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Synopsis

These Proceedings from the RAR2018 Conference in Kruger National Park, South Africa,
summarized 56 years of research and experience in the use, performance, and properties of
Asphalt-Rubber binders and provided much needed vital current and historical information on
the product for engineers worldwide. This information has allowed engineers to successfully
take advantage of this cost effective, durable and environmentally beneficial material. These
proceedings from RAR2018 will build on the earlier AR2000, AR2003, AR2006, AR2009,
AR2012 and RAR2015 volumes through the latest research and experiences of routine and
beginning users throughout the world.
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as less splash and spray and quiet less tire/pavement interface noise surface, thin
surfaces that save on the quantity of aggregate and thus reduce the amount of CO2
as well as the quantity of energy needed to build a pavement, less tire wear and be
helpful to reducing the heat island effect. A fountain head of research papers have
evidenced the environmental and sustainability qualities of using GTR in asphalt.

These conferences have documented the cost effectiveness of GTR in asphalt. As
the cost of asphalt and other related products have increased in the last 18 years the
cost of GTR has remained remarkably relatively constant. In addition new GTR in
asphalt products using less GTR, or less heat to make GTR in asphalt, have made the
cost effectiveness of GTR in asphalt more attractive.

Beyond the many engineering and environmental qualities documented in all
of the conferences there is the human side of the story of GTR in asphalt. This
conference would not have come to Africa and specifically South Africa without
the good efforts of Professor Alex Visser. Alex has long been a contributor to the
rubberized asphalt conferences. He was a presenter at AR2000 and contributor to
virtually all the conferences as a presenter, moderator and member of the Technical
Committee. His long-standing research efforts regarding recycling tires is in keeping
with his countries recognition of the need to support climate change initiatives and a
sustainable environment.

In closing, South Africa was selected for this conference because of Alex Visser
and the recognition that it was time for the conference to be held on the African
continent. The location of the conference is unlike any other in the world, as we share
our time at the conlerence hotel literally observing a world filled with wild animals
living all around us, in a setting much like our ancestors observed so very long ago.
Africa is where mankind began to move away from the wild and wild animals, and
proceeded to advance, it is hoped that this conference can in some ways be a new
beginning for rubberized asphalt to continue to advance for the good of mankind and
the preserving of nature. Enjoy South Africa, enjoy observing the wild animals and
enjoy the conlerence.

George B. Way, P.L.
Conference Co-Chairman
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ABSTRACT. Crumb rubber modified (CRM) binders have shown to improve the performance
of some bituminous mixtures. In volcanic regions the aggregates are frequently obtained from
rocks with a vesicular or scoriaceous structure with high porosity, but the higher absorption,
variability and heterogencous properties make these aggregates marginal and not recommended

Jor structural materials due to the technical specifications. The use of rubber-modified

binders in mixtures with these aggregates can contribute to utilize both wastes. However, the
production and compaction temperatures of asphalt-rubber mixtures are higher than when
using conventional bitumen as the rubber provides a greater viscosity, reducing workability.
Consequently, it produces higher energy consumptions and emissions, which compromises its
environmental sustainability.

This study presents the principal engineering properties of low temperature asphalt
mixtures with rubber-modified bitumen (asphalt-rubber warm mives, ARWM) and high
porosity vesiculated and scoriaceous basalt. The temperature reduction was carried out
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using a liguid surfactant chemical additive in reduced proportion (0.3% by bitumen weight).
The results show that with this additive it is possible to lower the production temperatures
of the mixtures with asphali-rubber and porous volcanic aggregates while the mechanical
performance is within the specifications for pavements. The results obtained may be

extrapolated to other volcanic regions both insular and continental areas where this tvpe of

aggregale is contmonly found.
KEYWORDS: Bituminous mixture, Volcanic aggregate, Vesicular basalt, Asphalt-rubber warm
mixture (ARWM), Low-temperature mixture, Crumb rubber modifier (CRM), Reclaimed tvre.
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1. Introduction

High porosity vesicular and scoriaceous aggregates are the most common lithotypes
in volcanic regions. However, the non-cubic particle shape, the higher heterogeneity,
alveolar structure and absorption make these aggregates marginal and commonly not
recommended for structural materials due to the technical specifications [1].

