped in baited locations by
means of cannon-netting. Chicks were captured during the fledgling stage in the nests. All the birds
captured were apparently healthy individuals. All procedures, including the capture and handling
methods for wild vultures, were carried out under the Project License approved by The Biodiversity
Directorate of the Government of the Canary Islands; the official reference numbers from the competent
authority are: 2014/256, 2015/1652 and 2016/1707.

A total of 142 cloacal swabs were obtained, of which 81 were from chicks on the nests and 61 were
from wild adult or immature birds. Cloacal swabs were placed in Amies blue plastic/viscose gel
transport medium (reference number 50 710-0432, VWRTM, Darmstadt, Germany)) and conserved at
4 ◦C until they reached to the Microbiology Laboratory (within 24 h).
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Samples were cultured on MacConkey agar and Hektoen agar and incubated overnight at 37 ◦C.
Rapapport Broth (bioMérieux, Marcy L’Etoile, France) was also inoculated and incubated overnight at
42 ◦C, and was later streaked onto Hektoen agar (BD Difco, Detroit, MI, USA).

Bacteria were identified using the Vitek®2 automated system (bioMérieux, Marcy L’Etoile, France),
with VITEK® 2 GN ID Cards, following the manufacturer’s instructions. These cards allow for the
identification of more than 150 species of clinically relevant Gram-negative bacilli.

Antimicrobial susceptibility tests were performed using the disk diffusion method in accordance
with the Clinical and Laboratory Standards Institute (CLSI 2015) guidelines [23]. The inoculum
was prepared in saline solution, using isolated fresh colonies and with the turbidity adjusted to a
0.5 McFarland standard. Using a sterile swab, the surface of an Müller–Hinton agar plate (BD Difco,
Detroit, MI, USA) was streaked with the inoculum. Later, the antimicrobial-impregnated disks were
applied and the plates were incubated in a stove at 37 ◦C for 24 h. The inhibition zones were measured
and scored as susceptible, intermediate or resistant, according to the guidelines established by the CLSI.

The following 16 antibiotics were tested: ampicillin (10 µg), amoxicillin/clavulanic acid
(20 µg + 10 µg), cephalexin (30 µg), cefpodoxime (10 µg), piperacillin (100 µg), imipenem (10 µg),
gentamicin (10 µg), tobramycin (10 µg), amikacin (30 µg), enrofloxacin (5 µg), marbofloxacin (5 µg),
tetracycline (30 µg), nitrofurantoin (300 µg), chloramphenicol (30 µg), polymyxin B (300 U) and
trimethoprim/sulfamethoxazole (23.75 µg + 1.25 µg).

For the comparison of the results of the antimicrobial resistance related to the age of the animals,
the chi-square with the Yates’s correction for continuity was calculated. SPSS v.22.0 (SPSS Inc., Chicago,
IL, USA) was used to compare datasets. Statistical significance was set at p < 0.05. Additionally,
statistical differences in the antimicrobial resistances of Salmonella compared with the rest of the isolated
species were studied.

3. Results

The results of this study identify antimicrobial resistance in Gram-negative bacteria isolated from
cloacal samples of vultures on the Canary Island Archipelago (Spain).

Gram-negative bacteria were isolated in all the samples. Biochemical identification was carried out
for one colony per plate. One hundred and fourteen (80.28%) isolates were identified as E. coli, and nine
isolates (6.3%) were determined to be Salmonella spp., while the remaining 19 isolates (13.42%) included
Proteus mirabilis, Providencia rettgeri, P. stuartii, Klebsiella pneumoniae, K. oxytoca, Raoultella ornithinolytica
and Citrobacter braakii.

In order to present our results from different perspectives, the percentages of resistant bacteria
were analyzed in relation to the global susceptibility (Table 1), the year of the study (Table 2), the
age of the animals (Table 3) and the different bacterial species (Table 4). The highest antimicrobial
resistance percentages in the isolates were observed for ampicillin (54.25%), tetracycline (48.44%)
and trimethoprim/sulfamethoxazole (46.85), whereas the lowest antimicrobial resistance percentages
corresponded to cefpodoxime (3.1%), polymyxin B (3.7%) and nitrofurantoin (6.15%). The results of all
the antimicrobials studied are shown in Table 1 and Figure 2.

Table 1. Global results of susceptibility tests. Antimicrobial susceptibility (%) of all isolates tested.

