

© [2020] This manuscript version is made available under the CC-BY-NC-ND 4.0 license

<http://creativecommons.org/licenses/by-nc-nd/4.0/>

This document is the Published/Accepted/Submitted Manuscript version of a Published Work that appeared in final form in [Marine Geology/Elsevier].

To access the final edited and published work see
[<https://doi.org/10.1016/j.margeo.2020.106322>]

HIGHLIGHTS

Beachrock as sea level changes indicator

Paleosol on a beachrock can be a coastal progradation indicator

LMC micritic cementation in a beachrock was interpreted as an abundant meteoric groundwater

Upper Quaternary coastal palaenvironments and palaeosea-levels

in Las Canteras beach, Gran Canaria (Canary Islands, Spain)

Inmaculada Menéndez^{1*}, Catalina Herrera-Holguín¹, José Mangas¹

¹*Instituto Oceanografía y Cambio Global, IOCAG, Edificio Ciencias Básicas, Campus Tafira, Universidad de Las Palmas de Gran Canaria 35017, Islas Canarias, España.*

*Corresponding author: inmaculada.menendez@ulpgc.es / +34 928 45 29 22 (fax)

1 Upper Quaternary coastal palaenvironments and palaeosea-levels in
2 Las Canteras beach, Gran Canaria (Canary Islands, Spain)

3

4 Inmaculada Menéndez¹*, Catalina Herrera-Holguín¹, José Mangas¹

5 ¹*Instituto Oceanografía y Cambio Global, IOCAG, Edificio Ciencias Básicas, Campus Tafira, Universidad de
6 Las Palmas de Gran Canaria 35017, Islas Canarias, España.*

7

8 *Corresponding author: *inmaculada.menendez@ulpgc.es* / +34 928 45 29 22 (fax)

9

10

11 ABSTRACT

12 Las Canteras beach outcrops correspond to vestiges of palaeoenvironments that represent changes in
13 the sea level and/or climate conditions. Under broad sedimentological, mineralogical, geochemical
14 and dating studies, different palaeoenvironmental facies has been characterised. (1) The lower level
15 has been defined as a beachrock, formed by decametric calcarenitic layers, dipping 8-5° seawards, and
16 composed mainly of sand grains and two generations of isopaque low magnesium calcite (LMC)
17 cement, in a context of a rising sea level, but a coastal progradation, during the lower Holocene
18 Interglacial stage (>6.6 ka). (2) Throughout middle Holocene (about 6.6 ka, ¹⁴C dating), coastal
19 progradation phase and/or lower sea level might lead land emersion and soil development, with the
20 presence of abundant terrestrial gastropods. (3) Overhead, founded only in the central arc of the beach,
21 aeoleanites facies from cemented coastal dunes were identified; it was formed by calcarenite levels,
22 dipping 20° landward, cemented by phreatic LMC and vadose aragonite during the upper Holocene
23 (<6.6 ka). This aeolian deposit might represents the highest coast progradation or, the end of low-

24 stand sea level, whereas its cementation could be interpreted as the beginning of the sea level rise,
25 towards the present highstand sea level situation.

26

27 *Keywords:* coastal palaeoenvironments; palaeosea-levels; coastal progradation; beachrock;
28 palaeosol, aeoleanites; Las Canteras beach; Gran Canaria Island

29

30 **1. Introduction**

31

32 The study of coastal palaeoenvironments has been a useful tool to survey local response to
33 global changes (Casalbore et al., 2017; Yao et al., 2017; Jiang et al., 2019). The evolution
34 of such environments change within spatial and temporal scales, being affected by from
35 tidal shifts to eustatic-tectonic processes, climatic influences, moreover, the increasing
36 pressure due to human occupation. Accordingly, coastal environments have been studied
37 worldwide, dealing with reconstructing past environments, including integrated studies,
38 linking diverse geological and biotic records (i.e. Dickinson, 2001; Murray-Wallace, 2002;
39 de Carvalho et al., 2006). Beachrocks are carbonate-cemented on any type of littoral
40 sediments and climate that have been widely used as proxies in Quaternary palaeosea-levels
41 (i.e., Vousovoukas et al., 2007; Desruelles et al., 2009; Mauz et al., 2015; Falkenroth et al.,
42 2019). However, superficial beachrock on coastlines have been rarely dated because of the
43 absence of fossils, the small carbonated crystals and the chronostratigraphic differences in
44 the beachrock layers (Friedman, 2004).

45 The texture and composition of carbonate cements reflect the cementation environmental
46 conditions (phreatic-marine-vadose). Beachrock cements are typically high-Mg calcite or
47 aragonite, formed in the mixing zone of the intertidal beaches (i.e., Kneale and Viles, 2005;

48 Vousdoukas et al., 2007; Haredy et al., 2019). Changes in exposure, temperature, salinity,
49 CO₂ degasification and algae activity and overall microorganisms control (McCutcheon et
50 al., 2017) favour its cementation. Beach progradation or slight sea-level fall changes the
51 cementation to vadose and edaphic conditions, producing the dissolution of high-Mg calcite
52 and aragonite and subsequently diagenetic precipitation of LMC (Beier 1985). LMC
53 (meteoric) beachrocks are less common than HMC, but worldwide examples can be found,
54 i.e. Bahamas (Strasser and Davaud 1986), Florida (Spurgeon et al. 2003), Ireland (Cooper
55 et al., 2017), South Africa (Wiles et al., 2018).

56 Diagenesis involves dissolution, precipitation and recrystallization processes, depleting the
57 cement in Mg, Sr but enriching it with Fe and Mn (Tucker and Wright, 1990). Coastal
58 dunefield can be constructed off the backshore. Phreatic-marine oscillation processes can
59 subsequently cement it, forming aeoleanites (Frébourg et al., 2008).

60 Along the Canary Islands, HMC beachrocks there have been identified in La Palma (Calvet
61 et al., 2003) and Lanzarote (Mangas et al., 2008) and Fuerteventura (Meco et al., 2018).

62 Coastal palaenvironments and their sedimentary formations such as beachrock, palaeosol
63 and aeoleanites, have been risen due to geological and climatic processes and related to
64 environmental changes (Hernández-Calvento et al., 2002; Hernández-Calvento and
65 Mangas, 2004; Meco et al., 2002, 2011, 2018; Ortiz et al., 2006).

66

67 The aim of this research is an integrated study (geochemical, mineralogical, petrographic,
68 geochronological, edaphic and stratigraphic) of the different outcroppings of Las Canteras
69 beach, to provide new proxies in the reconstruction of coastal palaeoenvironments and
70 palaeoshorelines.

71

72

73 **2. Regional setting**

74

75 The Canary Islands is an archipelago located 100–700 km off Western Sahara, on the
76 oceanic crust of Jurassic age (165–176 Ma; Schmincke and Sumita, 2010). Its formation is
77 interpreted as a hotspot volcanism (Schmincke and Freundt, 1990; Walker, 1990;
78 Carracedo et al., 1998). Submarine magmatism took place on the Jurassic oceanic crust,
79 starting with the first submarine lava flows 34 Ma ago, in Fuerteventura island (Schmincke
80 and Freundt, 1990; Carracedo et al., 2002; Schmincke and Sumita, 2010).

81 In Gran Canaria, the submarine volcanism conform about 97% in volume of the whole
82 volcanic and sedimentary materials of the island (Menéndez et al., 2008). The remaining
83 3% of the island volume are the subaerial materials, which gather in three magmatic cycles.

84 The first one is associated to Tejeda Caldera and comprises the shield stage, with emission
85 about 1000 km³ of ultramafic and mafic materials, during Miocene (14.5 - 14.1 Ma),
86 evolving to the alkaline declining stage of intermediate and felsic deposits during 14.1 to
87 7.3 Ma, emitting, again, about 1000 km³ of volume material. There was a volcanic
88 inactivity period between 7.3 - 5.3 Ma. The second one is associated with the Roque Nublo
89 stratovolcano, producing a 210 km³ from ultramafic and mafic materials to felsic, during
90 5.3 - 2.8 Ma. The third cycle, Post Roque Nublo magmatic cycle, started 3.7 Ma ago,
91 generating ultramafic, mafic and intermediate fissural volcanism and then individual
92 volcanism, occurring the last eruption on 1970 ±70 B.P. (Pico Bandama; Rodríguez-
93 González et al., 2009). Two and third magmatic cycles were defined as rejuvenation stages.

94 During all the cycles, the external geological processes (alluvial, fluvial, coastal and
95 weathering) had been generating sedimentary deposits, such us fan deltas, coastal

96 dunefields and beaches, integrated some of them in Las Palmas Detritic Formation (Fuster
97 et al., 1968; Balcells et al., 1990; Schmincke and Sumita, 1998, 2010; Carracedo et al.,
98 2002; Schneider et al., 2004).

99

100 The volcanic bedrocks and outcropping in the area of Las Canteras beach, are associated
101 with alkaline declining (phonolite lava and ignimbrites) and rejuvenation stages (basaltic
102 lava flows and pyroclastic deposits). Sedimentary deposits of the LPDF (sandstones and
103 conglomerates) were also identified on the north arc of Las Canteras beach (Pérez-Torrado
104 and Mangas, 1992; Pérez-Torrado et al., 2000). Las Canteras sandy beach, is an urban
105 space with significant social, touristic, and environmental value (Santana-Cordero et al.,
106 2017). Outcropping in the central part of Las Canteras beach there are several calcarenitic
107 formations (beachrock), acting the external part as an offshore barrier (locally known as La
108 Barra) causing a reduction on wave energy on the inner beach, (Alonso, 1993, 1994, 2005;
109 Alonso and Vilas, 1994; Martínez-Martínez et al., 1990; Pérez-Torrado and Alonso, 1992;
110 Pérez-Torrado et al., 2000). La Barra was dated as Jandian, 110 ka (Balcells et al., 1990;
111 Pérez-Torrado and Mangas, 1992). It was interpreted as an intertidal cementation during
112 Riss Glaciation (>130 ka; Alonso, 1993; Alonso and Vilas, 1996). La Barra has
113 experienced about 29% mining reduction (Ferrer-Valero et al., 2017). The inner beachrock
114 part appears as isolated outcrops in the foreshore of the Las Canteras beach. It consisting of
115 a set of decimetric parallel layers, dipping 8-15° sewards (Pérez-Torrado et al., 2000). In
116 this work, we only focus on this inner beachrock of the central arc of Las Canteras beach.
117 On the upper part of the beachrock, a pinkish silty-clayey formation with terrestrial
118 gastropods and vegetal bioturbation has been reported (Pérez-Torrado and Mangas, 1992;
119 Pérez-Torrado et al., 2000; Alonso, 1993). It was twofold interpretation, as a palaeosol

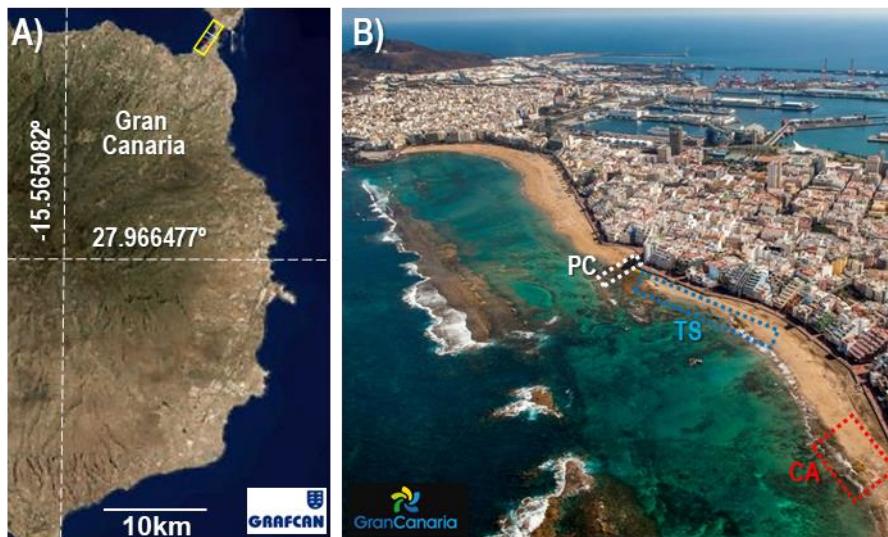
120 (Alonso, 1993), and as a lagoon (Pérez-Torrado et al., 2000). Finally, another different
121 deposit outcropping at the southern and landward part of the Las Canteras central arc. It
122 was described as eolianites, dipping about 20° landward, and formed in backshore
123 conditions (Pérez-Torrado et al., 2000), accordingly to Alonso (1993) it could be formed
124 during the Flandrian period (10 ka).