According to previous studies, bituminous mixtures with crumb rubber modified
(CRM) binders have proved the production of paving materials offering enhanced
performance and durability [2-5]. They can also offer certain environmental advantages
and reduction of traffic noise. Asphalt-rubber (AR), also called “wet process”, consist
m the blend of asphalt binder and ground recycled tyre rubber powder from scrap
end-of-life tyres (ELT) in which the rubber component has reacted in the hot asphalt
cement to cause swelling of the rubber particles. Due to the ability of AR to improve
the performance properties of some mixtures, the possibility of employing it in paving
mixtures with marginal volcanic aggregates has a crucial interest in these regions in
order to exploit the local resources and contribute to the environment protection.

However, the production temperatures of asphalt-rubber hot mixtures (ARHM) are
usually higher than when using conventional binders as the rubber provides a greater
viscosity, reducing workability and as a consequence, decreasing the laying and
compaction time. Moreover, it produces higher energy consumptions and emissions,
which compromises its environmental sustainability. Thus, AR mixtures must be
produced preferably using procedures allowing lower temperatures or warm mix
asphalt technologies (WMA). )

Some of the most utilized methods to reduce the bitumen viscosity, and so the
production temperature generally 20-30 °C, use different types of microcrystalline
waxes [6-8]. However, these additives are expensive as they are required in important
quantities, up to 2—4% by weight of bitumen [9].

On the contrary. in this study a tensioactive chemical additive was used in reduced
proportion to raise the surfactant capacity of the binder with the aggregates and so
coating them at lower temperatures. The laboratory characterization of asphalt-rubber
mixes with volcanic aggregates from high porosity vesicular and scoriaceous basalt
(6-16% of water absorption) at different low temperatures (mixing between 140 and
170 °C) is presented in this work. These are called asphalt-rubber warm mixtures
(ARWM) throughout this paper. These results are compared to AR mixtures produced
at high temperature (mixed at 180 °C) and also to mixtures with conventional bitumen
(at 170 °C), all of them with the same volcanic aggregates.

2. Experimental
2.1. Materials

290 cylindrical specimens, 44 slab specimens and 50 non-compacted samples,
including reference specimens, of semi-dense asphalt concrete for surface courses
(AC16 surf §) were produced in the laboratory. This type of bituminous mix was
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using a liquid surfactant chemical additive in rediced proportion (0.5% by bitumen weight).
The results show that with this additive it is possible to lower the production temperatures
of the mixtures with asphalt-rubber and porous volcanic aggregates while the mechanical
perforimance is within the specifications for pavements. The results obtained may be

extrapolated to other volcanic regions both insular and continental areas where this type of

aggregate is commonly found.
KEYWORDS: Bituminous mixture, Volcanic aggregate, Vesicular basalt, Asphalt-rubber warm
mixture (ARWM), Low-temperature mixture, Crumb rubber modifier (CRM), Reclaimed tyre.
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1. Introduction

High porosity vesicular and scoriaceous aggregates are the most common lithotypes
in volcanic regions. However, the non-cubic particle shape, the higher heterogeneity,
alveolar structure and absorption make these aggregates marginal and commonly not
recommended for structural materials due to the technical specifications [1].

According to previous studies, bituminous mixtures with crumb rubber modified
(CRM) binders have proved the production of paving materials offering enhanced
performance and durability [2-5]. They can also offer certain environmental advantages
and reduction of traffic noise. Asphalt-rubber (AR), also called “wet process”, consist
in the blend of asphalt binder and ground recycled tyre rubber powder from scrap
end-of-life tyres (ELT) in which the rubber component has reacted in the hot asphalt
cement to cause swelling of the rubber particles. Due to the ability of AR to improve
the performance properties of some mixtures, the possibility of employing it in paving
mixtures with marginal volcanic aggregates has a crucial interest in these regions in
order to exploit the local resources and contribute to the environment protection.

