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Abstract 

Polychlorinated Biphenyls (PCBs) and Polychlorinated Dibenzofurans (PCDFs) are chlorinated 
aromatic compounds and are emitted into the environment. It has been shown lo have toxicity and 
carcinogenic potential characteristics. Because of this their identification and quantification is a matter of 
great concern. However. the similar structure of PCBs and PCDFs can produce overlapping in 
fluorescence spectra, which add difficult to their determination. 

We present in this paper. an HUMANN-based computational neural systeni [1][2] for the identification 
of these compounds. HUMANN is a multilayer neural net with high biologicnl plausibility. Its adaptive 
character is essentially embodiment in the labelling module, because of its dynamic dimension The 
determination of the different analytes will be indicated by the firing neurons in the labelling layer and by 
the activation level of these neurons. 
In this work its have also been developed a model for spectral data. íiuorescence spectrurn of single 
compounds and complex niixture. via Gaussian distribution. 
Our final proposal consists in putting to work together fluorescence spectrometry and neural 
computation approach, and to analyse the good results and the troubles found in this new method 
using three type of spectra: excitation, emission and synchronous. 

Introduction 

PCBs is a family of compounds produced cornmercially by thc direct chlorination of biphenyl. These 
compounds have found application in a wide variety of industrial uses due to their chemical and thermal 
stability. Since their discovery in environmental samplcs in 1966, it has been generally accepted that they 
are ubiquitous in every component of the global ccosystem [3]. 

PCDFs are chlorinated tricyclic aromatic compounds and are emitted into thc environment as 
unwanted by-products of anthropogenic processes. PCDFs have been globally distributed and are found 
in al1 environmental media. They are chemically stable, have low solubilities in water, and have been 
showii to accumulate in the foodchain. It is well known that the PCDFs with chlorines substituted in the 
2,3,7,8 positions are thought to pose a risk to human health due to their toxicity, carcinogenic potential 
and potential effects on animal reproductive and inmunological systems [4]. 

Taking account the importance of the environrnental effects of these compounds, its determination 
constitute an important aspect of the control of quality of the environment, principally the marine 
environment. 

From an analytical cheinistry point of view, different techniques have been used to determine these 
pollutants: gas chromatography. liquid chron~atography and mass spectrometry. Alternately, 
luminescence spectroinetry has been also used for the study of PCBs [S] and PCDFs [6]. 

The application of luminescent techniques. specifically, fluorescence spectrometry, to the analysis of 
inixtures of compounds is particularly attractive due to the high sensitivity that can be achieved. 
However, this method has an extremely restricted scope of application in the analysis of complex 



mixtures because i i i  selectivity is reduced by [he extensive spectral overlap, above in !he case o1 
compounds of chemical similar structures, like PCBs or PCDFs. 

In order io face this problern we propose an HUMANN-based cornputational neural system for ilic 
identification of organic cornpounds. It has a structure of pre-processing and processing stage. 

The proposed sysiem has importani advantage refering to other coniputational solutions based in 
artificial neural networks (71 because of HUMANN can perform blind clustering and ir has a strong 
adaptive character. In addition, this neural computational method uses only speciral fluorescence data. 1s 
very simple, fast and economic method for monitoring of the environment. 
Methods and Experiments 
HUMANN-based computational neural system for fluorescence identification of polIutants 
compounds 

The proposed systeni consists of two parts: The pre-processing module, which is the responsible to 
obtain a vector of characteristics for fluorescence spectra to analyse. This vector will be introduced in the 
processing module. This module is made up for HUMANN and it performs the determination of different 
analytes prescnt in the mixture. 
Pre-processing module 

During [he learning process the artificial neural networks create interna1 representations of the 
characterisiics of the training set patierns. The objective of the prc-processing stage is to prepare the 
information environment of HUMANN in such a way that i t  can adequately extract the inforrnation 
required. The pre-processing stage constructs a set of featurc vectors of the real time signals to be 
anal sedfro-hc~ same sknals. - - - - - -  - - -  
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Figure 1: Scheine of pre-processing stage a) with RBFNs and b) wiihour RBFNs 