125

126 **3. Material and Methods**

127

128 3.1. Site


129

130 Las Canteras is an approximately 3 km long sandy beach, located on the northeastern coast
131 of Gran Canaria, within the Confital Bay, on the east side of Guanarteme isthmus, which
132 connects the city of Las Palmas de Gran Canaria with La Isleta headland (Fig. 1).
133 Indicating the position of a palaeocoastline appears La Barra, approximately 1600 m long
134 and 50-100 m width, whose elevation is similar to the mean sea level (MSL), therefore
135 during low tide it generates a sheltered area where the wave action is reduced (Pérez-
136 Torrado and Mangas, 1992; Alonso, 2005). This barrier, parallel to the coast, separated
137 about 200 to 250 m from the shoreline, have significant impact in this specific beach
138 sedimentary dynamics (Martínez-Martínez et al., 1990; Alonso, 1993, 1994, 2005; Alonso
139 and Vilas, 1994), formerly an extended coastal dunefield completely disappeared through
140 resource exploitation and urbanisation (Santana-Cordero et al., 2017).

141 There are three different sectors on this semi-enclosed beach (Fig. 1): the southern arc,
142 where there are substantial losses of sediment erosion during storms (Alonso, 1993; Alonso
143 and Vilas, 1994). The central arc, located about 750 m long, is partially sheltered by La

144 Barra, and the focus of the study. Sedimentary budget variations in this arc are fewer than
145 in the south and north arcs (Casanova, 2015). Finally, the northern arc, sheltered excepting
146 the north end, present sand accumulation from southern arc erosion (Alonso, 1993; Alonso
147 and Vilas, 1994; Casanova, 2015).

148

149

150 Figure 1. (A) Location of Las Canteras beach (yellow rectangle) on the northeast coast of Gran
151 Canaria Island, (B) Aerial photo of Las Canteras beach in the city of Las Palmas de Gran Canaria,
152 showing Playa Chica (PC) section within the white rectangle, Transition Section (TS) within the
153 blue rectangle, and Colombia Area (CA) section within the red rectangle. Modified from A)
154 Grafcane (<https://www.grafcan.es/>), and B) the touristic blog of the Cabildo of Gran Canaria
155 (<http://www.grancanaria.com/blog/es/article/gran-canaria-segun-carla-suarez/>).

156

157

158 3.2. Sampling procedure

159

160 Three sections were chosen for sampling: Playa Chica (PC), a transition section (TS) and
161 Colombia area (CA; Fig.1B). The PC section is a semi-enclosed beach environment,
162 whereas the CA is at the southward end of the central arc and more affected to wave action.
163 To maximise the intertidal exposure, the campaign was synchronised with a spring low
164 tide, on September 17th 2017, 8:00 h. Geographical coordinates were taken at each sample
165 point (Table 1). The collected amount of each sampled rock was 0.5-1 kg, and 0.1 to 0.5 kg
166 for sediment. Current beach sands information and additional 5 samples were provided by
167 Dr. Ignacio Alonso courtesy.

168

169

170 Table 1. Identification, coordinates, location and geological material of the Samples from the
171 palaeoenvironmental study of Las Canteras beach. A6-10 samples information from Alonso, 1993.

172

Sample	Longitude (W)	Latitude (E)	Section	Description
PAC1	15°26'11"	28°8'23"	Playa Chica (PC)	Beachrock
PAC2	15°26'11"	28°8'22"	"	"
PAC3	15°26'10"	28°8'22"	"	"
PAC4	15°26'10"	28°8'22"	"	"
PAC5	15°26'10"	28°8'22"	"	Palaeosol
PAC6	15°26'10"	28°8'22"	"	"
PAC7	15°26'10"	28°8'22"	"	"
PAC8	15°26'10"	28°8'22"	"	Gastropods

PAC9	15°26'10"	28°8'22"	"	Palaeosol
PAC10	15°26'10"	28°8'22"	"	"
PAC11	15°26'10"	28°8'22"	"	"
PAC11B	15°26'10"	28°8'22"	"	"
A10	15°26'10"	28°8'22"		Current sands
PAC13	15°26'13"	28°8'16"	Transition S. (TS)	Beachrock
PAC12	15°26'11"	28°8'20'	"	Palaeosol
PAC14	15°26'13"	28°8'14"	"	"
A9	15°26'13"	28°8'16"	"	Current sands
A8	15°26'13"	28°8'16"	"	"
PAC15	15°26'21"	28°8'10"	Colombia Area (CA)	Beachrock
PAC16	15°26'21"	28°8'9"	"	Palaeosol
PAC17	15°26'21"	28°8'9"	"	"
PAC18	15°26'21"	28°8'9"	"	"
PAC19	15°26'21"	28°8'9"	"	"
PAC20	15°26'21"	28°8'9"	"	Aeoleanites
A7	15°26'21"	28°8'9"	"	Current sands
A6	15°26'21"	28°8'9"	"	"

173

174

175 3.2. Grain size distribution and carbonate content

176

177 Grain size analyses was made on three uncemented palaelosols samples (PAC11, PAC11b
 178 and PAC17, Table 1). In order to reduce the aggregates, a sodium hexametaphosphate was

179 used. It was prepared by mixing 5g (Na₆O₁₈P₆) in 1000 ml of distilled water (Sperazza et
180 al., 2004). The dispersion was conducted by adding the solution in a 2:1 stirring during 48
181 h. After 8h of decantation the clays grain size in suspension was removed and dried. The
182 rest sediment material (silt and sand) was dried and mechanically fractionated thought 2
183 and 0.045 mm seizes. The GradiStat V8® free software (Blott and Pye, 2001) was used to
184 statistical determination.

185 The calcium carbonate content was determined by the volumetric method of the Bernard
186 calcimeter, by the hydrochloric acid leaching and CO₂ measurement technique (Hulseman
187 1966).

188

189

190 3.3. Petrography

191
192 In order to identify their components and its relative abundance, 19 thin sections were
193 prepared besides 5 previous of sand samples from Alonso (1993). Thin sections were made
194 in the General Geology Services of the Universidad de Salamanca. The petrographic study
195 of the thin sections were made under a geologic microscope (Ortoplan-Leitz) with a pointer
196 counter stage (PETROG). The subcategories observed were: (i) bioclastic grains: seaweed
197 mesh, foraminifera, mollusk, echinoderm and other bioclasts), (ii) lithoclastic grains: mafic
198 rock fragment, felsic rock fragment, intraclast, olivine, pyroxene, opaque, feldspar,
199 amphybole and others lithoclasts, (iii) carbonate cements: sparitic and micritic, and (iv) soil
200 features: palaeosol matrix and cutans. Finally, the rock porosity was quantified as the void
201 surface (holes).

202

203
204 3.4. XRD, EMPA and SEM-EDX analysis
205
206 Uncemented samples of the palaeosol (PAC 11, PAC11b and PAC17) were sent to the
207 Geology Laboratory of La Laguna University for mineral phase identification by X-ray
208 diffraction (XRD). Samples of the selected profiles were crushed in an agate mortar,
209 obtaining a particle size below 40 mm. The experimental profiles were performed using a
210 PANalytical Empyrean powder diffractometer equipped with a PIXcel1D Medipix 3
211 detector at the XRD Integrated Service (SIDIX) of the *Servicio General de Apoyo a la*
212 *Investigación* (SEGAI) of La Laguna University (ULL). The diffractometer equipment was
213 used with incident Cu K α 12 radiation at 45 kV and 40 mA, and it was equipped with a
214 RTMS detector (PIXcel1D) with an amplitude of 3.3473° 2 θ . The patterns were obtained
215 by scanning random powders from 5° to 80° (2 θ). Data sets were obtained by a scan time of
216 57s at a step size of 0.0263° (2q) and a 1/16° divergence slit. Mineral identification and
217 semi-quantitative results were facilitated using the Highscore Plus version 4.5 from
218 PANalytical B.V search-match software with PDF+ crystallographic database. When the
219 occurrence of quartz was detected in the sample it was used an internal standard to correct
220 diffraction patterns for instrumental shifts in 2q position. Quantitative mineral phase
221 analyses were obtained by full refinement profile using the software TOPAS V4.2.
222 The rocky samples were mineralogy and geochemical analysed by Scanning electron
223 Microscope equipped with an energy-dispersive spectrometer (SEM-EDX) and Electron
224 Microprobe Analysis (EMPA) at the Scientific and Technological Centre of the University
225 of Barcelona (CCITUB). Experimental conditions detailed in (Menéndez et al., 2019). The
226 MgCO₃ and Sr contents of the different types of cement were also determined.

227

228 3.5. Carbon dating

229

230 In order to calculate the age of palaeosol, some gastropods (*Helix* sp.) were collected in the
231 upper part of PC Section and sending for ^{14}C radiocarbon dating to Beta Analytic
232 Radiocarbon Dating Laboratory (Florida, USA). By international convention, the modern
233 reference standard was 95% the ^{14}C activity of the National Institute of Standards and
234 Technology (NIST) Oxalic Acid (SRM 4990C) and calculated using the Libby ^{14}C half-life
235 of 5568 years. Calibrations were calculated using the 2009 calibration database (Talma and
236 Voguel, 1993) within the mathematics used for calibration scenario by Stuiver and
237 Braziunas (1993). Dates were reported as RCYBP (radiocarbon years before present;
238 present: AD 1950).

239

240 3.6. Stratigraphy

241

242 Facies identification was made and stratigraphic columns and correlation were built to
243 obtain a space and time relationship of the materials in each section, and a further
244 interpretation and reconstruction of their palaeoenvironmental history. The field
245 information and the mentioned analyses were incorporated for integration purposes.