However, the production temperatures of asphalt-rubber hot mixtures (ARFIM) are
usually higher than when using conventional binders as the rubber provides a greater
viscosity, reducing workability and as a consequence, decreasing the laying and
compaction time, Moreover, it produces higher energy consumptions and emissions,
which compromises its environmental sustainability. Thus, AR mixtures must be
produced preferably using procedures allowing lower temperatures or warm mix
asphalt technologies (WMA). )

Some of the most utilized methods to reduce the bitumen viscosity, and so the
production temperature generally 20-30 °C, use different types of microcrystalline
waxes [6-8]. However, these additives are expensive as they are required in important
quantities, up to 2-4% by weight of bitumen [9].

On the contrary, in this study a tensioactive chemical additive was used in reduced
proportion to raise the surfactant capacity of the binder with the aggregates and so
coating them at lower temperatures. The laboratory characterization of asphalt-rubber
mixes with volcanic aggregates from high porosity vesicular and scoriaceous basalt
(6-16% of water absorption) at different low temperatures (mixing between 140 and
170 °C) is presented in this work. These are called asphalt-rubber warm mixtures
(ARWM) throughout this paper. These results are compared to AR mixtures produced
at high temperature (mixed at 180 °C) and also to mixtures with conventional bitumen
(at 170 °C), all of them with the same volcanic aggregates.

2. Experimental
2.1. Materials

290 cylindrical specimens, 44 slab specimens and 50 non-compacted samples,
including reference specimens, of semi-dense asphalt concrete for surface courses
(ACI6 surf S) were produced in the laboratory. This type of bituminous mix was
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produced following the Spanish road specifications (PG-3) [10] and is according to
the European Standard EN 13108-1.

All the fractions of the aggregate used in the mixtures (10-20, 4-10 and 0-4 mm)
where obtained from volcanic rock from the same quarry in Gran Canaria (Canary
Islands, Spain). The type of all-in aggregate is a mechanically-crushed vesicular
olivinic-piroxenic grey basalt of high porosity, a very common and abundant lithotype
of voleanic rock. Table 1 summarizes the main properties and in Fig. 1 a detail may
be observed. As mineral filler (# < 0.063 mm), a Portland cement with pozzolanic
addition was used. The type of cement was CEM II/B-P 32.5 R, according to EN
197-1.

Figure 1: Detail of the coarse fraction of the vesiculated
and scoriaceous basalt

These scoriaceous aggregates may be considered marginal according to the
technical specifications. The average resistance to fragmentation of the particles (LA
=28 - 29) slightly exceed the standard limits and the high porosity (WAz, = 6 — 16%)
produces an elevated consumption of binder and energy in order to evaporate water.
By contrast, they offer reduced flakiness index (FI) and the resistance to polishing
(PSV) usually comply with standard specifications.

The reference mixtures without rubber used a commercial bitumen 35/50 pen
(density: 1.042 Mg/m’; penetration at 25 °C, 100 g, 5 s: 44x10" mm; softening
point: 51.6 °C). The binder of the mixtures with rubber was an asphalt-rubber of the
same penetration grade (AR35/50; density: 1.028 Mg/m’; penetration: 38x10" mm;
softening point: 64.2 °C), produced in the laboratory by adding the crumb rubber
modifier (CRM).

The CRM was manufactured by mechanical grinding at ambient temperature (50%
from used truck tyres; 50% used car tyres). The thermogravimetric analysis revealed
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Table 1: Main properties of the different aggregate fractions.
Tests according to European Standards

Aggregate fractions Specified target values
according to technical

standards [10]

#10-20mm #4-10mm # 0—4 mm

% (by wt. of the

sl wyrarnte)] ¥ 20.93 36.27 38.88 o
rsgp (Mg/m?) 2.63 2.56 2.36 S
rq (Mg/m?) 2.35 237 2.23 —
<3 - 3.5 % (recommended for
WA, (%) 53 23 155 cement concrete);
<6~ 7 % (recommended for
recycled aggregates);
F1 6 6 - <20-30¢
LA 29 28 - <20-<2507
PSV 60 60 - >50-560"

) The total aggregate includes 3.92% of mineral filler (# < 0.063 mm) of Portland cement with
pozzolanic addition; ™ Limits of technical specifications depending on the heavy traffic category;
(rssp) Particle density [saturated surface dry] [EN 1097-6]; (r,,) Particle density [dry] [EN 1097-6];
(WA,,) Water absorption of particles after 24 hours [EN 1097-6]; (FI) Flakiness index [EN 933-
3]; (LA) Los-Angeles coefficient [EN 1097-2]; (PSV) Polished stone value [EN 1097-8].