In the analysis of real fluorescence spectra two stages are followed: 
I .Modelling of the spectra. 
2.Determination of the features vector which corresponds to the fluorescence spectrum rnodel of 

complex mixture. 
Using as a base !he developments and later experimental studies made by Lloyd and Eveu (81 and 

Cabaniss 191. the fluorescence spectra can be rnodelle. by a Gaussian distribution of intensity versus 
reciprocal wavelength (frequency). The emission spectrum can be represented as equation: 

where p, are the Gaussian means (cm), O, are the standard deviations (cm) and ai are the amplitudes of 
each spectrum. If now: 



then: 
!(a)= a.giius(~- ')  

We will work with a linear approximation for the complex mixture model, such that the spectrum 01, a 
mixture will be represented by a linear combination of reference specira (10). The reference specira are 
the specira of the compounds which can be identified in a mixture. 

~ ( a ) = c . r ( a ) =  Cci l ; (a)  (4) 
L 

where r(d) are thc reference spectra and c is a vector with the contributions of each of Ihe specira of 
r(d) in the mixture. c is then a vector which characterises a mixture and which is ideal for use as a vector 
of characteristics for HUMANN. 

Figure 2: Fitting between model using 8 gaussians and experimental ernission spectrum: a) 3DBF using equation 
(3). b) 4DBF. using equation (3). c) mixture 3DBF+4DBF using equa~ion (5) 

Spectral representation via Gaussian distribution will be carried out using radial basis function 
networks (RBFN) [I 11, and the approximation of concentration coefficients vector (c) through a 
backpropagation network [12]. Our pre-processing module is therefore made up of a complex neural 
structure of RBFNs + BPN, Figure 1. 

Two RBFNs are used to obtain spectral representation. One will determine the parameters wliich 
define the Gaussian distribution and the other will approximate the intensities of the different spectra 
modelled. An initial radial basis function network (RBFNI) is made up of an input layer of one neuron, a 
hidden layer whose number of neurons coincides with the number of Gaussians which carry out the 
approximation of ttie real time spectrum (in our case 10 Gaussians) and an output layer the size of which 
determines the number of compounds which can be identified in any complex mixture to be analysed. 
This network will allow us -10 determine the parameters that define the Gaussian distributions which 
model tlie fluorescente spectra of each compound belonging lo PCDFs and PCBs families and mixtures 
that can be found in real environmental samples. 

The training set of the RBFN is the group of standardised spectra in reciprocal wavelength A-' of the 
substances, while the supervising signal is tnade up of the different values of spectral intensity of each 
simple substance. In this way, this network will converge to values of p (vector of the Gaussian means) 
and a (vector of the standard- deviations) which will be used to obtain the subsequent approximations of 
the amplitudes a of the Gaussians of the various spectra of the PCDFs. 

Once p and a have heen obtained another RBFN2 is constructed in which the only layer of variable 
weights is the output layer, corresponding to the amplitude values a, with the remaining parameters set al 
the values p and o previously obtained. Copies of this network are used for training with al1 the available 
spectra. both of substances and complex mixtures. In this way, the approximations of ampliiude a are 
obtained for the spectrum as a Gaussian function defined by the parameiers p and a. 



Once ihe Gaussian approximaiions of the fluorescence spectra have been obtained, the features vector 
(c)  is determined. Working fiom [he linear inodel of complex mixiurcs giveii by cquation (4) aiid from thc 
Gaussiaii approximatioii given by equation (3) . we have: 

c .  r(il) = a ,  gaus(il-') ( 6 )  

where A, is a matrix which stores the amplitude vectors resulting from the Gaussian approximation of 
each of the reference spectra. 

In ordcr to determine the coefficient vector c a three layers backpropagation network was designed 
wiih linear activation functions. The size of the input layer is given by the number of Gaussians used in 
the approximation of the fluorescence spectra, the output layer is made up of as many neurons as 
compounds to be identified, while the maximum size of the hidden layer will be the same as that of the 
output layer 292. The input patterns of this network will be vector a and the network ouiput will be the 
features vector c which is being looked for. The training set of this network is made up of the spectra of 
the compounds. for which we know the concentration coefficients, and which will act as contributions 
vector c. In the Figure 2, it is shown the goodness of fitting between modelled and experimental 
fluorescence spectra using two PCDFs. 

The proposed pre-processing module is an optimised module following the Gaussian representation 
rnodel of fluorescence spectra. A cruder. but possible, approximation would be one which only considers 
the use of the linear model of mixtures in h e  estimation of the features vector. In the results section the 
validity of this Gaussian approximation will be demonstrated. Indeed it is in this pariicular case where 
the best results are obtained. 
Processing Module (HUMANN) 

The new hierarchical unsupervised modular adapiive neural network (HUMANN), is the processing 
module. HUMANN has high biological plausibility. The main causes of this are. its adaptive character, it 
performs self-organising processes, its modular functionaliiy and it has connection structure with two 
types of synaptic conneciions present in the biological neural network. namely the active synapses and the 
silent synapses [13]. 

The adaptive character of HUMANN is essentially embodiment in the labelling module, because of its 
dynarnic dimension [1][2]. This characterisiic is implemented by two neuronal mechanism, a) neuronal 
elimination, b) neuronal generation. They perform refinement proccsses in the neuronal circuits. and they 
are present in ihe human brain and in the brain of some birds [14]. 

HUMANN will be responsible for the identification and determination of the different PCDFs and 
PCBs existing in complex mixture samples of environmental interest, without prior knowledge of which 
(and how many) of ihese possible compounds can be found in ihe analysed sample. With this purpose in 
mind HUMANN will be irained using the characteristic vectors c obtained in the pre-processing module. 

HUMANN version used in ihis application has specific characteristics of implementation and 
operational structure. which allows it to adjust its performance to the real informalion environment. It 
extends its opcrational field beyond the clustering processes. HUMANN implements Kohonen's SOM 
using ihe scalar product in the computation of distances. and the corresponding adaptations for the 
Tolerante module. 

During ihe learning process thc labelling layer carries oui muliiple assignation funciions. In other 
words, the input pattern will be associated as belonging to as many classes as neurons have been fired in 

~ ~ 

thai layer. Again, in the tolerance layer ihe parameier A will have the highest possible value within of its 
range [I], while none of the spectra of compounds will be classified as belonging to more than one class. 
HUMANN will converge to anumber of neurons in the outpui layer (labelling layer) equal to the nuinber 
of compounds in the complex mixture analysed. A compound is represented by a single neuron from the 
labelling layer. The firing of this single neuron will iiidicate the presence or absence of the corresponding 
compound in the analysed complex mixture. 



Experimenl design 
For the creaiion of the data corpus, aspecis of the data ihai allow the efficiency of ihe sysicm designed 

for [he deieciion and ideniification of compounds in mixiures has been considered. Based on previous 
siudies (21, we have iaken inio account requiremenis thai faciliiaie iis study using our sysiem based on 
Ariificial Neurona1 Networks: 

Working wiih a sufficiently high number of compounds, which allows us lo come lo reliable 
conclusions aboui [he resulis obiained. 
Esiablishing a group of physical parameiers for ihe generaiing of specira which avoid 
undesirable alierations. These parameiers include exciiaiion and cmission wavelengths (h). Ah 
and the wavelength inierval belonging to each spectrum. 
Obiaining emission, exciiaiion and synchronous specira from the compounds used and írom any 
mixiures of ihem. In this way we will contrasi the performance of ihe resolution of thc mixture 
depending on iype o í  specirum used in the process of resoluiion. 
Varying ihe concentration range of each compound io deierininc and model ihe alierations ihai 
iook place, in the resolution. as a result. 
Saving ihe ideniifying data of ihe spectra tesied, especially those thai could explain changes in 
their physionomy. 

These requiremenis will be established in the selection of some groups of spectra wiih particular 
characteristics. Some of these characteristics will definc the problem io be resolved. Others are designed 
io avoid the destabilising effect thai ihe variabiliiy of these characierisiics could have on the shape of the 
spectra, which would make it difficuli to obtain good resulis in the identifications. 