Antibiotic Resistant Intermediate Susceptible

Ampicillin 54.25 - 45.75
Amoxicillin/Clavulanic

Acid 8.5 2.85 88.65

Cephalexin 16.15 3.1 80.75
Cefpodoxime 3.1 0.77 96.13
Piperacillin 23.1 10 66.9
Imipenem 6.96 1.54 91.5

Gentamicin 11.5 - 88.5



Animals 2020, 10, 970 5 of 14

Table 1. Cont.

Antibiotic Resistant Intermediate Susceptible

Tobramycin 8 1.4 90.6
Amikacin 6.87 - 93.13

Enrofloxacin 17.7 3.1 79.2
Marbofloxacin 16.15 0.75 83.1

Tetracycline 48.44 1.56 50
Nitrofurantoin 6.15 10 83.85

Chloramphenicol 15.38 16.15 68.47
Polymyxin B 3.7 - 96.3

Trimethoprim/Sulfamethoxazole 46.85 - 53.15

Figure 2. Global results of susceptibility tests. Antimicrobial susceptibility (%) of all isolates tested.

Variations in susceptibility percentages during the three years of the study are shown in Table 2 and
Figure 3. From 2015 to 2017, a sharp decrease in susceptibility was found for cephalexin, piperacillin,
tetracycline, nitrofurantoin and chloramphenicol. On the other hand, an increase in the percentages of
susceptibility to enrofloxacin and marbofloxacin was observed.

Table 2. Variations in the percentages of susceptibility during the three years of the study.

Antibiotic
Resistant Intermediate Susceptible

2015 2016 2017 2015 2016 2017 2015 2016 2017

Ampicillin 53.3 50 60 - - - 46.7 50 40
Amoxicillin/Clavulanic Acid 10.35 25 12 - - 8 89.65 75 80

Cephalexin - 16.4 22.9 4.8 - 6.25 95.2 83.6 70.85
Cefpodoxime - 4.9 2.1 - - 2.1 100 95.1 95.8
Piperacillin 9.52 19.7 33.3 19 6.5 10.4 71.48 73.8 56.3
Imipenem 4.7 5.1 10 - - 4 95.3 94.9 86

Gentamicin 3.33 16.4 10.4 - - - 96.67 83.6 89.6
Tobramycin 3.33 9.9 8.4 - 1.65 2.1 96.67 88.5 89.5
Amikacin - 9.7 6.25 - - - 100 90.3 93.75

Enrofloxacin 38.1 11.47 16.67 4.76 1.64 4.16 57.14 86.89 79.17
Marbofloxacin 33.33 11.47 14.6 - - 2.1 66.67 88.53 83.3

Tetracycline 38.1 39 64.6 - 3.4 - 61.9 57.6 35.4
Nitrofurantoin 14.3 - 10.42 - 4.9 20.83 85.7 95.1 68.75

Chloramphenicol 14.3 9.8 22.9 4.7 6.6 33.35 81 83.6 43.75
Polymyxin B - - 6.12 - - - 100 100 93.88

Trimethoprim/Sulfamethoxazole 41.9 48.4 48 - - - 58.1 51.6 52
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Figure 3. Variations in the percentages of resistant during the three years of the study.

Table 3 and Figure 4 shows the susceptibility of bacteria isolated from chicks in the nests and from
the rest of animals (adult and immature birds). Isolates from chicks were more susceptible to ampicillin,
amoxicillin/clavulanic acid, cephalexin, piperacillin, tetracycline, nitrofurantoin and chloramphenicol
than those from the rest of animals. However, significant statistical differences were only found in
amoxicillin/clavulanic acid, piperacillin, tetracycline and chloramphenicol.

Figure 4. Differences in the percentage of resistant between chicks in the nests and the rest of the of
animals (adult and immature birds).



Animals 2020, 10, 970 7 of 14

Table 3. Susceptibility of bacteria isolated from chicks in the nests and from the rest of animals (adult
and immature birds). Results of the statistical differences between chicks and the rest of the animals
are presented.