the following composition: 57.41% polymer (rubber), 32.22% carbon black, 6.02%
ash and 4.67% plasticizer and additives. A hundred per cent by wt. of CRM passed
through sieve 1.0 mm (EN 933-2), 94.1% accumulated of a size smaller than 0.5 mm,
23.7% smaller than 0.25 mm, 3.7% smaller than 0.125 mm and 0.4% smaller than
0.063 mm.

The surfactant chemical additive (Cecabase RT®) to produce the warm asphalt
mixes was supplied by Arkema Innovative Chemistry (France).

2.2. Instruments

To produce the AR binder in the laboratory, mixing CRM with hot bitumen: a)
disperser unit (IKA Ultra-Turrax T50 digital, with a propeller agitator), 600-15000
rpm; b} oil bath (max. 225 °C, with temperature probe, stability +£1.0 °C) and one-litre
metal container.

To make and test the bituminous specimens: a) mixer for bituminous materials
(Mecacisa), 60-390 rpm, capacity 30 1, automatic temperature control, stability
+£1.0 °C; b) infrared thermometer (Testo 830-T4), range —30 to 400 °C, resolution
£0.1 °C and accuracy +1.0 °C, previously calibrated; ¢) digital stem thermometer
(Mecacisa), range —50 to 200 °C, resolution £0.1 °C and accuracy £1.0 °C, previously
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calibrated; d) Marshall hammer (Mecacisa) standardized for HMA cylindrical
specimens according to EN 12697-30; ) roller compactor machine (Matest) for
HMA slab specimens according to EN 12697-33 and ASTM D8079; f) heater-cooler
with a capacity of 150 litres with forced air circulation, range 4 to 65 °C, resolution
+0.1 °C and accuracy £1.0 °C; g) laboratory ovens (Matest), capacity 100 litres,
natural convection and thermostatic control up to 250 °C, resolution 0.1 °C and
accuracy £1.0 °C; h) wheel tracking apparatus (Mecacisa), according to EN 12697-
22 and BS 598:110; i) universal testing machine (10 ton), with capacity for dynamic
load tests and automatic temperature control; j) glass pycnometers, capacity 1.3 litres,
previously calibrated (0.001327 m?); k) vacuum equipment (Teslar 2-F7) 3.33 Pa, for
water saturation in specimen voids.

2.3. Method

Three types of mixtures were made. First, the reference hot mixtures (Ref.HM)
with different percentages of conventional bitumen and volcanic aggregates were
produced and tested. The bitumen contents were between 5.0% and 7.0% (by total
weight of the mix) in order to obtain the optimum that allows fulfilling the technical
specifications for roads. These mixtures were made in the laboratory by heating
aggregates and bitumen 35/50 pen to 170 °C with 2 minutes in the mixer. The final
mixing temperature was between 165 and 170 °C and the compaction temperature
ranged between 155 and 160 °C.

Secondly, the reference asphalt-rubber hot mixtures (ARHM) were studied. These
were produced with the same aggregate, exactly the same particle size distribution (Fig.
2} and the same binder percentages but using an AR binder of a similar consistence,
produced previously in the laboratory by blending CRM and a base bitumen 50/70
pen. This last bitumen allowed obtaining an AR35/50, because the elastomer increased
the viscosity and consistency of the resulting binder. To produce the AR35/50 binder,
each 50/70 bitumen sample of 600 g was heated at 180 °C and then 10% (by wt.
of bitumen) of CRM was added in the blending unit with the oil bath and mixed
during 60 minutes at 4000 rpm, maintaining 180 °C. Sufficient homogenization and
digestion time and temperature are necessary in order to attain adequate interaction
of rubber particles with asphalt, transfer the ultraviolet inhibitors, anti-oxidants and
other chemicals in the tyre rubber to the bitumen, including its elastomeric properties,
and so produce a reacted AR binder [11, 12].