246

247 **4. Results**

248

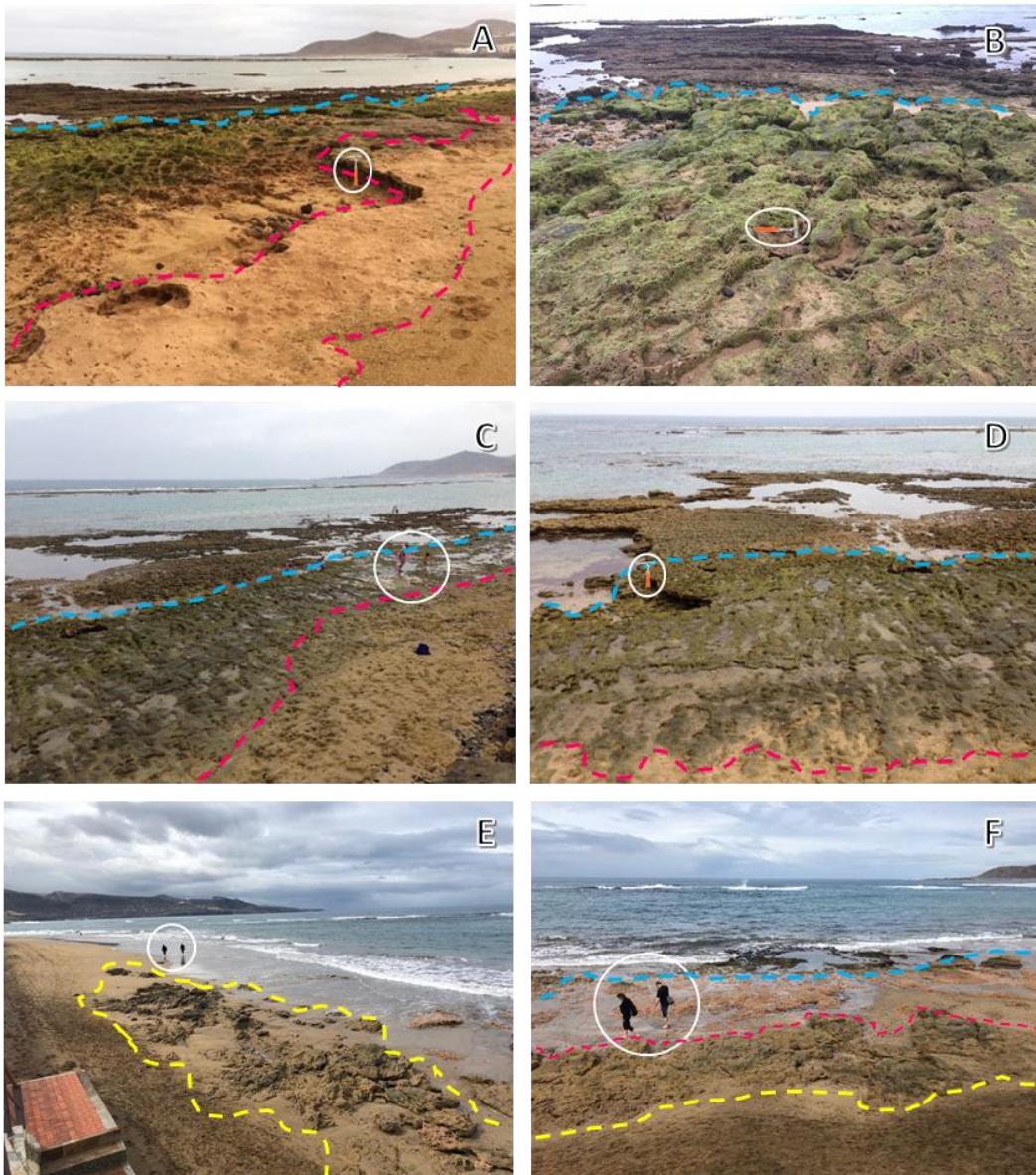
249 4.1. Facies definition

250

251 After examination the samples analysis, along with the field data observations, the
252 identified facies, from bottom to top, were (Fig. 2): (1) Beachrock, on which (2) Palaeosol
253 was developed, covered only in CA (3) by Aeoleanites; surrounding all the outcrops are the
254 (4) Current sands. The beachrock can be observed in the three sections. Mainly consists of
255 5 to 20 cm bands of intertidal calcarenites with dips ranging from 5° (CA) to 15° (PC).
256 Palaeolosol can be subdivided into two subfacies: A stratum formed by tabular calcareous
257 bands sub horizontal, which represent the weathering horizon (C-H) and a discontinuous
258 bed of silty sands, which represent the accumulation horizon (B-H) with abundant
259 terrestrial gastropods (*Helix* sp.) and observable cemented bioturbation (rhizoliths).
260 Aeoleanites are calcarenites with wide-angle (~20°) stratification, dipping towards land,
261 associated to backshore dunes. Current sands are coarse to medium light-coloured sands
262 with good to moderate sorting.

263

264


265

266 Figure 2. Identified facies in Las Canteras beach: (A) Beachrock in PC; (B-C) Palaeosol in PC; (D)
267 Aeoleanites in CA; (E) Current sands in the central arc; current sands information from Alonso
268 (1993).

269

270 The vertical distribution of the facies in each section is equivalent, appearing the
271 outcropping beachrock located between the foreshore and shoreface, the palaeosol in the
272 intertidal and the aeoleanites in the backshore and foreshore (Fig. 3). On PC, the tabular
273 sections of the palaeosol are thicker and greater is the volume of buried terrestrial
274 gastropods and bioturbation than in TS and CA. TS presents more fractures than the rest
275 and in CA aeoleanites facies outcrops grow or reduced their extension more frequently
276 regarding erosion-sedimentation dynamic of the Current sand facies.

277

278

279 Figure 3. Sedimentary outcrops of the three different sections along Las Canteras beach (see Fig
 280 1B). Dotted lines: Beachrock limits (blue), Palaeosol limits (magenta) and Aeoleanites limits
 281 (yellow). A) PC S-N view. B) PC E-W view. C) TS S-N view. D) TS E-W view. E) CA N-S view.
 282 F) CA E-W view.

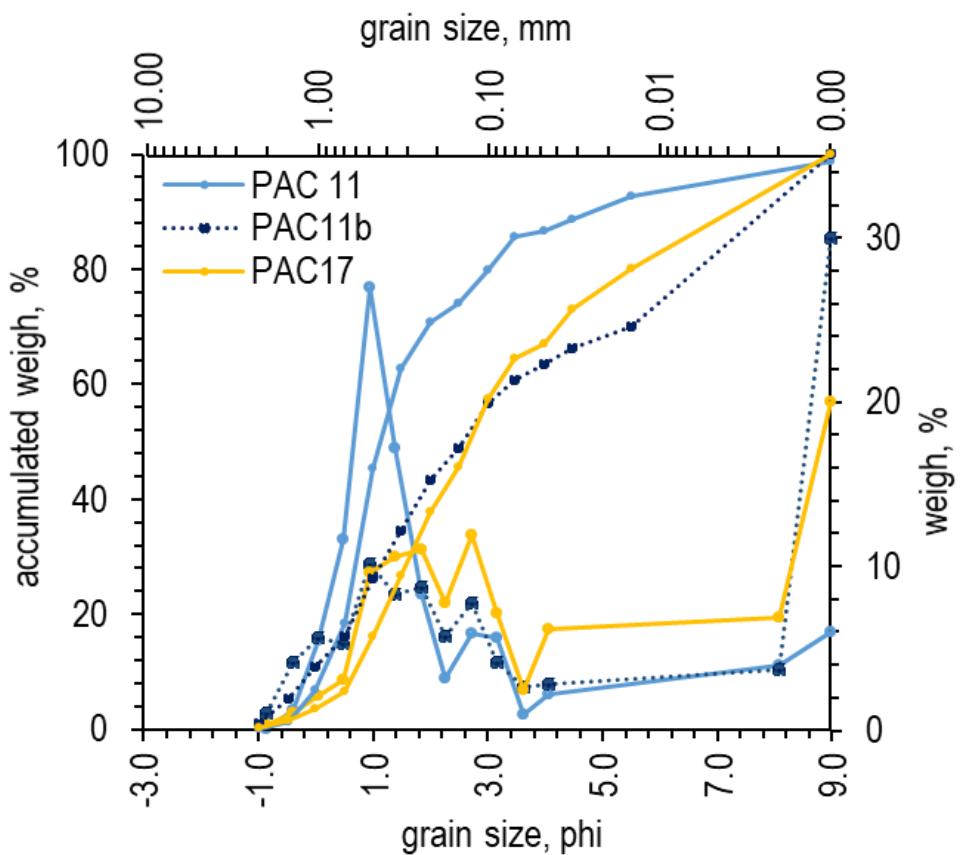
283

284 4.2. *Grain size distribution and carbonate content*

285 The analysis of uncemented samples of the palaeosol (PAC11, PAC11b and PAC17)
286 correspond to clayey to muddy sands (Table 2; Figs. 4-5). The samples were not unimodal
287 thus the sorting, skewness and kurtosis statistics are therefore unreliable. The 1st mode is
288 coarser, and equal, in PAC11 and PAC11B (coarse sand) than in PAC17 (very fine sand).
289 However, 2nd mode is equal value in for PAC11B and PAC17 (medium sand), also shearing
290 mode 3rd and mode 1st value (medium sand).

291

292 Table 2. Main textural results from the grain size distribution analyses of the three uncemented
293 samples of Las Canteras beach.

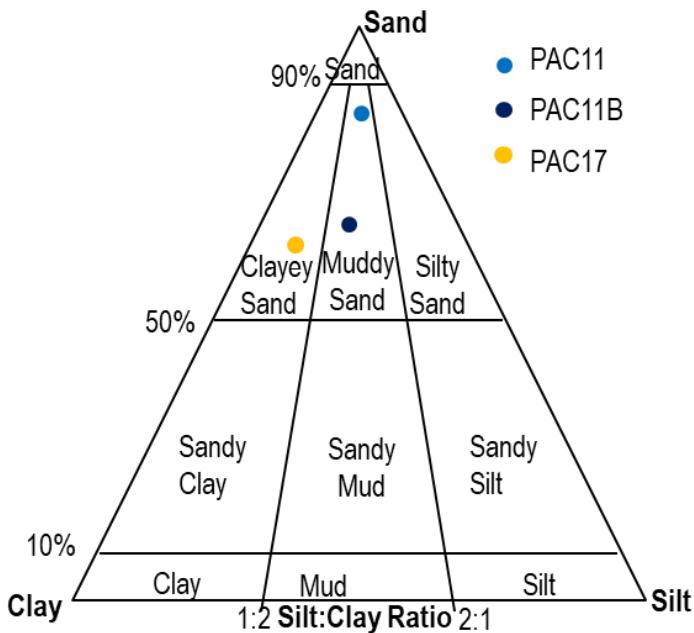

294

	Playa Chica		Colombia Area
	PAC11	PAC11B	PAC17
Sample type	bimodal, very poorly ported	polymodal, extremely poorly ported	trimodal, extremely poorly ported
Textural group	muddy sand	muddy sand	muddy sand
Sediment name	muddy-coarse Sand	clayey- medium sand	muddy-medium sand
Geometric mean grain size (µm)	479	340	255
1 st mode (µm)	605	605	153

2 nd mode (μm)	108	303	303
3 rd mode (μm)	-	153	54

295

296


297

298 Figure 4. (A) Grain size distribution of uncemented palaeosol samples from Las Canteras beach. (B)

299 Cumulative grain size distribution curves.

300

301

302

303 Figure 5. Textural classification of the uncemented palaeosol samples from Las Canteras beach.

304

305 The inorganic carbon analysis indicated a high content of carbonates in all samples, with
 306 mean beachrock values 82%, being the highest in TS (Table 3). Palaeosol mean carbonate
 307 content decrease particularly in TS (70%). Aeolianites carbonate content is similar to
 308 beachrock but markedly reduced in the uncemented current sands.

309

310 Table 3. Carbonate content, in %, of the facies and sites defined in Las Canteras beach outcrops.

311 Analysis made by Bernard Method.

		Carbonate Content, %			
Facies	Section	mean	sd	n	
	PC	80	±6	4	
Beachrock	TS	84	±0	2	
	CA	84	-	1	
	mean	82	±5	7	

	PC	71	± 8	7
Palaeosol	TS	59	± 12	4
	CA	82	± 3	2
	<i>mean</i>	70	± 11	1.3
Aeoleanites	CA	82	-	1
Current	PC	49	-	1
	TS	48	± 1	2
	CA	53	± 1	2
	<i>mean</i>	50	± 3	5

312

313

314 4.3.Petrography

315

316 In Figs. 6-8, the most relevant petrographic components from thin sections are displayed.

317 Despite the differences between facies, petrographic results show that seaweed meshes and

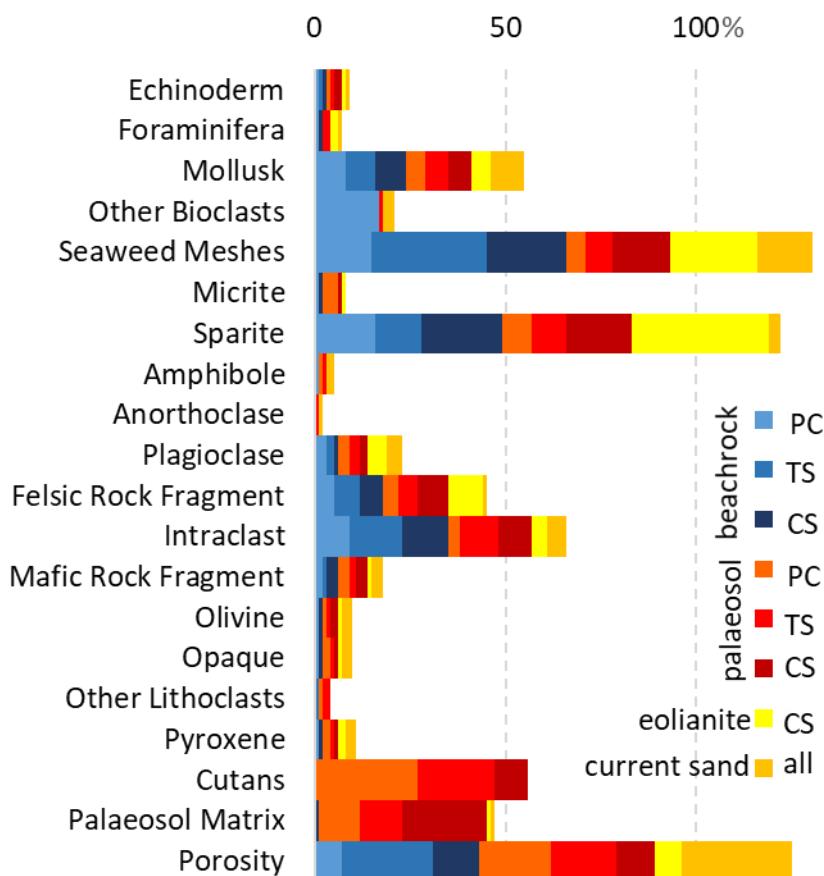
318 mollusc (30-5% and 9-5%, respectively) constitute mainly the bioclasts. The bioclasts are

