
CTIM Technical Report

ISSN 2254-2353

Parallel Implementation of a Robust
Optical Flow Technique

Javier Sánchez Pérez, Nelson Monzón López
and Agust́ın J. Salgado de la Nuez

No. 1

Las Palmas de Gran Canaria

16 March 2012



 



Parallel Implementation of a Robust Optical Flow Technique

Javier Sánchez, Nelson Monzón and Agust́ın Salgado

Centro de Tecnoloǵıas de la Imagen

Universidad de Las Palmas de Gran Canaria

35017 Las Palmas de Gran Canaria, Spain

Abstract

The accuracy and performance of current variational optical flow methods have

considerably increased during the last years. The complexity of these techniques is

high and enough care has to be taken for the implementation. The aim of this work

is to present a comprehensible implementation of recent variational optical flow meth-

ods. We start with an energy model that relies on brightness and gradient constancy

terms and a flow-based smoothness term. We minimize this energy model and derive

an efficient implicit numerical scheme. In the experimental results, we evaluate the

accuracy and performance of this implementation with the Middlebury benchmark

database. We show that it is a competitive solution with respect to current methods

in the literature. In order to increase the performance, we use a simple strategy to

parallelize the execution on multi-core processors.

Keywords: Optical flow, Variational methods, PDE, Multi-core, OpenMP

1 Introduction

The estimation of motion fields in image sequences is an important challenge in computer

vision. It has received much attention during the last two decades as it is a fundamental

application. It is the base for many other high level applications, such as stereoscopic

vision, medical image analysis, ambient intelligence, fluid flow analysis, meteorological

prediction and many others.

We focus on variational optical flow methods, which have demonstrated to be among

the most accurate methods in the literature. One of the firsts to propose such a variational

approach were Horn and Schunck [6], whose method is the basis for many recent methods.

They opened a research line that is still continued and improved. There has been many

important contributions to this basic model, such as the use of robustification functions

[3], the preserving of image discontinuities by means of anisotropic diffusion tensors [7] or

the implementation of multiresolution schemes to cope with large displacements [1].

The purpose of this paper is twofold: on the one hand, our objective is to develop

a comprehensible implementation of up-to-date variational techniques to compute the

optical flow; on the other hand, we also explain how to parallelize the algorithms in

order to take advantage of current multi-core CPUs. We have implemented a method

similar to the work presented in [4] and later extended in [8]. These are based on energy

1



functionals that include several smoothness and attachment constraints – the brightness

and gradient constancy assumptions and a flow driven smoothness regularization. These

methods replace the traditional quadratic penalty function by a continuous L1 norm, which

makes them more robust to outliers and illumination changes. A study on robustification

functions has been realized in [3] and is currently widespread in most of optical flow

methods. Our implementation is different to the work presented in [8] in that we derive a

gradient descent approach that ends up in a diffusion-reaction Partial Differential Equation

(PDE). We do not include the temporal derivative of the flow in the smoothness term,

because it is not justified in the case of large displacements.

The implementation of this kind of variational methods is traditionally slow, since they

rely on numerical schemes that need a large number of iterations to converge. Some works

have overcome this problem and are actually achieving real time performance. Examples

are the work by [5] that implements an efficient multigrid method and the work by [9] that

accelerates the execution by means of an implementation on the GPU. In our case, we use

the OpenMP library for the parallelization of the algorithms. This library is thought to

easily parallelize low level pieces of code. Our code is developed in standard C++ and

it has been compiled under Windows and Linux, using the GNU gcc compiler. We have

placed our code in a web page with a very general open source license.

In the experimental results, we study the accuracy and performance of our implemen-

tation. We show that our implementation is competitive with other similar methods and

the parallel implementation considerably improves the velocity. Although the above men-

tioned multigrid and GPU methods may outperform our implementation, its simplicity

makes it worth using the OpenMP library.