Antibiotic Age Resistant Intermediate Susceptible Chi-Squared (χ2) p-Value

Ampicillin chicks 46.9 - 53.1
3.404 0.065rest 63.9 - 36.1

Amoxicillin/Clavulanic
Acid

chicks 2.45 2.45 95.1
7.308 0.007 *rest 16.7 3.3 80

Cephalexin chicks 11.6 1.3 87.1
2.274 0.132rest 23.1 5.8 71.1

Cefpodoxime chicks 1.28 - 98.72
0.871 0.351rest 5.77 1.93 92.3

Piperacillin chicks 13.9 8.9 77.2
8.235 0.004 *rest 37.25 11.75 51

Imipenem chicks 3.8 1.3 94.9
1.942 0.163rest 11.8 1.9 86.3

Gentamicin
chicks 12.8 - 87.2

0.060 0.807rest 9.83 - 90.17

Tobramycin chicks 6.4 2.6 91
0.124 0.724rest 9.8 - 90.2

Amikacin
chicks 6.34 - 93.66

0.012 0.914rest 7.69 - 92.31

Enrofloxacin
chicks 19.2 1.3 79.5

0.108 0.743rest 15.38 5.77 78.85

Marbofloxacin
chicks 17.9 - 82.1

0.192 0.662rest 13.47 1.93 84.6

Tetracycline chicks 36.36 1.3 62.34
10.099 0.001 *rest 66.66 1.96 31.38

Nitrofurantoin
chicks 5.12 6.42 88.46

0.050 0.823rest 7.7 15.38 76.92

Chloramphenicol chicks 7.7 14.1 78.2
7.448 0.006 *rest 27 19.2 53.8

Polymyxin B chicks 4.35 - 95.65
0.059 0.809rest 2.85 - 97.15

Trimethoprim/
Sulfamethoxazole

chicks 45.68 - 54.32
3.404 0.065rest 48.38 - 51.62

* statistical significant differences (p < 0.05).

Lastly, the differences in susceptibility found among E. coli, Salmonella and the rest of species are
summarized in Table 4 and Figure 5. About 50% of E. coli isolates were resistant to ampicillin, tetracycline
and trimethoprim/sulfamethoxazole and about 20% were resistant to piperacillin, enrofloxacin and
marbofloxacin. High percentages of isolates of Salmonella resistant to cephalexin and aminoglycosides
were also found. We did not find any statistically significant differences in the presence of Salmonella
between animals of different ages (χ2 = 0.065; p-value = 0.799).

Table 4. Percentages of antimicrobial susceptibility in different bacteria species.

Antibiotic Species * Resistant Intermediate Susceptible

Ampicillin
E. coli 51.3 - 48.7

Salmonella 22.22 - 77.78
Others 85 - 15

Amoxicillin/Clavulanic Acid
E. coli 6.2 2.8 91

Salmonella - - 100
Others 25 5 70

Cephalexin
E. coli 7.8 1 91.2

Salmonella 88.89 - 11.11
Others 26.3 15.8 57.9
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Table 4. Cont.

Antibiotic Species * Resistant Intermediate Susceptible

Cefpodoxime
E. coli 3.9 - 96.1

Salmonella - - 100
Others - 5.26 94.74

Piperacillin
E. coli 19.4 11.6 69

Salmonella 22.22 11.11 66.67
Others 44.44 - 55.56

Imipenem
E. coli 4.9 - 95.1

Salmonella - 11.11 88.89
Others 21 5.3 73.7

Gentamicin
E. coli 5.45 - 94.55

Salmonella 100 - -
Others 5 - 95

Tobramycin
E. coli 2.7 1.8 95.5

Salmonella 77.78 - 22.22
Others 5 - 95

Amikacin
E. coli 1 - 99

Salmonella 88.89 - 11.11
Others - - 100

Enrofloxacin
E. coli 19 2.9 78.1

Salmonella - - 100
Others 15.8 5.3 78.9

Marbofloxacin
E. coli 18.6 - 81.4

Salmonella - - 100
Others 10.5 5.3 84.2

Tetracycline
E. coli 45.5 2 52.5

Salmonella 25 - 75
Others 73.7 - 26.3

Nitrofurantoin
E. coli 2.95 5.88 91.17

Salmonella - 22.22 77.78
Others 26.3 26.3 47.4

Chloramphenicol
E. coli 14.7 16.7 68.6

Salmonella - - 100
Others 26.3 21 52.7

Polymyxin B
E. coli 5 - 95

Salmonella - - 100
Others - - 100

Trimethoprim/Sulfamethoxazole
E. coli 50 - 50

Salmonella - - 100
Others 50 - 50

* Others: Proteus mirabilis, Providencia rettgeri, Providencia stuartii, Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter
braakii and Raoultella ornithinolytica.

Figure 5. Differences in percentages of resistant between bacteria species.
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4. Discussion

The increase in multidrug-resistant bacteria in wildlife is a global threat, because it can lead
to increased morbidity and mortality, and can also lead to increase healthcare costs [24]. In order
to increase the available information on antibiotic resistance in wild animals, we have investigated
this topic in isolates from fecal samples of Canarian vultures. With regard to the overall results of
antimicrobial susceptibility tests (detailed in Table 1), low levels of susceptibility to ampicillin (45.75%),
tetracycline (50%) and trimethoprim/sulfamethoxazole (53.15%) were found. Percentages of isolates
susceptible to piperacillin and chloramphenicol were also low (66.9% and 68.47% respectively).