319 more abundant in Beachrock facies (50%). Carbonate cements are more abundant in

320 Aeoleanites facies (37%). Sparitic cement is more abundant than micritic (33-5% vs. 4-

321 1%). The proportion of lithoclast is similar in all facies (27-23%) except to the uncemented

322 Current sands, whereas is greater (37%). Lithoclast are composed mainly of sedimentary

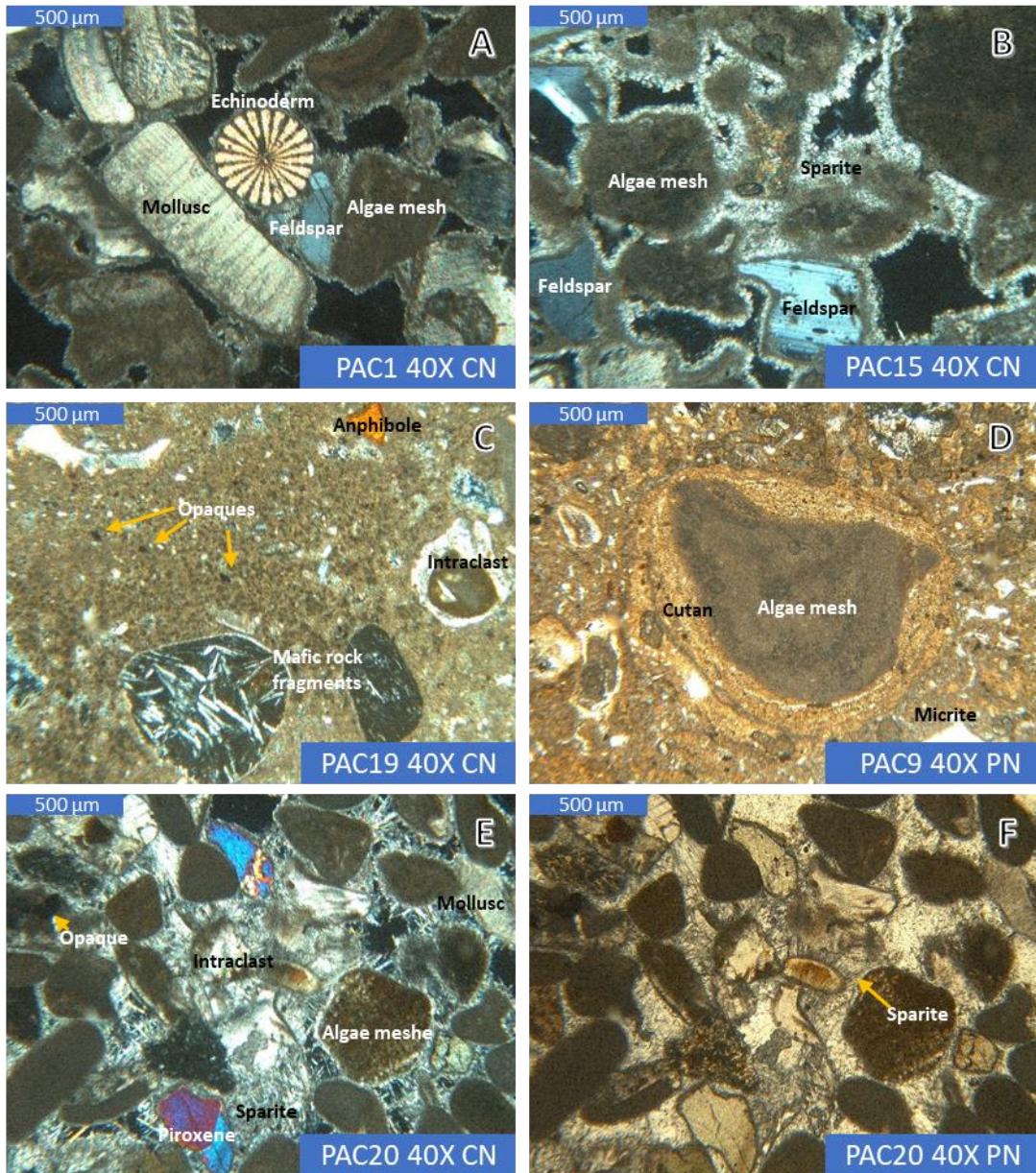

323 intraclasts and felsic rocks fragments (14-4% and 12-4%, respectively). The intraclasts are

324 mainly carbonates, formed by grains of bioclasts and minor amount of lithic fragments,

325 imbued in the silty matrix of the palaeosol, or in carbonated cement of the eolianite and
326 beachrock. The cement form a ring around the grains but the pore spaces remain empty in
327 the centre most of the time, or infill the intragranular porosity. The mean porosity ranges
328 from 29% in Current sands to 8% in Aeoleanites facies. There is also a porosity reduction
329 in TS and PA Palaeosol facies regarding the Beachrock parent rock, but an increase for CA.

330

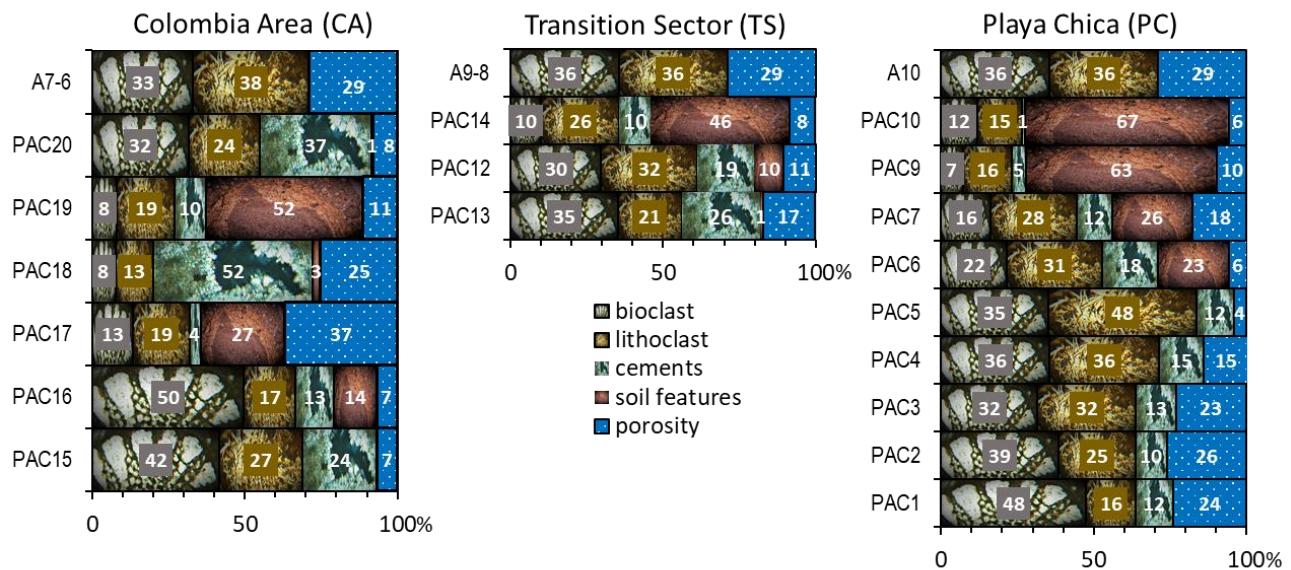
331



332

333

334 Figure 6. Main observed components (bioclasts, lithoclast, cements, soil features and porosity)
335 under the petrographic microscope, of the thin sections from Las Canteras samples.


336

337

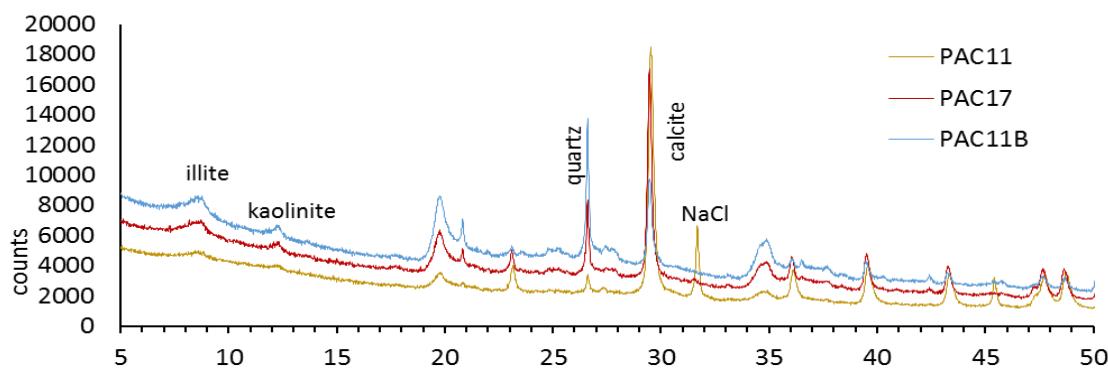
338 Figure 7. Petrographic microscopy images showing some biogenic and lithogenic components. A
 339 and B: sparite as an isopaque calcite cement; C and D: micrite as clay and silt particles with micritic
 340 calcite cement; E and F: sparite as isopaque calcite and prismatic aragonite cement. Downright blue
 341 labels symbols: sample identification (see Table 1), the magnification (40x) and crossed nicols (CN)
 342 parallel nicols (PN).

343

346 Figure 8. Petrographic features content (in %) from the three sections of Las Canteras beach
 347 samples. Current sands information re-elaborated from Alonso (1994). Sample identification in
 348 Table 1.

351 4.4. XR-Diffraction analysis

353 The XRD semi-quantitative analysis from the uncemented samples identified calcite as the
 354 most abundant mineral, with the presence of quartz on all of them and minor amounts of
 355 clay minerals (illite, kaolinite and traces of smectite; Table 4; Fig. 9). Minor NaCl peak in
 356 PAC11b occurs, due probably to less properly leaching of the sample; it was not computed
 357 in the mineralogy quantification.


359 Table 4. Mineral composition, in percentage, from XR diffraction analysis of uncemented
360 palaeosol samples of Las Canteras beach. *Carbonate content from Bernard Method.