Inthe ARHM the heating temperatures of the aggregates and the bitumen (AR35/50)
were 180 and 175 °C respectively, being in the mixer unit during 3 minutes. The final
mixing temperature was between 175 and 180 °C and the compaction between 165
and 170 °C.

-
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Figure 2: Aggregate gradation and specified grading envelope
Jor semi-dense asphalt concrete (AC16 8) [10]

Lastly, the asphalt-rubber warm mixtures (ARWM), with the same aggregates
and particle size distribution, were then made with the optimum bitumen percentage
obtained for both reference mixtures (6%) and mixing at temperatures between 140
and 170 °C (compacted between 130 and 160 °C) by using the surfactant chemical
additive. A 0.5% (by bitumen weight) of Cecabase RT® liquid product was added
to the hot bitumen and mixed subsequently for 10 minutes at 4000 rpm at a constant
temperature of 185 °C.

The cylindrical specimens (D = 101.6 mm; h = 63.5 mm) were compacted using
a Marshall hammer according to EN 12697-30 with 50 or 75 blows/side (depending
on the laboratory test). The slab specimens of 300 x 300 x 60 mm were compacted by
rolling according to EN 12697-33.

The specimens underwent three series of characterization tests for each type of
mixture and bitumen content: a) Volumetric properties of bituminous specimens:
bulk density (EN 12697-6, Proced. B: saturated surface dry, and Proced. D:
geometric), theoretical maximum density (EN 12697-5, Proced. A: volumetric) and
void characteristics (EN 12697-8); b) General and empirical characteristics: water
sensitivity (EN 12697-12, by indirect tensile test [EN 12697-23]), wheel tracking
test (EN 12697-22, Proced. B: in air, small device, at 60 °C and 10* cycles) and
Marshall test (EN 12697-34). A total of 384 laboratory specimens and samples were
tested, with a total number of 60 tests on the Ref. HM (without rubber), 60 on the
ARHM and 32 on the ARWM. When necessary, the different test samples were
previously conditioned in a heater-refrigerator during the time required to reach
the normalized temperature according to standards and maintained during the test
if mandatory.
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Figure 3: Cut section of a cylindrical and a slab specimen of asphalt-rubber
warm mixture (ARWM) with vesicular and scoriaceous basalt.

3. Results and discussion

3.1. Volumetric properties

The bulk densities of the ARWM cylindrical specimens compacted by impact with
75 blows/side decrease when the production and compaction temperatures of the
mixtures become smaller (Fig. 4). When they were compacted below 150 °C, these
densities resulted lower than the reference ARHM (compacted at 170 °C), though
they were higher than the reference conventional mixtures without rubber (Rel.HM,

compacted at 160 °C) if the compaction temperature was over 135 °C.
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Figure 4: a) Bulk density of cylindrical specimens compacted by impact with

2x753 blows (Proced. B: saturated surface dry, SSD) [EN 12697-6]; b) Theoretical

maximum density (Proced. A: volumetric) [EN 12697-5]
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The air void content (V,,) (Fig. 5) and voids in mineral aggregate (VMA) (Fig.
6a) in the ARWM resulted higher as the compaction temperature decreases. With the
ARWM similar or inferior air void contents were obtained to both reference mixtures
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Figure 5: Air void content in the mixture (by SSD bulk densities [EN 12697-8]).
Limits of standard specifications are indicated by horizontal red dotted lines
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Figure 6: a) Voids in mineral aggregate. Limits of specifications are indicated by
horizontal red dotied lines; b) Voids filled with bitumen. Both calculated by SSD bulk
densities [EN 12697-8]
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if compaction temperatures were over 150 °C. Morcover, the void characteristics
of the ARWM complied with the specifications of the Spanish standards for roads
[10] for compaction temperatures equal or superior to 155 °C. Target values of these
volumetric characteristics according to the technical requirements are: 4 < Vm < 6%
and VMA > 15%, for cylindrical specimens of AC in surlace layers, compacted by
impact with 2x75 blows. On Fig. 5 and Fig. 6a, these specified values are highlighted
by horizontal red dotted lines.