In Section 2 we explain the details of the optic flow method. In Section 4 we derive an

implicit numerical scheme and propose the algorithm for its implementation. The multi-

core extension of the method is developed in Section 5. Some experimental results are

presented in Section 6. We study the behavior of the method utilizing image sequences

from the Middlebury benchmark database and draw some conclusions about the perfor-

mance on multi-core processors.

2 Energy model

Let h(x) = (u(x), v(x))T : R2 −→ R2, be a vectorial function representing the optical flow

field in the continuous domain Ω. For every position x = (x, y)T , the optical flow depicts a

directional vector of the apparent displacement at a given position. The optical flow is an

ill-posed problem in the sense that there may exist an infinity of solutions for the matching

of two images. A traditional approach to overcome this problem is to impose regularity

constraints that ensure the continuity of the flow field. In our variational formulation, a

general energy model contains a set of constancy and smoothness assumptions that enables

us to compute the optical flow by applying optimization techniques. Our energy model

can be written as follows:

2



E(h) =

∫
Ω

Φ
(

(I1(x)− I2(x + h(x)))2
)

+ γΦ
(
‖∇I1(x)−∇I2(x + h(x))‖2

)
dx

+α

∫
Ω

Φ
(
‖∇u(x)‖2 + ‖∇v(x)‖2

)
dx, (1)

where Φ
(
s2
)

=
√
s2 + ε, with ε = 0.0001. The Φ function turns the method robust against

outliers.

The first term, which corresponds to the brightness constancy assumption, attracts

pixels with the same intensity in both images. It fails in the presence of noise or changes

in illumination. The second term, corresponding to the gradient constancy assumption,

compares the structure of the objects in both images: it is invariant to constant changes of

illumination, but is sensitive to the presence of noise and non-translational displacements.

Finally, the smoothness term is in charge of creating a continuous and dense solution.

This energy model is similar to the models presented in [4] and [8]. The main difference

is that we do not use the temporal derivative of the flow in the smoothness term. The

reason to remove the temporal derivative is to avoid incongruencies with the data terms.

3 Energy minimization

The solution to the above energy model (1) can be obtained from its associated Euler-

Lagrance equations:

Fu(h) = Φ′A

(
I1 − Ih2

)
Ih2x + γ Φ′B

((
I1x − Ih2x

)
Ih2xx +

(
I1y − Ih2y

)
Ih2yx

)
+α div(Φ′C∇u)

Fv(h) = Φ′A

(
I1 − Ih2

)
Ih2y + γ Φ′B

((
I1x − Ih2x

)
Ih2yx +

(
I1y − Ih2y

)
Ih2yy

)
+α div(Φ′C∇v) (2)

with

Φ′A = Φ′
(

(I1(x)− I2(x + h))2
)

Φ′B = Φ′
(
‖∇I1(x)−∇I2(x + h)‖2

)
Φ′C = Φ′

(
‖∇u‖2 + ‖∇v‖2

)
. (3)

The derivative of the robust function is Φ′
(
s2
)

= 1
2
√
s2+ε

. Note that we have used a

different notation for the warping of the target image and its derivatives, Ih2 = I2(x + h).

Other alternatives to minimize this kind of energy models are reviewed in [2]. The mini-

mum is achieved in the roots of the system of equations (2).

3



The above system of equations (2) is solved by means of a gradient descent technique,

which results in the following scheme: ∂u
∂t = Fu(h), ∂v∂t = Fv(h). These equations are

not linear due to the term I2(x + h(x)) and its derivatives. To overcome these non-

linearities, we introduce first order Taylor expansions: Ih
k+1

2 = Ih
k

2 + Ih
k

2x

(
uk+1 − uk

)
+

Ih
k

2y

(
vk+1 − vk

)
+O

(
h2
)
.

In order to find an initial estimate for this linearization, we embed the equations in a

focusing strategy, where the system is solved at coarser levels and later updated in finer

scales. This kind of coarse-to-fine approaches [1] allows for computing large displacements.

We create a pyramid of images with a reduction factor of η ∈ (0, 1). For the coarsest scale

we compute the solution (un, vn). Then the solution is used as an initial approximation

for the following scale, ui (ηx) = 1
ηui−1 (x).