The indications of Lhe chemical experis and the analysis carried out on severa1 studies on ihe 
peculiarities of the families to be used in the study were followed in order lo determine the general 
characteristics of the data to be collccted. These are set forth in Table 1. 

1 PCDFs 1 PCBs 
Analytes 1 DBF. 1-DBE 2-DBF. 3-DBF. 4-DBF. 1 Bi. Mono. Tri. Di. Penta. Hexa 

1 S-DBF 1 
Concentrations 1 5xIO-'M. I X ~ O ~ M ,  5 x l O " ~  1 SxlW7M. 1 x 1 0 ~ ~ .  5 x 1 0 ~ ~ .  10xlOdM 

Spectra 1 Emission. Synchronous 1 Emission. Exciiarion. Synchmnous 
Number of mixlures of an analvte wilh 1 I R  1 24 

Table 1: General characteristics o1 the data corresponding lo PCDFs y PCBs 

The peculiarities corresponding to the different types of spectra io be used are expressed in Table 2 for 
ihe PCDF and PCB families. 

Table 2: Characieristics o1 PCDFs and PCBs specira 

Under the previous conditions, the choice of ihe mixtures to be carried out was made in accordance 
wiih two different philosophies depending on the family. For ihe PCDFs a suggestion was made lo 
generate al1 of the possible mixtures ihat contained combinaiions of  up io 4 analytes, where al1 the 
analytes ihat constiiuied a mixiure had an equal concentration. In this way, of the combinaiions oí' 2, 3 .  



and 4 analytes out o í  a possible 6, using threc different concentrations for each compound in each 
mixturc, resulted in a total of 150 mixtures. 

Among the difficulties found in this procedurc, stand out the fact that a high nurnber o í  mixtures (150) 
is needed, even taking into account that the maximum number of analytes in a rnixtures was not high (4). 
To increase the nurnbcr o í  analytes per mixture, i t  is nccessary not to generate al1 of the possible 
mixtures, lrying to rule out some o í  them so that they would influence the rcliability o í  the final results as 
little as possible. To this end, a random design of the of the synthesis tables with the PCB family was 
established. This design was generated automatically considering that the distributions o í  the analytes - as 
they were grouped by nurnber of analytes that each rnixture contained - were as close as possible to being 
thc sarne. Thus, rnixtures of up to 6 analytes were achieved with the idea of generating only 49 mixtures. 

From thc designs of previous experiments, i t  was necessary to disqualify some of the sarnples used 
once the spectra had been performed due mostly to hunian errors in data collection or for having 
considered. a posteriori. that some of the analytes used in the rnixtures was in bad condition, thus 
invalidating al1 of the mixtures that were used. Finally for each one of the families, spectra originating 
from mixtures of up to four analytes were used. 

Resulis and discussion 

The resulting spectra from the previous design were used to validate the system. trying to identify the 
analytes h a t  contained the previously mentioned mixtures. In Figure 3 examples of identification of some 
of the mixtures are shown. - 

Figure 3: Exarnples of analyte identification in rnixlures generate with different concentration of ihese analytes 
using emission. excitation and synchronous spectra 

In order to evaluate the efficiency of the system an error function of detected compounds in a mixture 
was used. This error function is defined by the following expression: 

NS + BS E = -  
S 

Where NS is the number of compounds not detected, BS is the number of compounds badly detected 
and S is the number of compounds in mixture. 

The following table shows averages of the mixture errors taking into account whether or not RBFNs 
were used and the use of conventional emission, excitation or synchronous spectra: 

I Spectra 
Emission 1 Excitation 1 Synchronous 

1 Withoui RBFNs 1 0.1286 0.0502 

Table 3: Averages of mixiure errors 

PCDFs 

PCBs 
Wiih RBFNs 

Withoui RBFNs 
0.0467 
0.1917 0.2822 

0.0000 
0.26 15 



As can be seen wiih [he PCDF family, both in the use of synchronous spectra as well as in ihe use of 
RBFNs, the efficiency of  system identification irnproved noticeably in [he preprocessing, reaching lo [he 
coi-rect identification of 100% of [he analytes. In addition, [he advantages of [he use of RBFNs are such 
that better results are obtained with spectra in ernission than by using synchronous spectra wi[hout 
RBFNs. 

However, in ihe PCB farnily the situation varies noticeably. The tests carried out rnaking use of  [he 
preproccssing based on RBFNs produced poor results. For this reason the use of this systern was ruled 
out. There were not any improvements using synchronous spectra over other types of spectra. On  [he 
contrary, the best results were achieved rnaking use of the emission spectra. The differences in behaviour 
between families could be a result of the faci that the sirnilarity between PCB spectra is higher [han 
bctween PCDF spectra, as can be scen in Figure 4. In addition, [he Gaussian approximations on which [he 
preprocessing is based with use of RBFNs are not as precise between PCBs as they are between PCDFs 

Ernmlilon 1:: :; :¿i;l&m Enrnldon ExdiiUon 

(a) (b) 

Figure 4: Matrices of correlation betwecii ihe analytes from ihe different types of spectra of ihe PCDF and PCB 
families a) using real spectra and b) using arnplitude vectors a of theirs Gaussian approxirnations 

To illustrate the influence of other aspects in the identification of compounds we present different 
graphs, with attention to the nurnber of analytes that the mixture to identify has, the concentration of the 
analytes in the mixture and thc influence of [he analytes resent in [he mixtures, Figure 5. 

i P a- 

. , 
Figure 5: Influence of [he nurnber of analytes frorn [he mixture in the average of the errors from the 

nuxtures of a) PCDFs and b) PCBs. Influence of c) [he concentration of the analytes of the d) type of 
anzilytes present in the mixture over the average of the errors of the mixtures of PCDFs 

One can observe that, as expected, the nurnber of analytes that [he rnixture has influences on the error 
average in their identification, the identification of mixtures with rnany analytes being more difficult. In 
[he rest of [he characteristics analysed no significani variatioiis are detected. 



A computaiional neural sysicm based in an original hierarchical unsupervised modular adaptive neural 
l e i ~ ~ i k  (HUMANN) is presenicd (HUMANN-CNS). This system consists of iwo stages: pre-processing 
,nd processing module. The proccssing module is HUMANN which is capable of carrying out blind 
:lusiering. IIS principal siructural characterisiic is iis modulariiy, combining several iypes of neural 
.~mciures with differeni iypes of unsuperviscd learning. 

H W A N N  may produce networks close io [he archiieciure of [he brain incorporaiing several new 
ieural mechanisms with biological plausibility. These new mechanisms are the responsible of adaptive 
>ehaviour in HUMANN, they are: a) Neural Elimination and b) Neural Generaiion. The connection 
;truciure of this layer mainiains [he iwo types of synaptic conneciions present in the biological neural 
ieiwork, namely the active synapses and [he silenl synapses. 

The preprocessing module consisis of a combination of iwo RBFs and a BPN which allows us lo 
jevelop a new model for fluorescence spectrum using Gaussian distribuiions. 

We have demostrate thai [he HLJMANN-CNS is a very appropriate method for facing the extremely 
;estricted scope of application of fluorescence spectrometry in ihe analysis of cornplex mixiures. This can 

seen in [he real-world problem solved by HUMANN-CNS in this paper. It has been successfully 
tested, showing its high efficacy and fitting, in the identificaiion of compounds of environmental interest 
likes the PCDFs and PCBs without prior knowledge of which (and how many) of these possible 
compounds can be found in the analysed sample. It has been demonstraie [he goodness of our system in 
complex mixtures of up to four differeni PCDFs per mixture. We also have introduced an experiment 
design which optimizes the training set lo use. 

The obtained results are an importan( contribution in the environmental analyiical chemistry field. This 
importante is based on that this neural computational method uses only spectral fluorescence data. is very 
simple, fast and economic meihod for monitoring of the environmeni. Anoiher importani advantage of 
our proposal is the possibility to design an on line intelligent environmental inonitoring system. 
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