3.2. Water sensitivity

The indirect tensile strength ratio (ITSR) at 15 °C of the ARWM cylindrical
specimens compacted with 2x50 blows clearly reduces with the compaction
temperatures (Fig. 7a). However, the technical specifications for roads [10] (ITSR
> 85%, for AC n surface layers) can be fulfilled if the compaction temperatures
are not below 140 °C and the improvement of the ITSR owing to the effect of the
asphalt-rubber on these particular mixtures with marginal high porosity aggregates is
maintained with all the temperatures studied. Even at 150 °C, the ITSR resulted equal
or superior to both reference mixtures (Ref.HM and ARHM).

The indirect tensile resistance of the ARWM water-saturated specimens (72 h at
40 °C) was similar to the conventional hot mixtures without rubber (Ref.HM) if the
temperatures were not inferior to 150 °C (Fig. 7b).
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Figure 7: Moisture sensitivity [EN 12697-12] by indirect tensile test on cylindrical
specimens [EN 12697-23] compacted by impact with 2x50 blows: a) Indirect tensile
strength ratio. Limits of specifications are indicated by horizontal red dotted lines;
b) Indirect tensile strength of saturated specimens
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3.3. Rutting resistance

All the parameters related to plastic deformations on wheel tracking test (wheel-
tracking slope of the rut depth, WTS,,;, between 5x10° and 10* load cycles; rut
depth, RDy,, at 10* cycles; proportional rut depth, PRD;,, at 10* cycles) increased
when the production temperatures decreased. However the highest rutting, and so
worst performance, was obtained at 140 °C. Consequently, these ARWM only allows
compliance to the road specifications (WTS,;; < 0.10 mm/10* cycles; PRDy, = 5%)
if the compaction temperature are over 160 °C. Nevertheless, the improvement of
the resistance to plastic deformations, compared to the Ref.HM, due to the effect of

the asphalt-rubber on these mixtures is maintained with all the working temperatures
(Fig. 8).
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Figure 8: Rut depth vs. number of load cycles on wheel tracking test (Proced. B: in
air, small device, at 60 °C and 10 cycles, according to EN 12697-22) for asphalit-
rubber warm mixtures (ARWM) at different compaction temperatures. Results are

compared to both reference hot mixtures (Ref. HM and ARHM),

3.4. Resistance to permanent deformations by Marshall fest

Marshall tests on cylindrical specimens compacted with 2x75 blows also provided
a decreased stability and an increased flow value for the ARWM as the compaction
temperature reduced (Fig. 9). In a similar way to the results observed for the wheel-
tracking tests, the improvement of the Marshall stability owing to the effect of the
asphalt-rubber on these mixtures with marginal porous aggregates is maintained with
all the temperatures studied.
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4, Conclusions

The results of this experimental research have shown:

The bulk densities of the asphalt-rubber warm mixtures (ARWM) decrease as
the mixing and compaction temperatures of the mixtures reduce. If they are
compacted below 150 °C, these densities can result lower than the asphalt-
rubber hot mixtures (ARHM, compacted at 170 °C), though they maintain higher
than the conventional hot mixtures without rubber (compacted at 160 °C) if the
compaction temperature is over 135 °C.
Consequently, the void contents of ARWM increase with the reduction of
temperatures. Similar void characteristics were obtained to bothreference mixtures
if compaction was over 150 °C, complying with the standard specifications for
road surface layers if the compaction temperatures are not below 155 °C.
Experimental results proved that ARWM significantly reduce the moisture
resistance (ITSR) with the production temperatures. Despite, the ITSR can be
maintained over 85% if the compaction temperatures are not below 140 °C and
so fulfil the technical specifications for roads assuring durability. Moreover, the
improvement of the ITSR owing to the eftect of the asphalt-rubber on these
particular mixtures with marginal high porosity aggregates is maintained with all
the temperatures studied.

The resistance to permanent deformations by wheel-tracking test of ARWM also

reduces with the production temperatures. Consequently, these ARWM only

allows compliance to the road specifications if the compaction temperature is
over 160 °C. Nevertheless, the improvement of the rutting resistance due to the
effect of the asphalt-rubber is also maintained with all the working temperatures.

A similar performance can be observed on Marshall test results.