4 Numerical scheme

In our implementation, we choose an implicit approach for the numerical scheme. This has

the advantage of being unconditionally stable for any time step. The divergence operator

is approximated with finite differences as:

div(Φ′C∇u) ' Φ′C,i+1,j+Φ′C,i,j

2

(
uk+1
i+1,j − u

k+1
i,j

)
+

Φ′C,i−1,j+Φ′C,i,j

2

(
uk+1
i−1,j − u

k+1
i,j

)
+

Φ′C,i,j+1+Φ′C,i,j

2

(
uk+1
i,j+1 − u

k+1
i,j

)
+

Φ′C,i,j−1+Φ′C,i,j

2

(
uk+1
i,j−1 − u

k+1
i,j

)
. (4)

Then, our numerical scheme results from substituting the divergence in our gradient

descent approach, yielding
uk+1
i,j −u

k
i,j

dt = Fu(hk,hk+1) and vk+1−vk
dt = Fv(hk,hk+1). This

creates a sparse system, where only the diagonal and the surrounding neighbors in the

matrix are different from zero. One of the most efficient ways to solve this system is with

iterative schemes such as Gauss-Seidel or SOR numerical approximations. Grouping the

terms in instants k and k + 1, we solve for the unknowns, uk+1
i,j and vk+1

i,j , obtaining the

following scheme:

uk+1
i,j :=

uki,j + dt ·Nu
1 + dt ·Du

vk+1
i,j :=

vki,j + dt ·Nv
1 + dt ·Dv

. (5)

The numerators (Nu,Nv) correspond to the terms accompanying (uk+1
i±1,j±1, v

k+1
i±1,j±1)

and (uk, vk) in the neighborhood of pixel (i, j). The denominators (Du,Dv) correspond

to the terms accompanying (uk+1
i,j , vk+1

i,j ).

In algorithm 1 we show the process of estimating the optical flow for a given scale.

We observe the two nested loops for the inner and outer iterations and a final loop

for the Gauss-Seidel implementation. Note that we have used two previous time in-

stants (uk−1, uk) in these two nested fixed point iterations: the first one is used to

warp the images, I2(x + hk−1), and the second for computing the robust function, i.e.

4



Φ′
(∥∥∇uk∥∥2

+
∥∥∇vk∥∥2

)
. We have implemented this algorithm and some supplementary

functions in C/C++. This code is free with a general open source license. It is available

at http://www.ctim.es/research works/parallel robust optic flow.

Algorithm 1: Robust optical flow

Input:

I1, I2, dt, α, γ, TOL, inner iter, outer iter

Process:

compute I1x, I1y, I2x, I2y, I2xx, I2xy, I2yy

for i← 1 to outer iter do

uk−1 ← uk+1

vk−1 ← vk+1

compute Ih2 , I
h
2,x, I

h
2,y, I

h
2xx, I

h
2yx, I

h
2yy,Φ

′
A,Φ

′
B

for j ← 1 to inner iter do

uk ← uk+1

vk ← vk+1

compute ux, uy, vx, vy, Φ′C

while error > TOL do

up ← uk+1

vp ← vk+1

uk+1 ← uk+dt·Nu
1+dt·Du

vk+1 ← vk+dt·Nv
1+dt·Dv

error ←
∑(

uk+1 − up
)2

+
(
vk+1 − vp

)2
end while

end for

end for

5 Use of multi-core infraestructure

One easy way to take advantage of the multi-core infrastructure of current CPUs is by

means of the OpenMP library. It parallelizes the code with very simple preprocessor

directives. It has the advantage that it is not necessary to change the original code. It

automatically handles the number of threads that are thrown in every parallel region and

synchronizes the data between them. In order to create a parallel region, the programmer

has to insert the following preprocessor directive in C/C++:

#pragma omp parallel

{...