361

362	363	PC			CA
		PAC11	PAC11B	PAC17	
364	Illite	6	3	3	
365	Kaolinite	0	3	0	
366	Smectite	0	0	3	
367	Quartz	9	61	27	
368	Calcite	85	33	67	
369	Carbonate*	83	21	45	

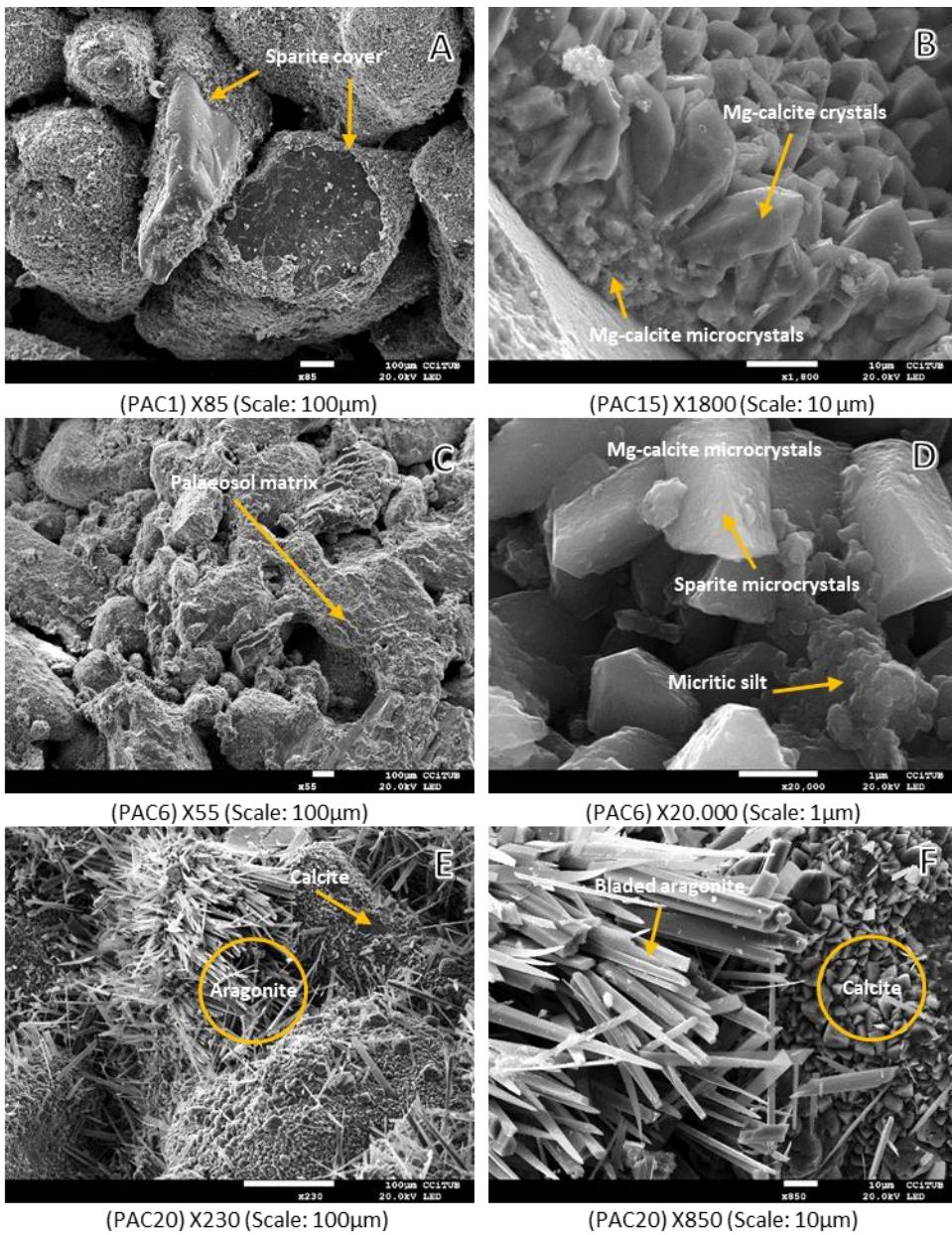
370

371

372
373 Figure 9. Diffractogram showing the mineralogical composition of the uncemented palaeosol
374 samples of Las Canteras beach.

375

376 4.5. SEM and EMPA analysis

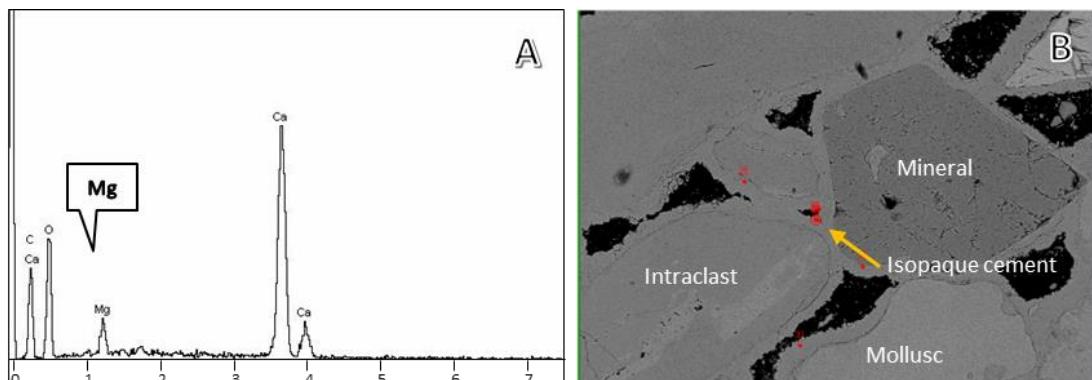

377

378 The beachrock is a calcarenite with interangular porosity (Fig. 10A-B). The cement is
379 LMC, with Sr and minor amounts of Na, Fe and Mn (Fig. 11A-B). The grain sand are cover
380 with microsparitic and micritic LMC. Assembling the grains, it was grown a secondary
381 banded isopaque cement ($>10\mu\text{m}$) composed of sparitic LMC trigonal hexagonal
382 scalenohedral crystals (dogtooth spar calcite, Fig. 10B). It was also observed a random and
383 irregular groups of microcrystalline zeolites, rhombohedral forms (chabazite), seldom and
384 irregular micrite, and salts (chlorides and sulphates).

385 The palaeosol is a sandstone with a silty matrix that cover most of the grains, forming a
386 banded accumulation of silty silicates and iron oxides/hydroxides (cutans), salts and
387 microcrystalline carbonates ($<5\mu\text{m}$). Secondary isopaque carbonated cement up to $100\mu\text{m}$
388 thickness was grown (Figs. 10C-D, 11C-D). Occasionally, iron banded oxides/hydroxides
389 ($>30\mu\text{m}$ of hematite and goethite) were identified.

390 The aeoleanites, as the beachrock, is a calcarenite with LMC calcium carbonate isopaque
391 bands in dogtooth spar, but with a secondary cementation of rhombic aragonite
392 (discontinuous and irregular) observed as acicular prismatic crystals, up to $100\mu\text{m}$ in
393 length (Figs. 10E-F, 11E-F). Those aragonite crystals are rich in Sr, but Mg is absent (Figs.
394 11E-F and Table 4). In some grains, the acicular aragonite cluster to zeolites, salts and
395 calcite.

396


397

398 Figure 10. General (left) and detailed (right) views of the SEM images from the Beachrock (A-B),
 399 Palaeosol (C-D) and Aeoleanites facies (E-F) from Las Canteras beach samples. Labels and
 400 arrows show the most relevant minerals and features.

401

402

403

406 Figure 11. EMPA mineral spectrums showing geochemical relative content of selected points (red
407 markers in right images) from the Beachrock (A-B), Palaeolosol (C-D) and Aeoleanites facies (E-F)
408 from Las Canteras beach samples. Labels and pointers showing relevant elements.

409
410
411
412
413
414 Table 5. Magnesian carbonate, Sr, Na, Fe and Mn molar concentrations of EMPA analysis shown in
415 the carbonates of the Figure 9, for each facies samples.
416

	CO ₃ Mg	Sr	Na	Fe	Mn
	%	ppm	ppm	ppm	ppm
LMC-Beachrock	5.2±0.5	1410±509	1150±476	221±144	126±240
LMC-Palaeosol	4.2±0.7	500±231	595±500	339±261	70±147
LMC-Aeoleanites	4.7±1.2	798±806	201±207	285±224	58±90
LMC-Cutans	4.1±1.4	1377±972	972±565	486±597	51±73
Aragonite	0.0±0.0	14129±2635	407±363	106±65	45±105

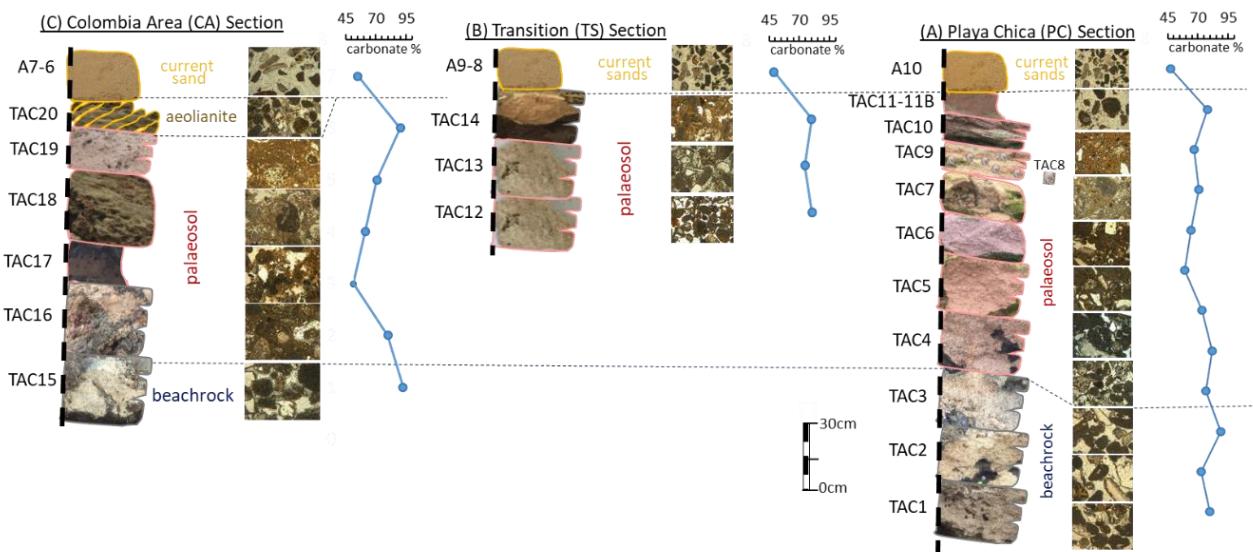
417
418
419 4.6. Carbon dating on palaeosol facies
420
421 The carbon dating was made on gastropods shells collected in the PC palaeosol facies (Fig.
422 12). These gastropods were abundant, well preserved and randomly integrated in the
423 palaeosol discarding, *a priori*, its later accumulation, and assuming that the soil was their
424 living habitat. The analysis yield a radiocarbon age of 6.60 ± 0.03 ka.
425

426

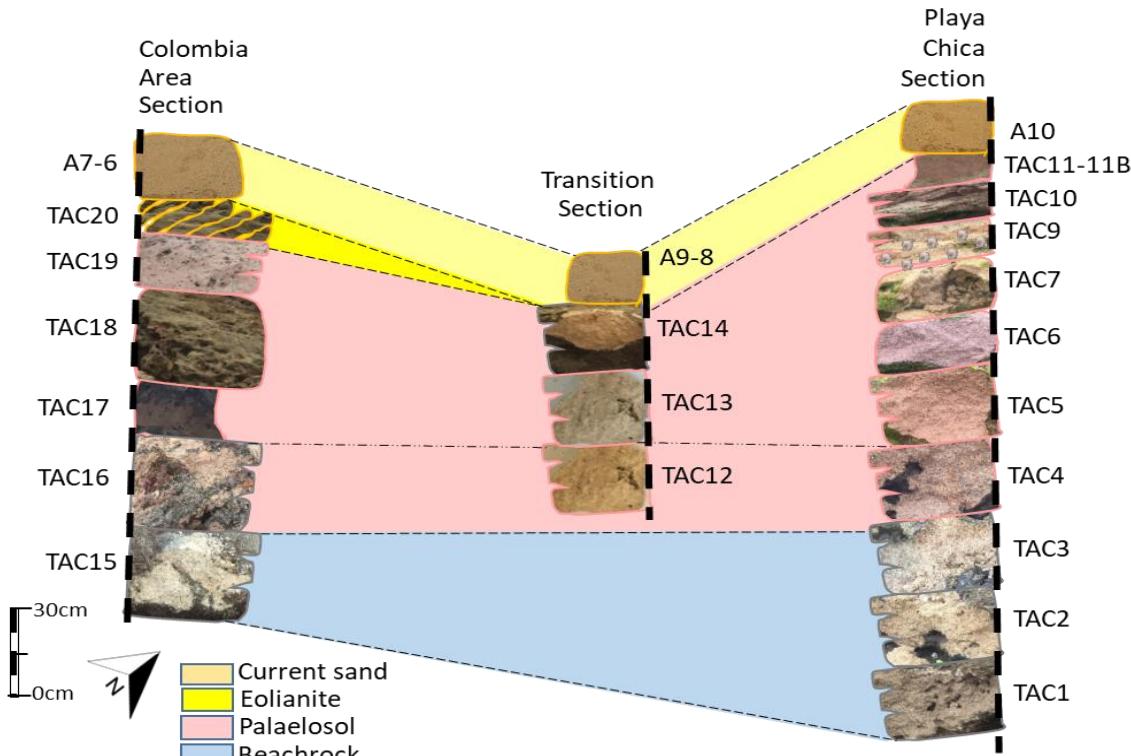
427 Figure 12. Palaeosol facies in Las Canteras beach (Playa Chica, PC) including subvertical rhizoliths
 428 and encrusted terrestrial gastropods used for radiocarbon date analysis.