About 20% of isolates were resistant or presented intermediate susceptibility to fluoroquinolones
(enrofloxacin and marbofloxacin). The use of veterinary antimicrobials is clearly regulated and
withdrawal periods or residue levels are established only for animal by-products intended for human
consumption. However, carcasses and other remains, frequently from diseased animals, can be
consumed by raptors, which implies the ingestion of antimicrobial residues or resistant bacteria.
Blanco et al. [25] evaluated the presence of fluoroquinolones in the plasma of nestling vultures feeding
on domestic livestock carcasses and found residues of these pharmaceuticals in 92% of the animals
sampled. Besides having to secondary or side effects, such as the alteration of microbiota, cartilage
disorders, etc. [26], these compounds could select quinolone-resistant bacteria in vulture populations.
We found a relatively high percentage of quinolone-resistant bacteria, which could be due to either
direct contamination or the ingestion of quinolone-contaminated feed followed by the selection of
quinolone-resistant bacteria in the vultures’ intestine.

Surprisingly, we also found isolates resistant to imipenem, an antibiotic restricted exclusively to
hospital use. High levels of resistance to carbapenems by bacteria isolated from migratory birds have
been described by other authors [27,28]. Imipenem resistance was low (6.9%) and found mainly in E. coli,
Proteus and Providencia. As pointed out by Wang et al. [8], even though when resistance to carbapenems
is still rare in wild animals, its emergence in wild birds is a matter of concern. The emergence and
dissemination of carbapenemase-producing multidrug-resistant bacteria represent an important public
health risk, causing serious infectious with very limited therapeutic options [29].

Dolejska et al. [30] described the isolation of 120 carbapenemase-producing Enterobacterales from
silver gulls (Chroicocephalus novae-hollandiae) in Australia (120 isolates from 504 samples, 85 E. coli).
The blaIMP-4 gene was found in 116 isolates, and it was also the most commonly detected gene among
carbapenemase-producing Enterobacterales isolates in humans in that country. As described below,
this high prevalence is probably due to the feeding habits of gulls. Prevalence in Canarian vultures
was low, probably because they usually feed on the remains of dead animals, but it is possible that in
some cases they might eat rubbish and acquire carbapenem-resistant bacteria. Since vultures can also
hunt small prey, it would also be possible for the prey to harbor imipenem-resistant bacteria, due to
their close contact with human habitats. Therefore, the feeding habits of gulls, which usually forage in
rubbish dumps, could explain this difference.

Resistance to amikacin, which has been withdrawn from community use, is also relevant. It has
been demonstrated than the use of aminoglycosides in human and veterinary medicine is associated
with an increase in resistance to this group of antimicrobials [31]. Aminoglycosides, such as amikacin
or gentamicin, are important antimicrobials for the treatment of human and animal infections, and are
classified by the WHO as critically important antimicrobials for human medicine [32].

When we focused on the variations in susceptibility percentages (Table 2), there was a decrease in
susceptibility for cephalexin, piperacillin, tetracycline, nitrofurantoin and chloramphenicol, as well as
increased susceptibility to enrofloxacin and marbofloxacin. These results could be a consequence of
the recommendations of the European Parliament on the prudent use of veterinary antibiotics, which
were published in 2019, but discussed throughout the previous years (Regulation (UE) 2019/6) [33].

In our study, the bacteria isolated from chicks were more susceptible to several antibiotics (Table 3)
than those from the rest of animals. While, Marrow et al. [34] found no differences in the frequencies of
antimicrobial-resistance between different age groups when studying Enterococcus in raptors, differences
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has been observed in the transmission of different antimicrobial-resistant enteric bacteria from cattle
and the environment to wild birds, in particular between E. coli and Enterococcus [35]. To our knowledge,
no further information is available on the differences in resistance among isolates from raptors of
different age groups. We suggest that the differences found could be due to different feeding habits.
Although the origin of bacterial resistance genes in wild animals is still unclear, if animals have not
been treated with antibiotics directly, direct ingestion of resistant bacteria through contaminated food,
ingestion of antimicrobial compounds or contact with sewage or animal manure might contribute
to this problem. However, chicks in the nests have less contact with livestock manure or sewage.
Moreover, since they are younger, they will have been eating foods that contain antibiotics for a shorter
period of time. These facts could explain to some extent the differences in susceptibility between
bacteria from chicks and the remaining animals found in our study. Further studies on the time and
level of antibiotic exposure required to generate antibiotic resistance are needed.