}

After this definition, a set of threads are automatically created. If we want to parallelize

a loop, then we have to introduce the following sentences inside this region:

5

http://www.ctim.es/research_works/parallel_robust_optical_flow


#pragma omp for schedule(dynamic) nowait

for(int i = 0; i < ny; i++)

We have included these kind of sentences in our loops, both in the main algorithm

and in the supplementary functions. Versions of the GCC compiler above 4.2 include the

OpenMP library by default.

6 Experimental results

In the experimental results, we examine the behavior of our implementation for some

standard synthetic sequences. The first one is the Yosemite sequence, whose results can

be seen in Fig. 2. The solution is very accurate as can be observed in table 1. A good

compromise between speed and accuracy can be reached, as shown in Fig. 6. When we use

8 parallel cores and reduce the number of iterations of the numerical scheme, the euclidean

error is 0, 133 and the angular error 2, 99o with a running time of 10 seconds.

Fig. 2: Yosemite with clouds: first row depicts frames 6 and 7 of the sequence; second row

shows the ground truth and the solution provided by our implementation, respectively.

In Fig. 2, frames 6 and 7 of the Yosemite sequence are shown on the top row. At

the bottom-left, we show the ground truth optical flow and at botton-right the solution

for our method, using the color scheme of Fig. 3. In table 1 we show the best numerical

results for the average end-point error (EPE) and average angular error (AAE).

Next, we show the results of our method for the sequences in the Middlebury bench-

mark database. We have used the method for two different purposes: on the one hand,

we looked for the best possible results for each sequence; on the other hand, we have also

sought a default configuration for the parameters that work appropriately for all sequences.

You can see these results in Figs. 4 and 5.

6



Fig. 3: Color scheme used to represent the orientation and magnitude of the flow field in

every point.

Table 1: Average End-point Error (EPE) and Average Angular Error (AAE) for the

Yosemite sequence.

α γ η Inner Iter. Outer Iter. EPE AAE

250 37 0.5 25 100 0.098 2.190o

Table 2 shows the numerical results with the best parameters used in Figs. 4 and 5

(fourth and fifth columns). The other parameters are set as follows: ε := 0.0001, dt := 5

and the number of scales were chosen so that the size of the coarsest scale is small enough.

Table 2: EPE and AAE for the Middlebury datasets: configuration of the parameters that

provide the best average errors.

Sequence α γ η Inner Iter. Outer Iter. EPE AAE

Dimetrodon 83 48 0.8 30 120 0.087 1.686o

Grove2 83 16 0.8 25 80 0.163 2.374o

Grove3 46 16 0.5 29 70 0.700 6.541o

Hydrangea 104 16 0.8 25 120 0.168 2.102o

RubberWhale 104 38 0.8 30 120 0.111 3.751o

Urban2 51 16 0.8 30 120 0.340 2.667o

Urban3 21 16 0.8 25 100 0.492 4.234o

Venus 21 12 0.8 27 200 0.291 4.440o

In table 3, we show the numerical results with default parameters. These results

correspond to the third column of Figs. 4 and 5.

Finally, we have also compared the results for three different sequences – Yosemite,

RubberWhale and the Ettlingen Tor. A performance study on multi-core architecture

is outlined in Fig. 6. In the first image we present the time gain when the method is

executed on several cores. In the second image we show the effective time loss that occurs

when there are several threads in parallel with respect to the single thread execution. This

gives us an idea of the time loss due to the handling of the threads.

7



Frame 10 Ground truth Default Best Parameters

Dimetrodon

α = 83

γ = 48

Grove2

α = 83

γ = 16

Grove3

α = 46

γ = 16

Hydrangea

α = 104

γ = 16

Fig. 4: Some results for the Middlebury database: the left column shows frame 10 of the

sequence; the second column shows the ground truth; the third, the result with default

parameters; the fourth, the best solution found; and the fifth, the name of the sequence

and the parameters used for the best solution.

7 Conclusions

The estimation of accurate optical flow fields is a challenging task. Among the most

renowned methods, current variational methods are attaining the highest degrees of ac-

curacy with very good time performances. In this paper we have presented an implemen-

tation of an efficient optical flow method using up-to-date techniques. We have explained

the necessary steps to derive the algorithm from the global energy model, going into the

details of the minimization process and the numerical solution.