429

430


431 4.7. Stratigraphy correlation

432


433 Three sections have been constructed in this work from northeast to southwest (Figs. 13-14):

434 Playa Chica (PC), transition sector (TS) and Colombia area (CA). PC section is composed,
 435 from bottom to top, of about 2 m of beachrock with 81% mean carbonate content. On top of
 436 this, it was found a 50 cm of weathering horizon (C-H) palaeosol, and about 2m of
 437 accumulation horizon (B-H) palaeosol, in which abundant gastropods appeared (PAC8-9).

438 Finally, covering the palaeosol facies a 50 cm of current sands were deposited (Fig. 13). TS
 439 section corresponds to 50 cm of beachrock and 30cm of C-H about 25 cm of B-H. Covering
 440 the palaeosol is about 30 cm of current sands. The CA section is composed of about 60 cm
 441 of beachrock, 60 cm of C-H and about 2 m of B-H, 30 cm of aeolianites and covering all
 442 40 cm of current sands facies. The thickest beachrock outcrop (and section) was found in
 443 PC. Meanwhile, the thickest palaeosol was found in PC, being CA the only place where
 444 aeolianites were observed.

447 Figure 13. Stratigraphic columns for sampling sections in Las Canteras beach A) Playa Chica (PC)
 448 B) Transition (TS) and C) Colombia area (CA). At the right of the section, the petrographic
 449 microscopy image of each sample and the carbonate content curve, in percentage.

452 Figure 14. Stratigraphic correlation between the three studied sections in Las Canteras beach, from
 453 southwest to northeast: CA, TS and PC sections.

454

455 5. Discussion

456

457 5.1. Compiling textural, geochemical, mineralogical and datation results

458

459 Isopaque LMC in Las Canteras beachrock seem reflects meteoric waters rather than the
 460 typical (HMC) cementation of shallow marine conditions. Its presents a distinctive LMC
 461 cementation of supratidal environments (Vieira and Ros, 2007; Kelletat 2006). By other
 462 hand, LMC can precipitate in the upper intertidal part of the beachrock, where high
 463 meteoric groundwater table in the backshore exist (Tucker and Wright, 1990). Another

464 possible scenario is a beach progradation, where beach sediment, or a pre-existent HMC
465 beachrock could be dissolved and recrystallized, by meteoric diagenesis, under an edaphic
466 context (Beier 1985). No remains of a HMC or dissolution features have been observed,
467 thus, the most plausible scenario would be a primary LMC meteoric beachrock, due to a
468 potentially abundant meteoric aquifer (intertidal scenario) or, to meteoric diagenesis related
469 with vadose-edaphic activity (vadose scenario). Both scenarios might happened if the two
470 LMC cementation generations are interpreted as an initial intertidal scenario (primary
471 micritic cement) and subsequently vadose scenario (second sparitic cementation). In
472 agreement with the asseveration of the more Mg the pore fluid content, the smaller calcite
473 crystals will be (Mauz et al. 2015).

474 Las Canteras beachrock outcropping 4.5 m, thus it can be consider a thick formation, which
475 could reflect a marked sea level fluctuation (Vieira and Ros, 2007). Besides, the optimal
476 environment for beachrock formation is feasibly by a sea-level regression tendency or by
477 an uplift context (Kellestat 2006), or a coastal progradation in Las Canteras beachrock
478 formation.

479 Both beachrock and aeolianites share the LMC cement occurrence (Figs. 7A-B-E-F, 10 A-
480 B-E-F, 11B-F). LMC meteoric cementation would be favoured in the coastal dunes
481 immersion, with an abundant meteoric groundwater (intertidal scenario). Besides, a
482 secondary cementation of acicular rhombic aragonite in the aeolianites (Figs. 7E-F, 10E-F,
483 11F), may be also formed in the marine phreatic environment, where it precipitates from
484 agitated seawater during repeated cycles of exposure, evaporation and immersion
485 (Desruelles et al., 2009). Higher Sr concentration observed in the aeolian aragonite (Table
486 5), might indicate a recent cementation (McCutcheon et al., 2017). Beachrocks characterise
487 a rapid cementation (<5 years; Wiles et al. 2018), thus, perhaps, aragonite cementation is at

488 present formed. Current sandy beach condition is, perhaps coetaneous with the second
489 aragonite cement in aeolianites facies.

490 Identifying petrographic evolution between facies (Fig. 8), the bioclast content decreases
491 while the lithoclast increases from beachrock to palaeolosol. It might be connected to the soil
492 activity of the fulvic acids that dilute and redistribute, on vadose conditions, the carbonate
493 with the subsequent formation of intraclasts and silty-clay matrix (cutans). It can be shown
494 in Fig. 7, that the partial porous cementation in the beachrock is reduced in the palaeolosol
495 (Fig. 7 A-B, C-D). The appearance of edaphic features together with a decrease of porosity
496 in PC and TS could be related to a net positive balance in the edaphic accumulation in
497 regards to dissolution process, and inversely to CA. Two palaeosol cements have been
498 identified, a micritic mud cementation of the palaeosol matrix, possibly associated with
499 meteoric vadose waters (Figs. 7C-D, 10C-D, 11D). Then, a secondary sparitic microcrystals
500 generation might precipitate. Both cementations may be included in a calcretisation process
501 (Alonso-Zarza and Wright, 2010).

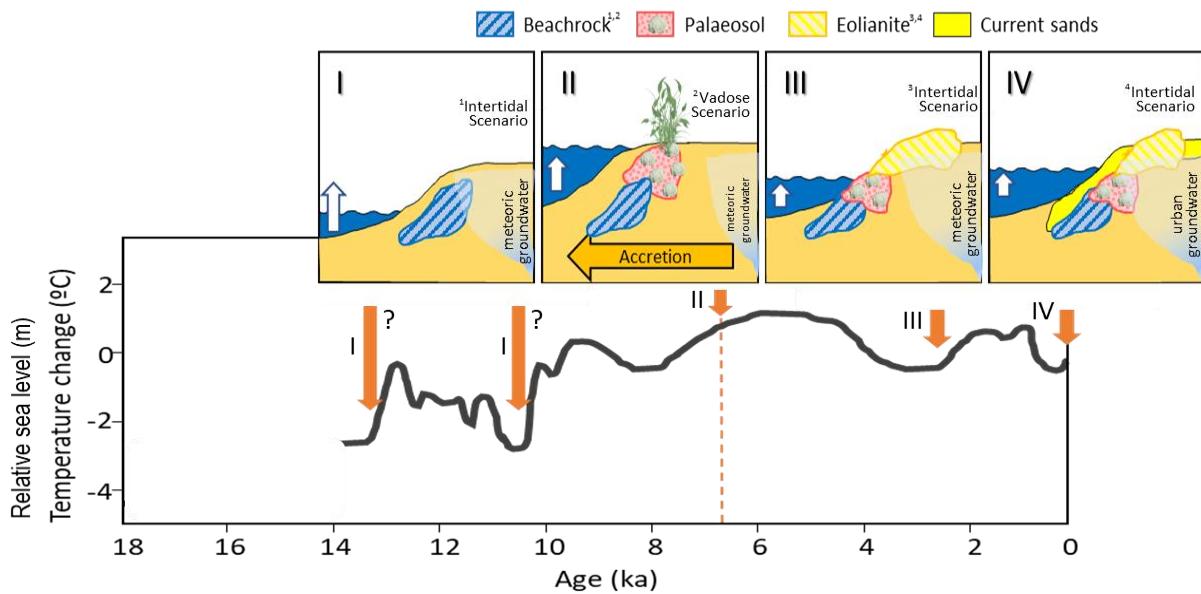
502 The occurrence of quartz in this palaeosol reflects the existence of Saharan dust events
503 during its formation (Menéndez et al., 2007). Quartz has been identified in the Canary
504 islands as an exotic mineral, due to that the silica-subsaturated nature of protoliths
505 precludes the occurrence of quartz in this volcanic rocks paragenesis (Carracedo et al.,
506 2002). The mean quartz concentration of Gran Canaria soils is about 38% (Menéndez et
507 al., 2007), 6% less in the mean quartz value of Las Canteras palaeosol (32%), and 7% more
508 than in Pleistocene palaeosol (25%; Menéndez et al., 2018).

509 Las Canteras beachrock has been included in “La Barra” formation (Balcells et al., 1990;
510 Pérez-Torrado and Mangas, 1992; Alonso, 1993), being part of La Terraza Baja de Las
511 Palmas (Last Interglacial MIS5e, Meco et al., 2002). However, the mineralogical,

512 petrographic and stratigraphic characteristics besides the distinguishing warm fauna and
513 flora from the MIS 5e identified in marine terraces of the Eastern Canary Islands
514 (Fuerteventura, Lanzarote and Gran Canaria; Balcells et al., 1990; Meco et al., 2002; Zazo
515 et al., 2002) do not correspond to those founded in Las Canteras beachrock. The hypothesis
516 is that Las Canteras beachrock would correspond to a younger period, to a Lower
517 Holocene, because a complete absence of MIS 5e fossils, phreatic LMC cementation, sand
518 composition similar to Las Canteras current sands, and Middle Holocene terrestrial
519 gastropod from of the upper edaphized level. Also, it is not that unusual as there are various
520 reported beachrock in the literature for Holocene ages in the Canary Islands and around the
521 world (Vousovoukas et al., 2007; Mangas et al., 2008). The formation of Las Canteras
522 beachrock had been formed before the palaeosol developed on it, ^{14}C dated by a
523 gastropod shell on 6.6 ka, and that before the aeolianites (<6.6 ka) that topping the
524 palaeosol. The palaeosol correlate with a similar date (6.2 ka, Hansen and Criado-
525 Hernández, 1996) from a terrestrial gastropods collected in an alluvial deposit of La
526 Ballena Gully. This age corresponds to a climatic optimum into a high stand sea level.
527 Therefore, the progradation of the alluvial middle Holocene fan of La Ballena gully
528 (Hansen and Criado-Hernández, 1996), might contributed to the necessary coastal
529 progradation in Las Canteras area for this subaerial deposits. Another aspect to take in
530 consideration is the progressive and continuous isostatic uplift of the coast area, due to the
531 fluvial erosion of the island (Menéndez et al., 2008). This palaeosol corresponds to the first
532 stage of the climatic optimum, with still low stand fluctuation levels for this period.
533 Alonso (1993) estimated the aeolianites age to Flandrian period (10 ka), after these coastal
534 dunes immersion. However, accordingly to the gastropod datation, it should be Upper
535 Holocene (<6.6 ka). Additionally, aeolianites have been reported southern, in Maspalomas

536 coastal dunefield (Hernández-Calvento, 2002), interpreted as well as ancient dunes but with
537 undetermined age.

538


539 5.2. Palaeoclimatic reconstruction

540
541 This palaeoclimatic reconstruction of Las Canteras beach was constructed in four stages,
542 starting with the sandy beach sedimentation (Stage I; Fig. 15), that will constitute the
543 beachrock skeletal. This seaward-deepening stratified body, may have been deposited on
544 the foreshore-intertidal environment. Then, LMC cementation in the foreshore-intertidal
545 position might formed the beachrock, thanks to a high and abundant meteoric groundwater
546 table in the backshore (intertidal scenario). It could be attributed to about 13ka or 10ka
547 rising sea levels, after the cooling Younger Dryas (Fig. 16). Las Canteras beachrock could
548 also be built during a coastal progradation (Stage II), where meteoric diagenesis linked with
549 edaphic activity had produced the LMC, welding the foreshore-intertidal sand body
550 (vadose scenario). In this situation, a well-developed soil would established on the
551 beachrock, producing both weathering (C-H) and accumulation (B-H) horizons. Rhizoliths
552 and terrestrial gastropods were found in B-H, being the latter ^{14}C dated on 6.6 ka. This age
553 might correspond with the second beachrock cementation, in the vadose scenario. Second
554 spar cement generation of Las Canteras beachrock would progress at the same time than the
555 palaeosol, during a 6.6 ka rising sea level but, otherwise necessary, coastal progradation
556 for beachrock edaphization. Contemporary to this temperature improvement, Corralejo and
557 La Monja beachrocks, in Fuerteventura, were forming (Meco et al., 2018).
558 Following the geological sequence, the next preserved facies corresponds to the
559 aeoleanites, vestige of an ancient coastal dunefield, developed probably on a sea

560 transgression (Stage III), the most favourable context to form those coastal dunes (Pye and
 561 Bowman, 1984). Subsequently, aeoleanites formation by LMC meteoric cementation would
 562 be favoured during the coastal dunes immersion, due to the progressing transgression, with
 563 an abundant meteoric groundwater (intertidal scenario). These sand dunes and its
 564 cementation might correspond to the 2-3 ka rising sea level period (Fig. 15), contemporary
 565 with La Jaqueta and El Matorral beachrocks formation in Fuerteventura (Meco et al., 2018).
 566 Stage IV may represent the current sandy beach condition, perhaps coetaneous with the
 567 second aragonite cement generation in the aeoleanites facies (intertidal scenario). In this
 568 case, the abundant meteoric groundwater might proceed from the urban groundwater.

569

570

571

572

573 Figure 15. The four stages (I-IV) proposed for Las Canteras beach palaeoenvironments, indicating
 574 the proposed position through Upper Pleistocene-Quaternary. Orange pointed line indicating around
 575 6.6 ka (^{14}C dated terrestrial gastropods from the palaeosol). Temperature change and relative sea

576 level curve assembled from Barusseau et al., 1989, accordingly Meco et al. 2018, the best fitting
577 for Canary Islands during the last 6.5ky; and from 6.5 to 13ky based on reconstructed air
578 temperatures from the Greenland GISP2 Ice core, Platt et al., (2017).

579

580 **6. Conclusions**

581

582 The present work is a multidisciplinary study of the Las Canteras beach outcrops that
583 permit to gather essential information to understand the palaeoenvironmental changes of
584 this coastal area. The main results obtained in this research are:

585 i) Four facies were identified. Their chronological order is (1) Upper Pleistocene-Lower
586 Holocene Beachrock facies, with a first LMC micritic cementation (>6.6 ka). (2)
587 Middle Holocene Palaeosol facies, accompanying a second LMC spar beachrock
588 cementation ^{14}C dated (~6.6 ka). (3) Upper Holocene Aeoleanites facies with a first
589 LMC micritic cementation (<6.6 ka), and (4) Current sands facies, accompanying a
590 second aragonite cementation in aeoleanites.

591 ii) Petrographic study showed that the carbonate fraction is comparable in all facies and
592 composed of bioclasts (mostly algae mesh, 17%, and mollusc, 7%). Lithoclasts are
593 predominantly constituted by sedimentary intraclasts (8%) and felsic rocks (6%). The
594 carbonate cement around the sand grains are crystals of micrite and sparite. The
595 beachrock and aeoleanites petrographic configuration is similar (abundance of
596 bioclasts, Lithoclasts and cement).

597 iii) LMC with Sr, Na, Fe and Mn traces appear as the major cement in beachrock,
598 palaeosol and aeoleanites, which might be precipitate in both intertidal and vadose

599 scenarios. Also, the aeoleanites contains a second generation of dispersing aragonite
600 crystals, rich in Sr, probably formed recently.

601 iv) The presence of quartz in the soil samples (32%) evidence the Saharan dust
602 accumulation in this environment during middle Holocene period, in minor amount
603 that nowadays (38%) but greater than in the Pleistocene (25%).

604 v) Four stages have been defined in the palaeoclimatic reconstruction of Las Canteras
605 beach (Fig. 16). Stage I: deposition of the foreshore-intertidal sand body, LMC micritic
606 cementation in an intertidal scenario due to an abundant meteoric groundwater in the
607 backshore. Stage II: coastal progradation with meteoric diagenesis due to beachrock
608 edaphization producing LMC sparite (vadose scenario). Stage III: coastal dunefield
609 development, probably during transgression and, subsequently immersion and
610 aeoleanites formation, by LMC cementation, within an abundant meteoric groundwater
611 (intertidal scenario). Stage IV: represents the current sandy beach, possibly coetaneous
612 with the second aragonite cement generation in the aeoleanites (intertidal scenario),
613 with abundant urban groundwater.

614

615

616 **Acknowledgments**

617 This work was supported by the CSO2016-79673-R and CSO2010-18150 research projects,
618 both funded by the Government of Spain, and by The Municipality of Telde (Gran
619 Canaria).

620

621 **CONFLICT OF INTEREST**

622 No conflict of interest was reported by the authors.

623

624

625 **References**

626 Alonso, I., 1993. Procesos sedimentarios en la playa de Las Canteras (Gran Canaria). Ph
627 D Dissertation. Universidad de Las Palmas de Gran Canaria.

628 Alonso, I., 1994. Spatial beach morphodynamics: an example from Canary Islands.
629 *Littoral* 94, 159–177.

630 Alonso, I., 2005. Costa Norte: Playa De Las Canteras. In: Tendencias actuales en
631 Geomorfología Litoral. L. Hernández-Calvento, I. Alonso, J. Mangas, A. Yanes
632 (Eds.). Universidad de Las Palmas de Gran Canaria. pp. 219–238.

633 Alonso, I., Vilas, F., 1994. The influence of boundary conditions on beach zonation.
634 *Coastal Dynamics* 94, 417–431.

635 Alonso, I., Vilas, F., 1996. Variabilidad sedimentaria en la playa de Las Canteras (Gran
636 Canaria). *Geogaceta* 20, 428–430.

637 Alonso-Zarza, A.M., Wright, V.P., 2010. Calcretes. In: Alonso-Zarza, A.M., Tanner, L.H.
638 (eds.), *Carbonates in Continental Settings: Facies, Environments, and Processes.*
639 *Developments in Sedimentology* Vol. 61. Elsevier, Amsterdam, pp. 225-268.

640 Balcells, R., Barrera-Morate, J. L., Ruiz, M.T., 1990. Mapa geomorfológico de la hoja
641 1101-I-II (Las Palmas de Gran Canaria). In: *Mapa geológico de España 1:25.000.*
642 ITGE.

643 Barusseau, J.P., Descamps, C., Giresse, P., Monteillet, J., Pazdur, M., 1989. Nouvelle
644 définition des niveaux marins le long de la côte nord-mauritanienne (Sud du Banc
645 d'Arguin) pendant les cinq derniers millénaires. *CR Acad Sci Paris.* 309 (II),
646 1019–1024.

647 Beier, J.A., 1985. Diagenesis of Quaternary Bahamian beachrock: petrographic and
648 isotopic evidence. *J. Sediment. Petrol.* 55(5), 755-761.

649 Blott, S.J., Pye, K., 2001. Technical Communication Gradistat: a Grain Size Distribution
650 and Statistics Package for the Analysis of Unconsolidated Sediments. *Earth*
651 *Surface Processes and Landforms* 26, 1237–1248.

652 Calvet, F., Cabrera, M.C., Carracedo, J.C., Mangas, J., Pérez-Torrado, F.J., Recio, C.,
653 Travé, A., 2003. Beachrocks from the island of La Palma (Canary Islands, Spain).
654 *Marine Geology* 197, 75–93.

655 Carracedo, J.C., Day, S., Guillou, H., Rodríguez Badiola, E., Canas, J., Pérez-Torrado,
656 F.J., 1998. Hotspot volcanism close to a passive continental margin: the Canary
657 Islands. *Geological Magazine* 135(5), 591–604.

658 Carracedo, J.C., Pérez-Torrado, F.J., Ancochea, E., Meco, J., Hernan, F., Cubas, C.R.,
659 Casillas, R., Rodriguez, E., Ahijado, A., 2002. Cenozoic volcanism II: the Canary
660 Islands. In: W. Gibbons, T. Moreno (Eds.). *The geology of Spain*, pp. 439–472.

661 Casalbore, D., Falese, F., Martorelli, E., Romagnoli, C., Chiocci, F.L., 2017.
662 Submarine depositional terraces in the Tyrrhenian Sea as a proxy for paleo-sea
663 level reconstruction: problems and perspective. *Quat Int.* 439, 169-180
664 <http://dx.doi.org/10.1016/j.quaint.2016.02.027>.

665 Casanova, M., 2015. Sedimentary budget on Las Canteras beach, Gran Canaria (Canary
666 Islands, Spain). Master Dissertation, Universidad de Las Palmas de Gran Canaria.

667 Cooper, J.A.G., Green, A.N., Wiles, E., 2017. Beachrock genesis and morphology on a
668 paraglacial beach. *Sedimentary Geology* 360, 47-63.
669 <http://dx.doi.org/10.1016/j.sedgeo.2017.08.005>

670 De Carvalho, G.S., Granja, H.M., Loureiro, E., Henriques, R., 2006. Late Pleistocene and
671 Holocene environmental changes in the coastal zone of northwestern Portugal.
672 *Journal of Quaternary Science* 21(8), 859-877.

673 Desruelles, S., Fouache, E., Ciner, A., Dalongeville, R., Pavlopoulos, K., Kosun, E.,
674 Coquinot, Y., Potdevin, J.L., 2009. Beachrocks and sea level changes since Middle
675 Holocene: comparison between the insular group of Mykonos–Delos–Rhenia
676 (Cyclades, Greece) and the southern coast of Turkey. *Global and Planetary Change*
677 66, 19–33. <https://doi.org/10.1016/j.gloplacha.2008.07.009>

678 Dickinson, W.R., 2001. Paleoshoreline record of relative Holocene sea levels on Pacific
679 islands. *Earth-Science Reviews* 55, 191-234.

680 Falkenroth, M., Schneider, B., Hoffmann, G., 2019. Beachrock as sea-level indicator – a
681 case study at the coastline of Oman (Indian Ocean). *Quaternary Science Reviews*
682 206, 81-98.

683 Ferrer-Valero, N., Hernández-Calvento, L., Hernández-Cordero, A.I., 2017. Human
684 impacts quantification on the coastal landforms of Gran Canaria Island (Canary
685 Islands). *Geomorphology* 286, 58–67.

686 Frébourg, G., Hasler, C.-A., Le Guern, P., Davaud, E., 2008. Facies characteristics
687 anddiversity in carbonate eolianites. *Facies* 54, 175-191.
688 <https://doi.org/10.1007/s10347-008-0134-8>

689 Friedman, G.M., 2004. Holocene chronostratigraphic beachrocks and their geologic
690 climatic significance. *Geochemical Society Special Publications* 9, 125–142.

691 Fuster, J.M., Hernandez-Pacheco, A., Muñoz, M., Rodriguez Badiola, E., Garcia Cacho,
692 L., 1968. *Geology and volcanology of the Canary Islands, Gran Canaria*. Instituto
693 Lucas Mallada. Madrid.

694 Hansen, A., Criado-Hernández, C., 1996. El cono aluvial Holoceno del Barranco de La
695 Ballena (Las Palmas de Gran Canaria). IV Reunión de Geomorfología 10, 261–
696 270.

697 Haredy, R.A, Ghandour, I.M., Erginal, A.E., Bozcu, M., 2019. Beachrock Cementation
698 Patterns Along the Gulf of Aqaba Coast, Saudi Arabia. Arabian Journal for
699 Science and Engineering 44,479-487. <https://doi.org/10.1007/s13369-018-3624-1>

700 Hernández-Calvento, L., 2002. Análisis de la evolución del sistema de dunas de
701 Maspalomas, Gran Canaria, Islas Canarias (1960-2000). Ph D Thesis, Universidad
702 de Las Palmas de Gran Canaria.

703 Hernández-Calvento, L., Mangas, J., 2004. Caracterización de los materiales
704 sedimentarios aflorantes en el sistema de dunas de Maspalomas (Gran Canaria,
705 Islas Canarias). In: R. Blanco-Chao, J. López Bedoya, A. Pérez-Alberti (Eds.).
706 Procesos geomorfológicos y evolución costera: actas de la II Reunión de
707 Geomorfología Litoral. pp. 67–81

708 Hulseman, J., 1966. An inventory of marine carbonate materials. Journal of Sedimentary
709 Petrology ASCE 36 (2), 622– 625.

710 Jiang, T., Liu, X., Yu, T., Hu, Y., 2019. OSL dating of late Holocene coastal sediments
711 and its implication for sea-level eustacy in Hainan Island, Southern China.
712 Quaternary International 468, 24-32. <https://doi.org/10.1016/j.quaint.2017.11.039>

713 Kelletat, D., 2006. Beachrock as sea-level indicator? Remarks from a geomorphological
714 point of view. J Coast Res. 22 (6), 1555–1564. : <http://dx.doi.org/10.2112/04-0328>

715 Kneale, D., Viles, H.A., 2000. Beach cementation: incipient CaCO₃-cemented beachrock
716 development in the upper intertidal zone, North Uist, Scotland. Sedimentary
717 Geology 132, 165-170.

718 Mangas, J., Cabrera, L.L., Menéndez, I., Alonso, I., 2008. Beachrock, biolitita y
719 sedimentos arenosos costeros en la playa de Famara (NE de Lanzarote). Geotemas
720 10, 559–562.

721 Mangas, J., Menendez, I., Ortiz, J.E., Torres, T., 2008. Eolianitas costeras del Pleistoceno
722 superior en el “Sitio de Interés Científico de Tufia” (Gran Canaria):
723 sedimentología, petrografía y aminocronología. Geotemas 1405–1408.

724 Martínez-Martínez, J., Espejo, A., Bilbao, A., Cabrera, R., Álvarez-Espejo, R., Alonso, I.,
725 del Rosario Cabrera, M.D., 1990. Analysis of sedimentary processes on the Las
726 Canteras beach (Las Palmas, Spain) for its planning and management. Engineering
727 Geology 29(4), 377–386.

728 Mauz, B., Vacchi, M., Green, A., Hoffmann, G., Cooper, A., 2015. Beachrock: a tool for
729 reconstructing relative sea level in the far-field. Mar Geol. 362, 1–16.
730 <http://dx.doi.org/10.1016/j.margeo.2015.01.009>

731 McCutcheon, J., Nothdurft, L.D., Webb, G.E., Shuster, J., Nothdurft, L., Paterson, D.,
732 Southam, G., 2017. Building biogenic beachrock: visualizing microbially-
733 mediated carbonate cement precipitation using XFM and a strontium tracer. Chem
734 Geol. 465, 21–34

735 Meco, J., Guillou, H., Carracedo, J.C., Lmoschitz, A., Ramos, A.J., Rodríguez-Yáñez,
736 J.J., 2002. The maximum warmings of the Pleistocene world climate recorded in
737 the Canary Islands. Palaeogeography Palaeoclimatology Palaeoecology 185(1),
738 197–210.

739 Meco, J., Muhs, D.R., Fontugne, M., Ramos, A.J.G., Lmoschitz, A., Patterson, D., 2011.
740 Late Pliocene and Quaternary Eurasian locust infestations in the Canary
741 Archipelago. Lethaia 44(4), 440–454.

742 Meco, J., Lomoschitz, A., Rodríguez, Á., Ramos, A. J. G., Betancort, J.F., Coca, J., 2018.

743 Mid and Late Holocene sea level variations in the Canary Islands.

744 *Palaeogeography Palaeoclimatology Palaeoecology* 507, 214–225.

745 <https://doi.org/10.1016/j.palaeo.2018.07.020>

746 Menéndez, I., Díaz-Hernández, J.L., Mangas, J., Alonso, I., Sánchez-Soto, P.J., 2007.

747 Airborne dust accumulation and soil development in the North-East sector of Gran

748 Canaria (Canary Islands, Spain). *Journal of Arid Environments* 71(1), 57–81.

749 <http://dx.doi.org/10.1016/j.jaridenv.2007.03.011>

750 Menéndez, I., Silva, P.G., Martín-Betancor, M., Pérez-Torrado, F.J., Guillou, H., Scaillet,

751 S. 2008. Fluvial dissection, isostatic uplift, and geomorphological evolution of

752 volcanic islands (Gran Canaria, Canary Islands, Spain). *Geomorphology* 102(1),

753 189–203. <http://dx.doi.org/10.1016/j.geomorph.2007.06.022>

754 Menéndez, I., Mangas, J., Tauler, E., Barrón, V., Torrent, J., Betancort, J. F., Santana, A.,

755 Recio, J.M., Quevedo-González, L.A., Alonso, I., Méndez-Ramos, J., 2018.

756 Aeolian influx and related environmental conditions on Gran Canaria during the

757 early Pleistocene. *Quaternary Research* 1–16. <https://doi.org/10.1017/qua.2018.64>

758 Menéndez, I., Campeny, M., Quevedo-González, L., Mangas, J., Llovet, X., Tauler, E.,

759 Barrón, V., Torrent, J., Méndez-Ramos, J., 2019. Distribution of REE-bearing

760 minerals in felsic magmatic rocks and paleosols from Gran Canaria, Spain:

761 Intraplate oceanic islands as a new example of potential, non-conventional sources

762 of rare-earth elements, *Journal of Geochemical Exploration*

763 <https://doi.org/10.1016/j.gexplo.2019.06.007>

764 Murray-Wallace, C.V., 2002. Pleistocene coastal stratigraphy, sea-level highstands and
765 neotectonism of the southern Australian passive continental margin - A review.
766 *Journal of Quaternary Science* 17(5–6), 469–489.

767 Ortiz, J.E., Torres, T., Yanes, Y., Castillo, C., De la Nuez, J., Ibáñez, M., Alonso, M.R.,
768 2006. Climatic cycles inferred from the aminostratigraphy and aminochronology
769 of Quaternary dunes and palaeosols from the eastern islands of the Canary
770 Archipelago. *Journal of Quaternary Science* 21(3), 287–306.

771 Pérez-Torrado, F.J., Alonso, I., 1992. Estudio sedimentológico de la playa de Las
772 Canteras (Gran Canaria). Datos preliminares. *III Congreso Geológico de España* 2,
773 131–135.

774 Pérez-Torrado, F.J., Mangas, J., 1992. Origen y evolución geológica de la barra de las
775 Canteras (Las Palmas de Gran Canaria). *Vector Plus* 4–13.

776 Pérez-Torrado, F.J., Calvet, F., Cabrera, M.C., Mangas, J., 2000. Estudio de los depósitos
777 litorales de la playa de Las Canteras, Las Palmas de Gran Canaria. *Taller y*
778 *Tertulia de Oceanografía*, 2.

779 Platt, D.E., Haber, M., Dagher-Kharrat, M.B., Douaihy, B., Khazen, G., Ashrafian Bonab,
780 M., Salloum, A., Mouzaya, F., Luiselli, D., Tyler-Smith, C., Colin Renfrew, C.,
781 Matisoo-Smith, E., Zalloua, P.A., 2017. Mapping post-glacial expansions: the
782 peopling of Southwest Asia. *Sci Rep.* 7, 40338. <http://dx.doi:10.1038/srep40338>

783 Pye, K. Bowman, G.M., 1984. The Holocene marine transgression as a forcing function in
784 episodic dune activity on the eastern Australian coast. In: THOM, B.G. (Ed.),
785 *Coastal Geomorphology in Australia*. Sydney. Academic Press, pp. 179–192.

786 Rodriguez-Gonzalez, A., Fernandez-Turiel, J.L., Perez-Torrado, F.J., Hansen, A.R.,
787 Aulinas, M., Carracedo, J.C., Gimeno, D., Guillou, H., Paris, R., Paterne, M.,

788 2009. The Holocene volcanic history of Gran Canaria island: implications for
789 volcanic hazards. *Journal of Quaternary Science* 24, 697–709.

790 Santana-Cordero, A.M., Bürgi, M., Hersperger, A.M., Hernández-Calvento, L., Monteiro-
791 Quintana, M.L., 2017. A century of change in coastal sedimentary landscapes in
792 the Canary Islands (Spain): change, processes, and driving forces. *Land Use Policy*
793 68, 107–116. <http://dx.doi.org/10.1016/j.landusepol.2017.07.028>

794 Schmincke, H.U., Freundt, A., 1990. *Gran Canaria: Geological Field Guide*. Pluto Press.

795 Schmincke, H.U., Sumita, M., 1998. Volcanic evolution of Gran Canaria reconstructed
796 from apron sediments: synthesis of vicap project drilling. *Proceedings of the*
797 *Ocean Drilling Program, Scientific Results* 157(23), 443–469.

798 Schneider, J.L., Pérez-Torrado, F.J., Gimeno Torrente, D., Wassmer, P., Cabrera Santana,
799 M.C., Carracedo, J.C., 2004. Sedimentary signatures of the entrance of coarse-
800 grained volcaniclastic flows into the sea: The example of the breccia units of the
801 *Las Palmas Detritic Formation* (Mio - Pliocene, Gran Canaria, Eastern Atlantic,
802 Spain). *Journal of Volcanology and Geothermal Research* 138(3–4), 295–323.

803 Schmincke, H.U., Sumita, M., 2010. Geological evolution of the Canary Islands: a young
804 volcanic archipelago adjacent to the old African Continent. Görres, Koblenz (Ed.)
805 200 pp.

806 Sperazza, M., Moore, J.N., Hendrix, M.S., 2004. High-Resolution Particle Size Analysis
807 of Naturally Occurring Very Fine-Grained Sediment through Laser
808 Diffractometry. *Journal of Sedimentary Research* 74(5), 736–743.

809 Spurgeon, D., Davis, R.A.J., Shinnu, E.A., 2003. Formation of ‘Beach Rock’ at Siesta
810 Key, Florida and its influence on barrier island development. *Marine Geology* 200,
811 19–29. [http://dx.doi:10.1016/S0025-3227\(03\)00162-2](http://dx.doi:10.1016/S0025-3227(03)00162-2)

812 Strasser, A., Davaud, E., 1986. Formation of Holocene limestone sequences by
813 progradation, cementation, and erosion: two examples from the Bahamas. *J*
814 *Sediment Petrol.* 56, 422–428.

815 Stuiver, M., Braziunas, T.F., 1993. Modeling atmospheric ^{14}C influences and ^{14}C ages of
816 marine samples to 10 000 BC. *Radiocarbon* 35(1), 137–189.

817 Talma, A.S., Voguel, J.C., 1993. A simplified approach to calibrating ^{14}C dates.
818 *Radiocarbon* 35(2), 317–322.

819 Tucker, M.E., Wright, V.P., 1990. *Carbonate Sedimentology*. Blackwell Scientific,
820 Oxford. 482 pp.

821 Vieira, M.M., De Ros, L.F., 2007. Cementation patterns and genetic implications of
822 Holocene beachrocks from northeastern Brazil. *Sediment Geol.* 192 (3–4), 207–
823 230. <http://dx.doi.org/10.1016/j.sedgeo.2006.04.011>

824 Voudoukas, M.I., Velegrakis, A.F., Plomaritis, T.A., 2007. Beachrock occurrence,
825 characteristics, formation mechanisms and impacts. *Earth-Science Reviews* 85(1–
826 2), 23–46. <http://dx.doi.org/10.1016/j.earscirev.2007.07.002>

827 Walker, G. 1990. *Geology and Volcanology of the Hawaiian Islands*. Pacific Science,
828 44(4), 315–347.

829 Wiles, E., Green, A.N., Cooper, J.A.G., 2018. Rapid beachrock cementation on a South
830 African beach: Linking morphodynamics and cement style. *Sedimentary geology*
831 378, 13–18. <https://doi.org/10.1016/j.sedgeo.2018.10.004>

832 Yao, Z., Shi, X., Li, X., Liu, Y., Liu, J., Qiao, S., Bai, Y., Wang, X., Zhu, A., Wang, X.,
833 2017. Sedimentary environment and paleo-tidal evolution of the eastern Bohai
834 Sea, China since the last glaciation. *Quat Int.* 440, 129–138.
835 <http://dx.doi.org/10.1016/j.quaint.2016.04.010>

836 Zazo, C., Goy, J.L., Hillaire-Marcel, C., Gillot, P.Y., Soler, V., González, J.Á., Dabrio,
837 C.J., Ghaleb, B., 2002. Raised marine sequences of Lanzarote and Fuerteventura
838 revisited - A reappraisal of relative sea-level changes and vertical movements in
839 the eastern Canary Islands during the Quaternary. *Quaternary Science Reviews*
840 21(18–19), 2019–2046.

841

842