With regard to the prevalence of different bacterial species, E. coli was obtained in 80.28% of the
samples. This high prevalence is in agreement with the results of Sharma et al. [36] for Egyptian
vultures (Neophron percnopterus) in India and the results found by Radhouani et al. [18] in samples
taken from common buzzards (Buteo buteo) in Portugal. However, other authors describe a lower
prevalence of E. coli, and it seems that the differences in prevalence do not depend on whether the
samples come from birds of prey from countries with different human and livestock populations, and it
does not matter if they are in the wild or housed at a rescue center [37,38]. Some other factors as the
presence or absence of avian migratory species in the area could also influence the results [38].

The presence of Salmonella in vultures is important for public health reasons, but also because this
bacterium can play an important role in wildlife disease [39]. Outbreaks of salmonellosis in captive
raptors have also been described [40]. Vultures can acquire Salmonella when eating contaminated
livestock carcasses or in rubbish dumps. The prevalence of Salmonella in our study was 6.3%, which is
lower than the level described by other authors for griffon vultures [22,39] and Egyptian vultures [41].
It should be pointed out that the samples used by these authors were taken at a supplementary
feeding station, just after the animals consumed the carcasses of pigs, whereas our samples were taken
throughout the year. Several studies have found the prevalence of Salmonella in raptors similar to
ours [42–44]. Giacopello et al. [37] reported a prevalence of 9.3% in raptors admitted to a wildlife
rescue center. In line with the results of Marín et al. [22], we did not find any differences in the presence
of Salmonella between animals of different ages.

Raoultella ornithinolytica has been described as an emerging pathogen, associated with
hospital-acquired human infections [45]. Its potential role in animal infection has yet to be studied.
We consider it interesting and relevant to report the results for this species because it is an emerging
pathogen, and limited information is available on its clinical features or antimicrobial susceptibility.
In human beings, it has been determined that this species should never be considered a saprophytic
bacteria when present in deep respiratory samples or surgical sites, and broad-spectrum treatment
should be established [45]. R. ornithinolytica lives in an aquatic environment and can be isolated from
fish [46]. Until now, it has not been described as causing animal infections, but Canarian vultures eat
fish and could develop infections caused by this bacterial species, so veterinarians should be aware of
this possibility.

Our results show lower percentages of isolates resistant to the antimicrobials tested than those
reported by Radhouani et al. [18] for E. coli obtained from common buzzards, with the exception of the
percentage of resistance to ampicillin, which is similar. Sharma et al. [36] found a higher percentage of
resistance to ampicillin (91% vs. 51%) and a lower level of resistance to trimethoprim/sulfamethoxazole
(34% vs. 50%) in E. coli obtained from Egyptian vultures. Their data showed a temporal variation in
resistance, so it is possible that our results would be different, depending on the sampling periods.

Alcalá et al. [15] proposed that wild birds could contribute to the spreading of extended-spectrum
beta-lactamase producing E. coli. Szmolka et al. [11] call attention to the role of antimicrobial therapy



Animals 2020, 10, 970 11 of 14

in animals in the selection of multidrug resistant populations of commensal E. coli that could transfer
those resistance genes in vivo to pathogenic strains of E. coli or to Salmonella.

In the case of our study, vultures are sedentary, so the dissemination of antimicrobial-resistant
bacteria through migration is not feasible. Therefore, the effects should be limited to the local level
of the islands. To avoid these potential negative effects and others affecting the populations of this
threatened subspecies, it is necessary to prevent the vultures from feeding on the remains of intensive
livestock farming, particularly pigs [41], and on garbage that accumulates in rubbish dumps [47].
This study shows that Canarian vultures can be a source of antimicrobial-resistant bacteria, including
those resistant to critically important antibiotics. They can spread them to other species and into the
environment, and consequently may pose a risk to human and animal health.

5. Conclusions

The excessive use of antibiotics in the recent decades, in both human and veterinary medicine,
has created what is currently one of the biggest public health problems: the rise and spread of large
quantities of antibiotic-resistant bacteria. Action must be taken to avoid the set of factors that promote
the increase and evolution of antibiotic resistance in wildlife, which can be easily be transferred to
humans, domestic animals and the environment. However, for this to occur, a more accurate picture of
the situation is needed.

The results of our study support the idea that raptors could act as a reservoir for Salmonella and
other antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to livestock and the
human population. These data highlight the need to minimize the exposure of wildlife to antimicrobials
through human and livestock waste and to take into account a “One Health” approach to manage the
problem of antimicrobial resistance.
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