In particular, the variational model proposed is similar to the model presented in [8].

As a difference, we derive a gradient descent approach that ends up in a diffusion-reaction

PDE. We have also introduced a simple and efficient multi-core parallel computing by

means of the OpenMP library. The main advantage of this approach is that it makes

it easier to manage threads and synchronization of data, without modifying the original

code. As we have shown in the experimental results, our implementation yields a good

accuracy and we have also observed a significant increase of performance. In future works

we will continue to study different ways of improving the accuracy of the method as well

8



Frame 10 Ground truth Default Best Parameters

RubberWhale

α = 104

γ = 38

Urban2

α = 51

γ = 16

Urban3

α = 21

γ = 16

Venus

α = 21

γ = 12

Fig. 5: More results for the Middlebury database: the left column shows frame 10 of the

sequence; the second column shows the ground truth; the third, the result with default

parameters; the fourth, the best solution found; and the fifth, the name of the sequence

and the parameters used for the best solution.

as increasing its velocity.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science and Innovation

through the research project TIN2011-25488.

References

[1] P. Anandan. A computational framework and an algorithm for the measurement of

visual motion. International Journal of Computer Vision, 2(3):283–310–310, January

1989.

[2] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and

Richard Szeliski. A database and evaluation methodology for optical flow. In Interna-

tional Conference on Computer Vision, pages 1–8, 2007.

9



Table 3: EPE and AAE for the Middlebury datasets: results obtained with default pa-

rameters.

Sequence α γ η Inner Iter. Outer Iter. EPE AAE

Dimetrodon 113 83 0.8 25 120 0.088 1.704o

Grove2 113 83 0.8 25 120 0.227 3.027o

Grove3 113 83 0.8 25 120 0.809 7.844o

Hydrangea 113 83 0.8 25 120 0.239 2.915o

RubberWhale 113 83 0.8 25 120 0.127 4.127o

Urban2 113 83 0.8 25 120 0.408 3.239o

Urban3 113 83 0.8 25 120 0.512 4.392o

Venus 113 83 0.8 25 120 0.300 4.580o

Fig. 6: Running times: The left graphic shows the time spent for computing the optical

flow using increasing number of cores; the right image represents the time loss when using

multiple cores.

[3] Michael J. Black and P. Anandan. The robust estimation of multiple motions: Para-

metric and piecewise-smooth flow fields. Computer Vision and Image Understanding,

63(1):75 – 104, 1996.

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow esti-

mation based on a theory for warping. In T. Pajdla and J. Matas, editors, European

Conference on Computer Vision (ECCV), volume 3024 of LNCS, pages 25–36, Prague,

Czech Republic, May 2004. Springer.

[5] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid platform for

real-time motion computation with discontinuity-preserving variational methods. In-

ternational Journal of Computer Vision, 70(3):257–277, 2006.

[6] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial

Intelligence, 17:185–203, 1981.

[7] H H Nagel and W Enkelmann. An investigation of smoothness constraints for the

estimation of displacement vector fields from image sequences. IEEE Transanctions

10



on Pattern Analysis and Machine Intelligence, 8:565–593, September 1986.

[8] Nils Papenberg, Andrés Bruhn, Thomas Brox, Stephan Didas, and Joachim Weick-

ert. Highly Accurate Optic Flow Computation with Theoretically Justified Warping.

International Journal of Computer Vision, 67(2):141–158, April 2006.

[9] C. Zach, T. Pock, and H. Bischof. A Duality Based Approach for Realtime TV-L1

Optical Flow. In Fred A. Hamprecht, Christoph Schnörr, and Bernd Jähne, editors,

Pattern Recognition, volume 4713 of Lecture Notes in Computer Science, chapter 22,

pages 214–223. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

11



 



 



Centro de Tecnoloǵıas de la Imagen

Universidad de Las Palmas de Gran Canaria

http://www.ctim.es

1