* In those volcanic areas with a high degree of environmental protection, and
therefore impossible to open new quarries, or in countries where technical and
economic resources are limited, the use of the marginal local aggregates is an
economic, logistic and environmental necessity. Utilizing crumb-rubber modified
bitumen from end-of-life tyres in asphalt mixtures with these vesicular volcanic
aggregates has proved to be an efficient way to improve the performance of these
materials and compensating for the higher amount of bitumen required when
using high porosity aggregates.

» By using areduced percentage of the surfactant additive (0.5% by wt. of binder) it
is possible to lower the production and compaction temperatures of the mixtures
with asphalt-rubber and porous volcanic aggregates up to a maximum of 10 °C,
while the mechanical performance is within the specifications for surface layers
of pavements. This temperature reduction is similar to the increase produced
with the asphalt-rubber binder, thus compensating it. However, for bituminous
mixtures in base courses or if performance requirements are not so strict, the
temperature reduction could reach 25-30 °C.
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These results may be extrapolated to other volcanic regions both islands and
continents where these natural aggregates are found in abundance. The proposed
methodology could contribute to better development of these regions and extending
the durability of asphalt pavements.
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From the two performance studies referred to in this paper and comparison of

texture retention, there is enough evidence that bitumen rubber seals, as designed and
constructed in South Africa perform at least 70 % better than conventional binders and
that due to both elasticity and stiffness, the macro texture on the very high trafficked
roads 1s retained above 1.0mm in excess of 10 years.

6. Way forward

Reasonable confidence exists with temporary revisions of the conversion factors
published in TRH3 (2007). However, more research is required to evaluate the short-
and longer-term performance to verify or to adjust these conversion factors.

7. Acknowledgements

The following people are acknowledged for providing information on bitumen
rubber seal performance and or opinions on design and appropriate conversion factors:

Douglas Judd & Amy Maharaj
Hugh Thompson

Klasie Jooste

Simon Kotze

Fred Henning

Johan Swanepoel

Andre Greyling

Danie Erasmus

8. References

COLTO — Committee of Land Transport Officials-South Alrica, Standard Specifica-
tions for Road and Bridge Works for State Road Authorities, 1998.

Hanson, F.M. 1935. Bituminous surface treatment of rural highways. Conference of
NZ, Society of Civil Engineers 1934-35.

Henning, TPF, Costello, SB and Watson, TG. A review of the HDM/dTIMS pavement
models based on calibration site data, research report 303, Land Transport New
Zealand, Wellington, New Zealand. 2006

Jooste K and Van Zyl GD. 2010. The use and performance of bitumen rubber in spray
seals for holding actions in RSA. 2nd International Spray Seal Conference, Mel-
bourne, Australia.

Renshaw RH, Kleyn EG and Van Zyl GD.1991. The performance of bitumen rubber
binders. The South African Bitumen and Tar Association. Proceedings of Modified
Binder Seminars. South Africa

Evaluation and Design of Chip Seals 673

Renshaw R.IL., Strauss P.J., Kleyn E.G., Review of the performance of a Bitumen
Rubber over a six-year period, Proceedings of the 5th Conference on Asphalt Pave-
ments for Southern Africa, Swaziland, 1989.

Sabita, Technical Guidelines: The use of Modified Bituminous Binders in Road Con-
struction, TG 1, Third Edition, Southern African Bitumen Association (Sabita),
2015.

Semmelink, C.J., A Rational Design Approach for Single and Double Surfacing Seals
Based on the Modified Tray Test, Transportation Research Record 1106.

South African National Roads Agency (SANRAL). 1998. Design and construction
of surfacing seals. (Technical recommendations for highways; TRH3). Pretoria.
South Africa.

South African National Roads Agency (SANRALY). 2007. Design and construction
of surfacing seals. (Technical recommendations for highways; TRH3). Pretoria.
South Africa.

TMHI: Standard Methods of Testing Road Construction Materials, COLTO, South
Africa, 1986.

TMH9: Manual for Visual Assessment of Road Pavements. COTO Committee Draft,
May 2016.

Transvaal Provincial Administration: Roads Department. Seal work manual, Pretoria,
South Africa, 1991.

Van Zyl GD and Jenkins K. 2015. Overview of Long Term Seal Performance. CAPSA,
Sun City, South Africa.



	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco

