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Abstract 
 

This paper examines the volatility interconnection between the main 

cryptocurrencies and traditional currencies during the period of February 

2014-September 2018 using both a framework proposed by Diebold and 

Yilmaz (2014) and the modified approach of Antonakakis and Gabauer 

(2017). Our results suggest that a 34.43%, of the total variance of the 

forecast errors is explained by shocks across the eight examined 

cryptocurrencies and traditional currencies, indicating that the remainder 

65.57% of the variation is due to idiosyncratic shocks. Furthermore, we find 

that volatility connectedness varies over time, with a surge during periods of 

increasing economic and financial instability. When we aggregate both 

markets by blocks, we find that the block of traditional currencies and the 

block of cryptocurrencies are mostly disconnected with periods of mild net 

volatility spill over between both blocks. Finally, our findings suggest that 

financial market variables are the main drivers of total connectedness within 

the traditional currencies, while the cryptocurrency-specific variables are 

identified as the key determinant for the total connectedness within the 

traditional currencies and a combination of business cycles and 

cryptocurrency-specific variables explain the directional volatility 

connectedness between both blocks. 
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1. Introduction 

Over the past few years, cryptocurrencies have experienced increased growth as well as 

sharp rises and falls, attracting extensive attention from policymakers, researchers, and 

investors1. Like traditional currencies, cryptocurrencies are intended to function as a store 

of value, a medium of exchange and a unit of account. They differ from the latter in that 

they are not issued by central banks, and in that they can be transferred electronically 

between users without the involvement of intermediaries or the oversight of a central 

authority (Treasury Committee, 2018). Moreover, cryptocurrencies lack intrinsic value 

capable of generating revenue like regular products or services2. Whereas traditional 

currencies rely on political and legal mechanisms for value and legitimacy, 

cryptocurrencies rely only on the cryptographic integrity of the network itself. 

In order to test a popular view that cryptocurrencies may serve as another medium of 

exchange, this paper examines whether there is consistent evidence of systematic 

traditional currency exposures in cryptocurrencies. In particular, by studying volatility 

connectedness between cryptocurrencies and traditional currencies, we explore how the 

extreme volatility and trends observed in many cryptocurrencies has been transmitted 

within them and across currencies, analyzing the degree to which cryptocurrencies 

provide diversification benefits. 

To our best knowledge, this study contributes to the literature in four important aspects. 

First, we are the first to comprehensively analyze of volatility connectedness between 

four highly capitalized cryptocurrencies and four major exchange rates using a framework 

                                                            
1  See BIS (2018) and Fernandez-Villaverde and Sanches (2018) for an introduction to 

cryptocurrencies and Corbet et al. (2019) for a systematic review of the empirical literature on 

cryptocurrencies. 
2  Schiller (2017) contents that trading cryptocurrencies cannot be seen as investing but instead as 

a form of speculation that is similar to gambling. 
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proposed by Diebold and Yilmaz (2014), providing insights on the comparison of the 

extent and the nature of interdependencies and spillovers between them. Second, we apply 

a generalization of the connectedness framework developed by Greenwood-Nimmo et al. 

(2015, 2016) to directly capture connectedness within both groups of currencies or blocks. 

Third, we implement the Time-Varying Parameter Vector Autoregressive (TVP-VAR, 

hereafter) connectedness approach developed by Antonakakis and Gabauer (2017) to 

evaluate both the net directional connectedness for each currency. Fourth, we analyze the 

potential determinants of the detected dynamic volatility connectedness making use of 

stepwise regressions. 

Our results suggest that a 34.43%, of the total variance of the forecast errors is explained 

by shocks across the eight examined cryptocurrencies and traditional currencies, 

indicating that the remainder 65.57% of the variation is due to idiosyncratic shocks. 

Furthermore, we find that volatility connectedness varies over time, with a surge during 

periods of increasing economic and financial instability. When we aggregate each market 

by blocks, we find that the block of traditional currencies and the block of 

cryptocurrencies are mostly disconnected with periods of mild net volatility spillover 

between both blocks. Finally, our findings suggest that financial market variables are the 

main drivers of total connectedness within the traditional currencies, while the 

cryptocurrency-specific variables are identified as the key determinant for the total 

connectedness within the traditional currencies and a combination of business cycle and 

cryptocurrency-specific variables explain the directional volatility connectedness 

between both blocks. 

The paper proceeds as follows. Section 2 provides a brief review of the relevant literature. 

Section 3 outlines the econometric framework to quantify both the total and directional 

volatility connectedness. Section 4 presents our data and a preliminary analysis. In 
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Section 5 we report the empirical results (both static and dynamic) obtained for our 

sample of four market volatility indices (a system-wide measure of connectedness), while 

Section 6 explores the determinants of the detected total and directional dynamic 

connectedness Finally, Section 7 summarizes the findings and offers some concluding 

remarks. 

 

2. Related literature 

Given the media attention, one strand of the literature has studied Bitcoin from a financial 

perspective. Another strand of literature examines the relationship of cryptocurrencies to 

other financial assets.  

Regarding the first category, Cheah and Fry (2015) show that, as with many asset classes, 

Bitcoin exhibits speculative bubbles and that its fundamental price is zero. Dwyer (2015) 

shows that the average monthly volatility of Bitcoin is higher than that of gold or a set of 

foreign currencies.  Dyhrberg (2016) shows that Bitcoin can act as a hedge against the 

US dollar and the UK stock market, sharing similar hedging capabilities to gold. Bouri et 

al (2017), employing Engle (2002)’s dynamic conditional correlation model, show 

limited evidence of the hedging and safe haven properties of Bitcoin, although it can still 

be an effective diversifier.  

More recently, Platanakis and Urquhart (2018) examine the benefit of including this 

cryptocurrency in a traditional stock-bond portfolio, finding that across all different asset 

allocation strategies and risk aversions the benefits of Bitcoin are quite considerable. 

Furthermore, they also show that including Bitcoin in a stock, bond and commodity 

portfolio offers substantially higher risk-adjusted returns. 

Using methods recently proposed by Phillips et al. (2011) and Phillips et al. (2015), 

Cheung et al. (2015) observe several short-lived bubbles and three huge bubbles in 



5 
 

Bitcoin prices during the period 2011-2013, Guegan and Frunza (2018) find episodes of 

bubbles in the Bitcoin/USD rates in 2013 and 2017, while Corbet et al. (2018a) detect 

bubble-like behavior in Bitcoin around the 2013/2014 turn of the year and in early 2017, 

and in the early 2016 and mid-2017 periods for Ethereum. 

Finally, Baur et al. (2018) analyze the statistical properties of Bitcoin and find that it is 

uncorrelated with traditional asset classes such as stocks, bonds and commodities both in 

normal times and in periods of financial turmoil. 

As for the empirical studies carrying out a more comprehensive analysis by considering 

a wider group of cryptocurrencies, Bouri et al (2019), applying a rolling-window analysis, 

find significant time-varying herding behavior in the digital currency market, mostly 

driven by economic policy uncertainty. 

Employing different long-memory methods, Caporale and Gil-Alana (2018) detect 

persistence in the case of the four main digital currencies (BitCoin, LiteCoin, Ripple, 

Dash) over the sample period 2013-2017, representing evidence of market inefficiency. 

Bação et al. (2018) investigate the information transmission between Bitcoin, Litecoin, 

Ripple, Ethereum and Bitcoin Cash, using a VAR modelling approach and associated 

generalized impulse response functions. Their results suggest that most of the information 

transmission is contemporaneous, although some lagged feedback effects are found, 

mainly from other digital currencies to Bitcoin. 

Walther and Klein (2018) apply the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH)-Mixed-data sampling (MIDAS) framework to forecast the 

daily, weekly, and monthly volatility of Bitcoin, Etherium, Litecoin, and Ripple as well 

as the digital currency index CRIX, finding that the most important exogenous drivers of 

volatility in cryptocurrency markets is the Global Real Economic Activity. Their results 
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suggest that the volatility of digital currencies appears to be driven by the global business 

cycle rather than country-specific economic or financial variables. 

Kurka (2019) examines connectedness between commodities, foreign exchange, stocks, 

financials and Bitcoin over the period June 2011 to December 2015. He documents a very 

low level of connectedness between Bitcoin as representative of cryptocurrencies and 

other traditional assets, the only exception being gold which receives a substantial amount 

of shocks from the Bitcoin market. 

Baumöhl (2019) assess the interrelationship between six major currencies (Euro, 

Japanese Yen, British Pound, Swiss Franc, Canadian Dollar and Chinese Yuan) and six 

digital currencies (Bitcoin, Ether, Ripple, Litecoin, Stellar Lumens and NEM) using the 

quantile cross-spectral approach over the period of 1 September 2015 to 29 December 

2017. His findings indicate that the intra-group dependencies are positive in the lower 

extreme quantiles, while inter-group dependencies are negative, suggesting that it is 

worth diversifying between these two currency groups. 

Liu and Tsyvinski (2018) study the exposure of Bitcoin, Ripple and Ethereum returns to 

major currencies (Australian Dollar, Canadian Dollar, Euro, Singaporean Dollar, and UK 

Pound). The authors find that although these major currencies strongly commove, being 

the exposures of that digital currencies to these currencies small and not statistically 

significant. They conclude that there is no consistent evidence of systematic currency 

exposures in digital currencies. 

Corbet et al. (2018b) analyze, in the time and frequency domains, the relationships 

between Bitcoin, Ripple and Litecoin and a variety of other financial assets (MSC GSCI 

Total Returns Index, the US$ Broad Exchange Rate, the SP500 Index and the COMEX 

closing gold price, VIX and the Markit ITTR110 index). Their results suggest that digital 

currencies are highly connected to each other and disconnected from mainstream assets, 
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but the digital currency market contains its own idiosyncratic risks that are difficult to 

hedge against. 

Yi et al (2018) study volatility connectedness between Bitcoin, Ripple, Litecoin, 

Peercoin, Namecoin, Feathercoin, Novacoin and Terracoin using daily data covering the 

period 4 August 2013 to 1 April 2018. They find that the total volatility connectedness 

between eight cryptocurrencies fluctuated periodically over the sample period and 

increased when the market is experiencing unstable economic conditions or unpredictable 

exogenous shocks. Yi et al (2018) further construct a volatility connectedness network 

linking 52 cryptocurrencies, finding that these 52 cryptocurrencies are tightly 

interconnected and “mega-cap” cryptocurrencies are more likely to propagate volatility 

shocks to others. 

Ji et al. (2019) examine dynamic connectedness across six large cryptocurrencies 

(Bitcoin, Ethereum, Ripple, Litecoin, Stellar and Dash) from August 7, 2015 to February 

22, 2018. Their results show that Litecoin and Bitcoin are at the centre of the connected 

network of returns, being Ripple and Ethereum the top recipients of negative-return 

shocks, whereas Ethereum and Dash exhibit very weak connectedness via positive 

returns. Regarding volatility spillovers, Ji et al. (2019) find that Bitcoin is the most 

influential, followed by Litecoin; Dash exhibits a very weak connectedness. Antonakakis 

et al. (2019) employ the TVP-FAVAR connectedness approach in order to investigate the 

transmission mechanism in the cryptocurrency market, concentrating on 9 

cryptocurrencies. The authors find that the dynamic total connectedness across those 

cryptocurrencies exhibits large dynamic variability ranging between 25% and 75%, 

particularly, periods of high (low) market uncertainty correspond to strong (weak) 

connectedness. 
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Finally, Hong et al. (2018) analyze a dual currency regime with fiat currency and digital 

currency and investigate potential crowding-out effects of fiat currency or digital 

currency under the framework of the traditional monetary economic model. They find 

that crowding out only occurs under extreme assumptions: extremely high costs 

associated with the use of one currency and extremely low costs associated with the use 

of the other currency. 

Our paper differs from the previous literature in several important aspects. First, we 

analyze of volatility connectedness between four highly capitalized cryptocurrencies and 

four major exchange rates applying the framework proposed by Diebold and Yilmaz 

(2014), together with the generalizations of the connectedness framework developed by 

Greenwood-Nimmo et al. (2015, 2016) to directly capture connectedness within both 

groups of currencies or blocks, and the TVP-VAR connectedness approach developed by 

Antonakakis and Gabauer (2017) to evaluate the dynamic total and directional 

connectedness for each currency. Finally, we analyze the potential determinants of the 

detected dynamic volatility connectedness making use of stepwise regressions. 

 

3. Econometric methodology  

The main tool for measuring the amount of connectedness is based on a decomposition 

of the forecast error variance. This section presents the econometric methodology used in 

the empirical analysis of the total and directional connectedness between cryptocurrencies 

and traditional currencies volatilities analyzed in the paper. We divide the presentation 

into three subsections. The first one briefly describes the methodological econometric 

framework of Diebold and Yilmaz (2014, 2015, 2016). In the second subsection, we 

present a generalization of the connectedness framework developed by Greenwood-

Nimmo et al. (2015, 2016) to directly capture connectedness between subgroups of 
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variables or blocks. Finally, subsection 3.3 outlines the dynamic connectedness procedure 

based on TVP-VAR provided by Antonakakis and Gabauer (2017). 

3.1 Diebold and Yilmaz’s connectedness. 

Given a multivariate empirical time series, the forecast error variance decomposition is 

obtained from the following steps: 

1. Fit a reduced-form vector autoregressive (VAR) model to the series, 

𝑌𝑡 = 𝛽𝑌𝑡−1 + 𝜀𝑡 ,  𝜀𝑡 ∼ 𝑁(0, 𝛴)    (1) 

where 𝑌𝑡, represents an Nx1 series vector at time t,  is an NxNp dimensional coefficient 

matrix and  t  is an Nx1 dimensional error-disturbance vector with an NxN variance-

covariance matrix,  . 

2. Using series data up to and including time t, establish an H period-ahead forecast (up 

to time t + H). 

3. Decompose the error variance of the forecast for each component with respect to shocks 

from the same or other components at time t. 

Diebold and Yilmaz (2014) propose several connectedness measures built from pieces of 

variance decompositions in which the forecast error variance of variable i is decomposed 

into parts attributed to the various variables in the system. Their approach has the 

considerable advantage that it fully accounts for contemporaneous effects and it also 

directly measures not only the direction but also the strength of linkages among the 

variables under study. This subsection provides a summary of their connectedness index 

methodology. 

Let us denote by 
H

ijd the ij-th H-step variance decomposition component (i.e., the fraction 

of variable i’s H-step forecast error variance due to shocks in variable j). The 
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connectedness measures are based on the “non-own”, or “cross”, variance 

decompositions, 
H

ijd , , 1, , , . i j N i j  

Consider an N-dimensional covariance-stationary data-generating process (DGP) with 

orthogonal shocks: ,)( tt uLx   ...,)( 2

210  LLL .),( IuuE tt   Note that 

0 need not be diagonal. All aspects of connectedness are contained in this very general 

representation. Contemporaneous aspects of connectedness are summarized in 0  and 

dynamic aspects in ,...}.,{ 21   Transformation of ,...},{ 21   via variance 

decompositions is needed to reveal and compactly summarize connectedness. Diebold 

and Yilmaz (2014) propose a connectedness table such as Table 1 to understand the 

various connectedness measures and their relationships. Its main upper-left NxN block, 

which contains the variance decompositions, is called the “variance decomposition o 

connectedness matrix,” and is denoted by [ ].H H

ijD d   

11 12 1

21 22 2

1 2

...

...

...

H H H

N

H H H

H N

H H H

N N NN

d d d

d d d
D

d d d

 
 
 


 
 
  

     (2) 

The connectedness table increases 
HD  with a rightmost column containing row sums, a 

bottom row containing column sums, and a bottom-right element containing the grand 

average, in all cases for .i j  

[Insert Table 1 here] 

The off-diagonal entries of 
HD are the parts of the N forecast-error variance 

decompositions of relevance from a connectedness perspective. In particular, the gross 

pairwise directional connectedness from j to i is defined as follows: 
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.H

ij

H

ji dC       (3) 

Since in general ,H

ij

H

ji CC    the net pairwise directional connectedness from j to i, can 

be defined as: 

.H

ji

H

ij

H

ij CCC       (4) 

As for the off-diagonal row sums in Table 1, they give the share of the H-step forecast-

error variance of variable xi coming from shocks arising in other variables (all others, as 

opposed to a single other). The off-diagonal column sums provide the share of the H-step 

forecast-error variance of variable xi going to shocks arising in other variables. Hence, 

the off-diagonal row and column sums, labelled “from” and “to” in the connectedness 

table, offer the total directional connectedness measures. In particular, total directional 

connectedness from others to i is defined as 

,
1





 
N

ij
j

H

ij

H

i dC      (5) 

and total directional connectedness from j to others is defined as 

1

.
N

H H

j ij

i
j i

C d




      (6) 

We can also define net total directional connectedness as 

.
  H

i

H

i

H

i CCC     (7) 

Finally, the grand total of the off-diagonal entries in DH (equivalently, the sum of the 

“from” column or “to” row) measures total connectedness: 

.
1

1,






N

ij
ji

H

ij

H d
N

C     (8) 
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For the case of non-orthogonal shocks, the variance decompositions are not as easily 

calculated as before, because the variance of a weighted sum is not an appropriate sum of 

variances. Otherwise, methodologies for providing orthogonal innovations like 

traditional Cholesky-factor identification may be sensitive to ordering. Therefore, 

following Diebold and Yilmaz (2014), a generalized variance decomposition (GVD), 

which is invariant to ordering, proposed by Koop et al. (1996) and Pesaran and Shin 

(1998) will be used. The H-step generalized variance decomposition matrix is defined as 

gH gH

ijD d    , where 

 

 

1
2

1 '

0

1
' '

0












 



 





H

jj i h j
gH h
ij H

i h h

h

i

e e

d

e e

     (9) 

In this case, je  is a vector with jth element unity and zeros elsewhere; h  is the 

coefficient matrix in the infinite moving-average representation from VAR;   is the 

covariance matrix of the shock vector in the non-orthogonalized-VAR, jj  being its jth 

diagonal element. In this GVD framework, the lack of orthogonality means that the rows 

of 
gH

ijd  do not have sum unity and, in order to obtain a generalized connectedness index 

g g

ijD d    , the following normalization is necessary: 

1

,

g

ijg

ij N
g

ij

j

d
d

d





 where by 

construction 
1

1



N

g

ij

j

d  and 
, 1

N
g

ij

i j

d N


 .  

The matrix 
g g

ijD d     permits us to define similar concepts as defined before for the 

orthogonal case, that is, total directional connectedness, net total directional 

connectedness, and total connectedness. 
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It is worthily to note that the Diebold and Yilmaz’s (2014) connectedness framework is 

closely linked with both modern network theory (see Glover and Richards-Shubik, 2014) 

and modern measures of systemic risk (see Ang and Longstaff, 2013 or Acemoglu et al., 

2015). This framework has been used by Diebold and Yilmaz (2015) for defining, 

measuring, and monitoring connectedness in financial and related macroeconomic 

environments (cross-firm, cross-asset, cross-market, cross-country, etc.). The degree of 

connectedness, on the other hand, measures the contribution of individual units to 

systemic network events, in a fashion very similar to the conditional value at risk 

(CoVaR) of this unit (see, e.g., Adrian and Brunnermeier, 2016). 

3.2 A generalization of the Diebold and Yilmaz’s connectedness  

Greenwood et al. (2015, 2016) provides a simple way to measures spillovers among 

groups of variables or blocks (i.e., traditional currencies and cryptocurrencies in our 

context). These authors develop a generalized framework that exploits block aggregation 

of the connectedness matrix. Block aggregation introduces a new stratum between the 

level of individual variables and the system-wide aggregate level, thereby enhancing the 

flexibility of the Diebold-Yilmaz framework. Due to the order-invariant of GVDs, the 

variables can be re-ordered as necessary to support any desired block structure. For 

instance, the traditional currencies (cryptocurrencies) own connectedness can be obtained 

as the sum of all the elements of the upper-left (lower-right) sub-matrix of elements for 

the traditional currencies divided by the total number of currencies in the block. 

Suppose that there are three variables for market i-th {𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑧𝑖𝑡} in the order 𝑌𝑡 =

(𝑥1𝑡 , 𝑦1𝑡 , 𝑧1𝑡 , 𝑥2𝑡 , 𝑦2𝑡 , 𝑥2𝑡 , . . . , 𝑥𝑁𝑡 , 𝑦𝑁𝑡 , 𝑧𝑁𝑡)′ and that we wish to evaluate the 

connectedness among the N markets in the model in a combined manner that encompasses 

all three variables in each market. We can re-write the connectedness matrix 
HD  in block 

form with g=N groups each composed of m=3 variables as follows: 
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11 12 1

21 22 2

1 2

...

...
,

...

...

 
 
 


 
 
  

H H H

N

H H H

H N

H H H

N N NN

B B B

B B B
D

B B B

     (10) 

Where 𝐵𝑖𝑗
𝐻 = [

𝑑𝑥𝑖𝑥𝑗
𝐻 𝑑𝑥𝑖𝑦𝑗

𝐻 𝑑𝑥𝑖𝑧𝑗
𝐻

𝑑𝑦𝑖𝑥𝑗
𝐻 𝑑𝑦𝑖𝑦𝑗

𝐻 𝑑𝑦𝑖𝑧𝑗
𝐻

𝑑𝑧𝑖𝑥𝑗
𝐻 𝑑𝑧𝑖𝑦𝑗

𝐻 𝑑𝑧𝑖𝑧𝑗
𝐻

] for , 1, , ,i j N  and where the block 𝐵𝑖𝑖
𝐻 collects all the 

within-market effects for market i while 𝐵𝑖𝑗
𝐻 collects all spillover effects from market j to 

market i.  

Total within market forecast error variance contribution for market i is given as:  

'1
,H H

ii m ii mW e B e
m

      (11) 

and the total pairwise directional spillover from market j to market i (i ≠ j) at horizon H 

is given as: 

𝑃𝑖𝑗
𝐻 =

1

𝑚
𝑒𝑚

′ 𝐵𝑖𝑗
𝐻𝑒𝑚,     (12) 

where m is the number of variables that each group is composed of (in this case, m=3) 

and me  is an mx1 vector of ones.  

Hence, the aggregated connectedness matrix following Greenwood-Nimmo et al. (2015) 

can be written as: 

11 12 1

21 22 2

1 2

...

...
.

...

H H H

N

H H H

H N

H H H

N N NN

W P P

P W P
D

P P W

 
 
 


 
 
  

    (13) 



15 
 

Now, total within-market contribution, ,H

iiW can be decomposed into common-variable 

forecast error variance contribution within-market i, ,H

iiO and cross-variable effects, ,H

iiC

which are given as follows: 

1
( )H H

ii iiO trace B
m

          (14)
 

and 

.H H H

ii ii iiC W O 
 
      (15) 

It should be emphasized here that H

iiO is the proportion of forecast error variance of Yit 

that is not attributable to spillovers among innovations within market i nor to the 

spillovers from market j with i ≠ j. On the other hand, H

iiC  is the proportion of forecast 

error variance of Yit attributable to spillovers among innovations within market i.  

The total pairwise directional spillovers from market j to market i at horizon H are given 

by Equation (12), while total directional spillovers transmitted by market i from and to 

all other markets, in other words, the aggregate from and to connectedness of market i are 

expressed as: 

𝑃𝑖←•
𝐻 = ∑ 𝑃𝑖𝑗

𝐻𝑁
𝑗=1,𝑗≠𝑖  

    (16)
 

and 

𝑃•←𝑖
𝐻 = ∑ 𝑃𝑗𝑖

𝐻𝑁
𝑗=1,𝑗≠𝑖 ,    (17) 

respectively. Where the net directional spillovers transmitted from market i to all other 

markets is 

 𝑃𝐻 = 𝑃•←𝑖
𝐻 − 𝑃𝑖←•

𝐻       (18) 
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Finally, the aggregate between-market spillover measure and the aggregate within-market 

effect are: 

𝑆𝐻 =
1

𝑁
∑ 𝑃𝑖←•

𝐻𝑁
𝑖=1     (19)

 

and 

100 .H HH S      (20) 

 

3.3 Dynamic connectedness based on TVP-VAR 

Antonakakis and Gabauer (2017) extend and refine the current dynamic connectedness 

literature by applying TVP-VAR, as an alternative to the currently proposed rolling-

window VAR. This approach improves the methodology provided by Diebold and 

Yilmaz (2014) substantially, because under their proposed methodology: (1) there is no 

need to arbitrarily set the rolling window-size, (2) it employs the entire sample to estimate 

the dynamic connectedness so there is no major loss of observations, and (3) it is not 

outlier sensitive. Another advantage of their proposed TVP-VAR-based measure of 

connectedness is that it adjusts immediately to events.3  

The TVP-VAR methodology allows both the VAR parameters and the variances to vary 

via a stochastic volatility Kalman Filter estimation with forgetting factors introduced by 

                                                            
3 Antonakakis et al. (2018) apply the TVP-VAR to study the transmission channel of uncertainty 

between developed economies, examining potential spill-over effects between the US, the EU, 

the UK, Japan and Canada, and finding a significant spill over of uncertainty from the EU to the 

US. Gabauer and Gupta (2018) study the internal and external categorical economic policy 

uncertainty (EPU) spillovers between the US and Japan using the TVP-VAR connectedness 

approach,  finding that monetary policy uncertainty is the main driver, followed by uncertainties 

associated with fiscal, currency market and trade policies.  
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Koop and Korobilis (2014). As such, this approach can also be conducted to examine 

dynamic connectedness with limited time-series data. 

The TVP-VAR model can be written as follows, 

𝑌𝑡 = 𝛽𝑡𝑌𝑡−1 + 𝜀𝑡 ,  𝜀𝑡|𝐹𝑡−1 ∼ 𝑁(0, 𝛴𝑡)     (21) 

𝛽𝑡 = 𝛽𝑡−1 + 𝑣𝑡 ,  𝑣𝑡|𝐹𝑡−1 ∼ 𝑁(0, 𝑅𝑡)    (22) 

Where t  is an NxNp dimensional time-varying coefficient matrix and  t  is an Nx1 

dimensional error-disturbance vector with an NxN time-varying variance-covariance 

matrix, t , and 𝐹𝑡−1 is the given information through time t-1. The parameters t  follow 

a random walk and depend on their own lagged values 1 t  and on an NxNp dimensional 

matrix with an NpxNp variance-covariance matrix, tR .4 

The time-varying coefficients t  and t  can be used in the Diebold and Yilmaz’s 

connectedness measure where the dynamic H-step generalized variance decomposition 

matrix is now 
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     (23) 

                                                            
4 Following Koop and Korobilis (2014), we use the same non-informative initial conditions in the 

Kalman filter, a decay factor of 0.96 and a forgetting factor of 0.99 (see online appendix in Koop 

and Korobilis, 2014, for the technical details). Without loss of generality, we normalize the series, 

𝑌𝑡, to get a faster convergence in the Kalman filter and smoother. This normalization does not 

have any effect on the connectedness matrix.  
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Which after normalization would be ,

,

,

1
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

gH

ij tg

ij t N
gH

ij t
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d
d

d

. Similarly, the matrix ,
   t

g g

ij tD d

permits us to define the dynamic total directional connectedness, net total directional 

connectedness, and total connectedness. 

 

4. Data and preliminary analysis  

In our paper, both types of currencies are considered against the US dollar.  The data on 

traditional currencies consists of daily exchange rate series for the euro (EUR), the 

Australian dollar (AUD), the Japanese yen (JPY) and the British pound (GBP) offered by 

the Federal Reserve Economic Data (FRED), a database maintained by the Research 

division of the Federal Reserve Bank of St. Louis.5 Note that focusing on these four major 

exchange rates, we cover the currencies with the largest market turnover, e.g., these 

currencies covered the 165.3% of global foreign exchange market turnover between 2001 

to 2016 6.  

Besides, we use daily data of highly capitalized cryptocurrencies (Bitcoin-XBT; Ripple-

XRP; Litecoin-XLT; and Dash-XDS), that constitute 56.44% of the overall 

cryptocurrency market capitalization.7  

                                                            
5 https://fred.stlouisfed.org/.  
6 Average of currency distribution of global foreign exchange market turnover over 2001, 2004, 

2007, 2010, 2013 and 2016 (Bank for International Settlements, 2016). Because two currencies 

are involved in each transaction, the sum of the percentage shares of individual currencies totals 

200% instead of 100%.   
7 On 31 December 2017, according to Coinmarketcap.com the market capitalization of XBT was 

USD 220,903,949,498 (38.59%), of XLT was USD 12,000,947,760 (2.10%), of XRP was USD 

82,199,880,481 (14.38%) and of XDS was USD 7,850,364,658 (1.37%).   
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Our sample spans from 14 February 2014 until 28 September 2018 (i.e. a total of 1160 

observations). The sample size has been conditioned by the availability of cryptocurrency 

data. 

Following a common practice in applied financial market research8, we make use of the 

GARCH model (Bollerslev, 1986; and Taylor, 1986) to estimate the variance of the series 

at a particular point in time (Enders, 2009). In particular, we find that a GARCH(1,1) 

successfully describes the time-varying conditional second-order moment (variance) of 

the series under study using past unpredictable changes in the returns of that series. To 

easy exposition and faster convergence in the Kalman filter, we normalize these GARCH 

volatilities.9 

Figure 1a shows the daily evolution in the traditional currencies (Panel A) and 

cryptocurrencies (Panel B) exchange rates under study. As can be seen, the 

cryptocurrencies show a dramatic spike in late 2017 and January 2018, before falling 

precipitously through the rest of the sample. In contrast, the behaviour of the traditional 

currencies reveals relatively less substantial time variation. 

[Insert Figure 1 here] 

Plots of the daily normalized volatilities are given in Figure 1b. As can be seen, these 

series are characterized by volatility clustering and notable jumps at different time 

periods, being the volatility of the cryptocurrencies significantly and manifestly higher 

than that of the traditional currencies. 

                                                            
8 GARCH models have a good record in providing accurate estimates for the volatility of returns 

from financial assets (see, e. g. Pagan, 1996, or Diebold and Lopez, 1996). 
9 EViews© 11 software has been used to obtain the GARCH volatility series. The GARCH 

estimations are available from the authors. 
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Panel A of Table 2 provides the descriptive statistics for all the series, along with the 

Jarque-Bera test for normality. As per construction, the mean and standard deviation of 

all the normalized volatility series are cero and one, respectively, and hence, we do not 

report them. The estimated skewness is negative for EUR, GBP, AUD, XBT and XDS 

(suggesting that the distribution has a long-left tail), while it is positive for JBY, XRP and 

XLT (indicating that the distribution has a long right tail). Kurtosis statistics are  high in 

all cases, suggesting that the distribution is peaked relative to the normal. This asymmetry 

and leptokurtic excess are in line with the Jarque-Bera test results, justifying the rejection 

of the hypothesis of normal distribution at the 1% significance level. We report the 

pairwise correlations in Panel B of Table 2. As can be seen, the only significant pairwise 

correlation between both types of currencies is the negative and significant value obtained 

for the JPY and the XDS. By contrast, we observe positive and highly significant 

correlation within blocks of currencies, although this is not very strong. These 

correlations could shed light about the connections within currencies blocks rather than 

between blocks, which we develop further below as one of the main goals of this paper. 

[Insert Table 2 here] 

5. Empirical results on connectedness and directional connectedness  

In this section, we report the empirical results of the volatility connectedness and 

directional spill-overs. First, successively examine the full-sample connectedness of all 

currencies (subsection 5.1) and by blocks of currencies (subsection 5.2). In subsection 

5.3, we study the dynamic connectedness analysis through TVP-VAR. Finally, in 

subsection 5.4 we focus on net and dynamic net pair-wise directional volatility 

connectedness. 

5.1 Static (full-sample, unconditional) analysis for all currencies 
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In Table 3, we report the full-sample connectedness table where the off-diagonal elements 

measure the connectedness between the normalized volatility series. As mentioned in 

Section 2, the ijth entry of the upper-left 8x8 market submatrix gives the estimated ijth 

pair-wise directional connectedness contribution to the forecast error variance of currency 

i’s volatility coming from innovations to currency j. Hence, the off-diagonal column sums 

(labelled TO) and row sums (labelled FROM) gives the total directional connectedness 

to all others from i and from all others to i, respectively. The bottom-most row (labelled 

NET) gives the difference in total directional connectedness (TO minus FROM). Finally, 

the bottom-right element (in boldface) is total connectedness, which is calculated as the 

sum of the non-diagonal elements of the connectedness matrix, divided by the number of 

currencies.10 

[Insert Table 3 here] 

As can be seen, the diagonal elements (own connectedness) are the largest individual 

elements in the table, ranging from 57.71% (EUR) to 72.97% (JPY), being these values 

of similar magnitude in traditional currencies (with an average value of 66.07%) than 

those in cryptocurrencies (with an average of 65.06%). Interestingly, the own 

connectedness is higher than any total directional connectedness FROM and TO others, 

reflecting that these volatilities are relatively independent of each other. Namely, news 

shocks that influence the volatility of a particular currency do not fully spread on the 

volatilities of the others. Accordingly, the total connectedness of the eight volatilities 

under study is 34.43% (indicating that as much as 65.57% of the variation is due to 

                                                            
10 All results are based on vector autoregressions of order 2 and generalized variance 

decompositions of 10-day ahead volatility forecast errors. To check for the sensitivity of the 

results to the choice of the order of VAR, we also calculated the connectedness index for orders 

2 through 4, as well as for forecast horizons varying from 4 days to 10 days. The main results of 

our paper are not affected by these choices. Detailed results are available from the authors upon 

request. 
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idiosyncratic shocks). These results are much lower than the value of 78.3% obtained by 

Diebold and Yilmaz (2014) for the total connectedness between US financial institutions 

and lower than the value of 97.2% found by Diebold and Yilmaz (2012) for international 

financial markets. 

 

Regarding to the net (TO minus FROM) contribution, our results suggest that the GBP (-

2.14%), AUD (-1.77%), JPY (-3.88%), XRP (-4.51%) and XDS (-1.97%) are net 

receivers of volatility, being EUR (6.74%), XBT (4.55%) and XLT (2.98%) net volatility 

triggers. Finally, the highest observed net pairwise connectedness is from XBT to XLT 

(22.59%), followed by that from XLT to XBT (22.12%). 

5.2 Static (full-sample, unconditional) analysis by blocks of currencies  

As a complement to the previously documented positive and highly significant pairwise 

correlation within blocks of currencies in Table 2, Table 4 reports the static connectedness 

table by blocks of currencies using the generalization suggested by Greenwood et al. 

(2015, 2016). As can be seen, the own connectedness of each block, traditional currencies 

and cryptocurrencies, represents almost 100% of the volatility with only a negligent 

0.26% net connectedness from cryptocurrencies to traditional currencies. This result 

clearly reflects that both blocks are highly intra-connected but highly disconnected to 

each other, being the total connectedness across blocks of merely 0.73%. Namely, shocks 

that come from traditional currencies do not spill over cryptocurrencies, and vice versa11. 

This result is in line with the literature reviewed in Section 2 where cryptocurrencies have 

shown low correlation, and accordingly, good diversification benefits with traditional 

assets (see e.g., the survey of cryptocurrencies literature in Corbet et al., 2019). Finally, 

                                                            
11 This result is in line with the findings in Pelster et al. (2019) that the overall behavior of 

investors who enter crypto markets is driven by excitement-seeking, by an intentional strategy to 

enter a new promising asset class and by diversification purposes. This type of trading behavior 

can cause speculative price bubbles, as documented by Gandal et al. (2018). 
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the estimated total connectedness within the traditional currencies (𝐶𝑖𝑖
𝐻 in Equation (15) 

for traditional currencies) is 33.07% and within cryptocurrencies (𝐶𝑗𝑗
𝐻 in Equation (15) for 

cryptocurrencies) is 34.34%.  

[Insert Table 4 here] 

5.3 Dynamic connectedness analysis 

The previous subsection provides a snapshot of the “unconditional”, or full-sample, 

aspects of the connectedness measure between the volatility of cryptocurrencies and 

traditional currencies. However, the dynamics of the connectedness measures remains 

covered. As previously stated, we carry out an analysis of dynamic connectedness based 

on TVP-VAR.  

[Insert Figure 2] 

In Figure 2, we report the evolution of the total connectedness between the volatility of 

the eight traditional currencies and cryptocurrencies under study (shaded grey area).12 

Figure 2 also highlights several cycles of connectedness where the total connectedness is 

around the full sample average (34.43%), suggesting that connectedness between 

cryptocurrencies and traditional currencies volatilities are time-dependent. The most 

significant spikes are observed (i) in April 2014, following Janet Yellen’s announcement 

that the Fed would keep interest rates low even when the US economy recovers; (ii) from 

August 2014 coinciding with divergences in monetary policy expectations and increased 

downside risks until July 2015 when a period of relative calm started in financial markets 

after the EU bailout agreement with Greece and the stabilization of the Chinese stock 

                                                            

12 To eliminate the effect of the non-informative initial conditions in the Kalman filter, we have 

skipped the first 10 days of the sample and plot the results from March 03, 2014 to September 28, 

2018.  
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market following the crash in June 2015; (iii) after temporary decline oscillations in the 

evolution of the total connectedness from July 2015 to December 2016 in a context of 

reduction in short-term risks to global financial stability, a renewed impulse is observed 

until March 2017, coinciding with a period of increased volatility due to political 

uncertainty about US economic policy and formal announcing by the British government 

of its plans to leave the European Union; (iv) the connectedness indicator experienced a 

gradual rise in the third quarter of 2017, propelled by reduced expectations of monetary 

tightening in the United States and positive macroeconomic news; (v) and a final increase 

in connectedness is found from the beginning of 2018 until the end of the sample, 

reflecting the popularity of cryptocurrencies and increased volatility as participants 

remained very sensitive to any perceived changes in central banks’ messages. 

Interestingly, there are also important reductions in connectedness during our sample in 

March 2014 (coinciding the possibility that the Fed could end its massive bond-buying 

program and could start raising interest rates); in June and July 2014 (corresponding with 

a stunning fall in oil prices and a shifting risks with respect to the economic recovery in 

advanced economies, respectively); from July 2015 (in a context of increasing concern 

about the growing vulnerabilities in emerging market economies and China’s bursting 

equity bubble) until November 2016 the total connectedness experienced some ups and 

downs, possibly related to the results of the US presidential election; in the second quarter 

of 2017 the total connectedness indicator registered a fast decrease until reaching low 

values in April 2017 (in a context of positive tone in economic data) and at the end of 

2017 coinciding with renewed declines in implied volatility for equities, bonds and 

exchange rates. 

Figure 2 also displays the differentiated behaviour of the total connectedness by blocks 

of currencies (i.e., 𝐶𝑖𝑖,𝑡
𝐻  for traditional currencies and 𝐶𝑗𝑗,𝑡

𝐻  cryptocurrencies in Equation 
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(15)): between the volatilities of the four traditional currencies (blue line) and between 

those of the four cryptocurrencies (red line). As expected, the connectedness indexes by 

blocks of currencies show a similar time-varying pattern over the vertical lines that 

delimit the before episodes in the evolution of the total connectedness. However, we 

observe several idiosyncratic spikes in the evolution of the total connectedness by blocks 

of currencies, reaching figures of over 50% in several periods of our sample. At the 

beginning of our sample the total connectedness index of the traditional currencies’ block 

was the full sample lowest value (7.93%) but it registered a turbulent rise (in a context of 

retrenchment in emerging market economies and strength in advance economies affecting 

portfolio compositions and asset values), with large fluctuations, until reaching its first 

spikes in October 2014 (48.93%) and June 2015 (57.32%). Note, the sudden increase and 

decrease in the total connectedness index of the cryptocurrencies’ block from lows 

(20.53%) in March 2014 until its first spike (59.18%) that we observe in April 2014, as 

the conflict in eastern Ukraine escalated in a context of the considerable uncertainty 

triggered by the crisis and the fall in energy prices, to repeat once again the minimum 

levels during June 2014. An episode of ups and downs in the evolution of the total 

connectedness within the cryptocurrencies characterized the subsequent period from 

August 2014 to July 2015, reaching several strong spikes at the beginning (49.08%), in 

the middle (January 2015, 55.53%) and before the end (46.66%) in a context of unsettled 

political climate in many countries, slumping commodity prices, China’s bursting equity 

bubble and pressure on exchange rates. Interestingly, there were rapid simultaneous 

reductions from the highs reached in both connectedness indices per blocks at the end of 

this period in July 2015 (coinciding with the collapse in oil prices and its impact on other 

assets). After a period of relative stability around its full sample average (33.07%) from 

July 2015 to November 2016, the total connectedness between the volatilities of the four 
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traditional currencies experienced a fast increase that it peaked (57.77%) at the beginning 

of 2017 after the United Kingdom formally begun negotiations to leave the European 

Union. Furthermore, the total connectedness between the volatility of the four 

cryptocurrencies was gradually decreasing along this period (July 2015-November 2016) 

with values below the full sample average of this index (34.34%), reverting also this trend 

at the beginning of the year 2017. In the periods thereafter, both registered various 

interesting contemporaneous episodes of downs and ups. An episode of free falls is 

detected from March 2017 following the US Securities and Exchange Commission twice 

denied requests for Bitcoin exchange-traded funds, reaching the connectedness index of 

the cryptocurrencies’ block its full sample lowest value at the end of April 2017 (6.80%) 

and the connectedness index of the traditional currencies’ block at its lowest values since 

August 2014 (17.01%). This last index was followed by an episode of renewed impulse 

until September 2017 where the former climbed a new spike (57.63%) and the values of 

the last one above its full sample average coinciding with China's ban on initial coin 

offerings and with the upsurge of political risk led by mounting US-North Korea tensions 

and terrorist attacks in Spain, to repeat once again sudden falls of both of them during the 

next period October 2017-January 2018 within a general context of protracted US dollar 

weakness. Finally, an abrupt increase in both of total connectedness indexes per blocks is 

found in the final days of January 2018 coinciding with a massive sell-off of most 

cryptocurrencies in a context of continued loosening of credit conditions and undaunted 

risk-taking in most asset classes. One can note that the connectedness index of the 

volatilities of the cryptocurrencies’ block was increasing gradually along 2018 until 

reaching the full sample highest values (around 68%) in middle June 2018 as statements 

from regulators starting to reflect a deeper acknowledgement of the technology 

underlying cryptocurrencies and their future potential, slowly reversing this trend from 
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that point in time. Meanwhile, the total connectedness of the volatilities of the four 

traditional currencies’ block experienced with moderate fluctuations on a downward trend 

until the end of the sample in September 2018, when cryptocurrencies collapsed 80% 

from their peak in January 2018 after report stating that Goldman Sachs was abandoning 

its plans to trade in cryptocurrencies. 

5.4 Net and dynamic net pair-wise directional volatility connectedness plots 

We now turn our focus to the net total and net pairwise directional connectedness 

measures of the system. As the dynamic total connectedness measure presented in 

subsection 5.2, our analysis also relies on the TVP-VAR connectedness approach. In 

contrast with Table 3 where we report the static net contribution, Figures 3a to 3h display 

the dynamic net directional volatility connectedness (shaded grey area). These figures 

show how the volatility indices have switched from generators to receivers of volatility, 

and vice versa, throughout the sample.  

[Insert Figures 3a to 3h here] 

By construction, the net directional connectedness from currency volatility i-th to others 

is equal to the sum of all the net pair-wise connectedness from currency volatility i-th to 

volatility j-th, for all j with i ≠ j. Having this relationship in mind, in Figures 3a to 3h, the 

dynamics of the net pairwise directional connectedness of the currency volatility i-th with 

respect to the other currency volatilities under study are added to the net directional 

connectedness (grey area) explained before, using a similar approach than that in 

subsection 3.2. This decomposition of the dynamics of net directional connectedness into 

their pairwise directional connectedness per blocks under study (blue and red lines for 

traditional currencies and cryptocurrencies, respectively) is appealing since it allows a 

deeper understanding how the transmission of volatility works for each currency under 

study.  
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As can be seen in Figure 3a, EUR is the net trigger of volatility in our sample. Indeed, 

77.4% of the computed values in the net directional connectedness are positive, indicating 

that during most of the sample period EUR transmitted volatility, principally to the net 

pair-wise directional connectedness per blocks of the traditional currencies (blue line). 

Interesting, EUR is a net receiver of volatility from the net pair-wise directional 

connectedness of the cryptocurrencies’ block (red line) in August 2014 (when market 

participants started to look for further monetary stimulus, shifting forward rates down 

following remarks by ECB President Mario Draghi). Disaggregated (unreported) results 

show that this is mostly due to net pair-wise directional connectedness from XLT and 

XDS to EUR. EUR is also a net receiver of volatility from the net pair-wise directional 

connectedness of the cryptocurrencies’ block in late 2017 (in a context of dollar weakened 

as economic prospects brightened the euro area), also this is mainly from XDS, and XBT 

to EUR.  

Regarding the GBP and AUD, they are net receivers of volatility from the net pair-wise 

directional connectedness per blocks of the traditional currencies during much of the 

sample (Figures 3b and 3c, respectably), being 79.3% and 75.8% of the computed values 

negatives. Nevertheless, it is worth noting a transmission of volatility received from the 

block of cryptocurrencies in August 2014 by both traditional currencies, it is strong in the 

case of GBP, being possibly partly driven by uncertainty related to the Scottish 

referendum. GBP was a net trigger of both net directional connectedness per blocks in 

the early spring and summer of 2016, reflecting the global financial turmoil after the UK 

voted to leave the European Union in June 2016. 

As for JPY, Figure 3d shows a swing in the net directional connectedness where periods 

of net generation of volatility to all the net pair-wise directional connectedness per blocks 

are followed by periods where this is a net receiver of volatility to those. Interestingly, 
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JPY is a net receiver of volatility from the net pair-wise directional connectedness of the 

cryptocurrencies in August 2014. The biggest net block-wise connectedness is from JPY 

to traditional currencies.  

Turning to the case of the XBT, in Figure 3e we observe that it is a net generator of 

volatility in our sample. Indeed, 73.13% of the computed values in the net directional 

connectedness are positive, indicating that during most of the sample period XBT 

transmitted principally to the net pair-wise directional connectedness of the other 

cryptocurrencies. Interestingly, XBT is a net receiver of volatility from the net pair-wise 

directional connectedness of the traditional currencies at late 2016, and from the net pair-

wise directional connectedness of the other cryptocurrencies at the beginning of 2018, 

coinciding with the great cryptocurrency crash of January 2018.  

As regards XRP and XDS, they are mostly net receiver of volatility from the net pair-

wise directional connectedness per blocks of the cryptocurrencies during much of the 

sample (Figures 3f and 3h), being 74.1% and 69.4% of the computed values negatives. 

Nevertheless, it is worth noting a strong transmission of volatility triggered from XDS to 

the block of traditional currencies in August 2014, as commented before. 

Concerning XLT, Figure 3g shows a swing in the net directional connectedness where 

periods of a net generation of volatility are followed by periods where XLT is a net 

receiver of volatility. Interestingly, XLT is a net trigger of volatility to the net pair-wise 

directional connectedness of the traditional currencies’ block in August 2014, which 

unreported results show this is mostly due to net pair-wise directional connectedness to 

EUR, GBP and JYP. Moreover, XLT is a net absorber of volatility from the net pair-wise 

directional connectedness of the traditional currencies’ block from the second half of 

September 2016 to late December 2016. 
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Figure 4 plots the dynamic net connectedness from the block of traditional currencies to 

the block of cryptocurrencies (i.e., 𝑃𝐻 in Equation (18)). Although the static net 

connectedness from the block of traditional currencies to the block of cryptocurrencies 

shows that these two blocks are disconnected as Table 4 suggested, the dynamic net 

connectedness shows a different picture, ranging the net connectedness from close to -

14% to 10%. The net connectedness from the block of traditional currencies to the block 

of cryptocurrencies can be divided into three periods:  

i) from the beginning of the sample until mid-2014 where the block of 

cryptocurrencies is a generator of volatility toward the block of traditional 

currencies, in a context of widespread pessimism and negative investor 

sentiment in the cryptocurrency market and the absence of real positive 

development for investors to track and serve as a counterbalance to the bearish 

trend, after the collapse of  Bitcoin’s biggest exchange (Mt Gox). 

ii) from late-2014 until early 2017 where the block of traditional currencies is a 

generator of volatility toward the block of cryptocurrencies in a context 

marked by the continued divergence in the monetary policy stance of the 

major economies, tensions about the implementation of the Greek adjustment 

programme, the UK Brexit vote and the surprise result of the US election; and  

iii) from late-2017 until the end of the sample where again the block of 

cryptocurrencies is a generator of volatility toward the block of traditional 

currencies, a period characterized by a huge increase in trading activity and 

media coverage in cryptocurrencies, an explosive behaviour in cryptocurrency 

prices, and several events leading people to be suspicious of the security and 

anonymity of cryptocurrencies in the future (Hafner, 2019). 

 

[Insert Figure 4] 

As a complementary analysis of Figure 4, Figure 5 plots the decomposition of the 

dynamic net connectedness into directional volatility connectedness from block of 

traditional currencies to the block of cryptocurrencies, and vice versa. As can be seen, we 

identify a negative trend in the directional volatility connectedness from the block of 
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traditional currencies to the block of cryptocurrencies, indicating a gradual reduction in 

the exposures of traditional to digital currencies in line with Liu and Tsyvinski (2018). 

In summary, Figures 3a to 3h illustrate how the dynamics of the net pair-wise 

connectedness between all the currency’s volatilities are not constant but switch from net 

generator to net receiver of volatility to others. Likewise, Figure 4 shows the net 

connectedness from the block of traditional currencies to the block of cryptocurrencies 

also switches from net generator to net receiver of volatility. Therefore, the unconditional 

or full-sample connectedness measure is not able to uncover all the dynamics of the 

connectedness between the different currencies’ volatilities per currency and per block of 

currencies. The dynamic net connectedness approach identifies substantially different 

interrelationship episodes, yielding more accurate and sensible indicators of the spread of 

market disturbances.  

 

 6. Determinants of the total and net dynamic connectedness  

Hitherto, we have documented that there is a general disconnection between the block of 

traditional currencies and the block of cryptocurrencies. However, as Figures 4 and 5 

show, there are periods where there are a sizable net and total directional volatility 

connectedness effect between both types of currencies. We have also offered evidence in 

favour of the existence of a considerable total connectedness within each block. In this 

section, we try to identify the potential determinants of these four dynamic behaviours: 

1) total connectedness within the traditional currencies (i.e., 𝐶𝑖𝑖,𝑡
𝐻  in Equation (15) for 

traditional currencies); 2) total connectedness within the cryptocurrencies (i.e., 𝐶𝑗𝑗,𝑡
𝐻  in 

Equation (15) for cryptocurrencies); 3) the directional volatility connectedness from the 

block of cryptocurrencies to the block of traditional currencies (i.e., 𝑃𝑖←𝑗
𝐻 ); and 4) the 
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directional volatility connectedness from the block of traditional currencies to the block 

of cryptocurrencies (i.e., 𝑃𝑗←𝑖
𝐻 ). 

Although there is no consensus on the determinants of exchange rate volatility, many 

factors have been identified in the literature: the openness of an economy, the domestic 

and foreign money supplies, the exchange rate regime, interest rates, central bank 

independence, levels of output, income, inflation, and unpredictable circumstances (see, 

e. g., Morana, 2009). The degree of the impact of each of these factors varies and depends 

on a particular country’s economic condition.  

Regarding cryptocurrencies, their volatilities are also influenced by their differences in 

market capitalization, the transaction processing speed of their networks, the total number 

of coins that each cryptocurrency can produce, the different cryptographic algorithms 

which they employ, etc. (see, e. g., Gandal and Halaburda, 2014).  

In this paper, we adopt an agnostic approach, using a general-to-specific modelling 

strategy, to empirically assess the relevance of the variables as potential drivers of the 

detected dynamic connectedness between cryptocurrencies and traditional currencies 

volatilities. 

In particular, we analyze a set of 59 macroeconomic/business cycle, financial and 

cryptocurrencies-specific variables suggested both by the foreign exchange and 

cryptocurrency literature (see, e.g., Dornbusch et al., 2000: Fratzscher, 2009; and Walther 

and Klein, 2018, among others).13 Likewise, we also include the lagged dependent 

                                                            
13 Given that most macroeconomic and financial data exhibit non-stationary, we tested for the 

order of integration of the variables under study using the Augmented Dickey-Fuller (ADF) tests. 

The results decisively reject the null hypothesis of a unit root at conventional significance levels 

for all the variables (indicating that they are stationary in levels), except for SP500, EFA ETF, 

BarGov, Gold, Brent, FSI, FCI, USFTI, DMFTI, KBE ETF, OFR FSI, Credit, Safe, Funding, 

EME, VBIT, CBIT, CLIT, VDAS, CDAS and CALL (suggesting that these variables can be 

treated as first-difference stationary). Furthermore, following Carrion-i-Silvestre et al.’s (2001) 

suggestion, we confirm these results using the Kwiatkowski et al. (1992) (KPSS) tests, where the 

null is a stationary process against the alternative of a unit root. Finally, these results (which are 

not shown here to save space but are available from the authors upon request) were confirmed 
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variable to control for the persistence in the total and directional connectedness series due 

to both the well-known clusters of volatilities and the TVP-VAR. Appendix A offers a 

summary of the explanatory variables used in the empirical analysis as well as the data 

sources. Our sample spans from 01 July 2015 until 28 September 2018 (i.e. a total of 797 

observations). The sample size has been conditioned by the availability of 

cryptocurrencies-specific data. In order to select the main drivers of the detected dynamic 

connectedness, we use the stepwise regression, frequently employed in empirical research 

both to select useful subsets of variables and to evaluate the order of importance of 

variables (see, e. g., Huberty, 1994).  

As mentioned before, we apply a general-to-specific modelling strategy to empirically 

evaluate the relevance of the potential drivers of the detected dynamic connectedness. 

The empirical analysis commences from this general specification and is then tested for 

mis-specifications; if none are apparent, it is simplified allowing us to select a 

parsimonious, consistent representation that significantly explain the dependent variable, 

being each simplification step checked by diagnostic testing.14  

As a previous step, we confirm the total connectedness within the traditional currencies 

and the directional volatility connectedness from the block of cryptocurrencies to the 

block of traditional currencies are stationary in levels, so no transformation is required 

(see Appendix B). However, the total connectedness within cryptocurrencies is 

nonstationary and the directional volatility connectedness from the block of traditional 

currencies to the block of cryptocurrencies is trend-stationary, so both dependent 

variables require first differences and de-trending, respectively. All the dependent 

                                                            
using Phillips and Perron (1988) unit root tests controlling for serial correlation and 

heteroskedasticity in the errors. 
14We used the stepwise regressions within the Statistical Machine Learning Toolbox in 

MATLAB© to complete our work (MATLAB and Statistical Machine Learning Toolbox, 2018). 



34 
 

variables are stationaries after the appropriated transformation if it is required and hence 

the stepwise regression can be performed using the former four dependent variables. 

Appendix C  reports the optimal models selected by the stepwise procedure when the 

dependent variable is the total connectedness within the traditional currencies (Figure 2 

blue line, and Panel I in Appendix C), the total connectedness within the crypto-currencies 

(Figure 2 red line, and Panel II in Appendix C), the directional volatility connectedness 

from the block of crypto-currencies to the block of traditional currencies (Figure 5 red 

line, and Panel III in Appendix C) and the directional volatility connectedness from the 

block of traditional currencies to the block of crypto-currencies (Figure 5 blue line, and 

Panel IV in Appendix C).  

Table 5 summaries the results of the stepwise regressions, examining the predictive power 

of the estimated model and assessing the relative contributions of the optimal explanatory 

variables per category is reported using a simple definition of standardized coefficients 

(Bring, 1994).15 Columns 1 and 2 represent the actual and predicted values of the 

dependent variables averaged over the period of the analysis, while the remainder 

columns show the contribution of the explanatory variables. 

[Insert Table 5] 

The contribution of the lagged dependent variables is generally large, reflecting the high 

persistence in the dynamic total and directional connectedness series. Panel I reports the 

aggregate contribution of the explanatory variables for the total connectedness within the 

traditional currencies. We can observe how, in relative terms, the financial variables 

                                                            
12 See Appendix D for further details on the standardization of regression coefficients and the 

calculation of the relative contributions of the optimal explanatory variables in stepwise 

regression. 
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contribute the most in the explanation of the total connectedness within the traditional 

currencies model with a 10.90% of the total volatility; this is followed by business cycle 

variables with a merely 1.84%. However, the total connectedness within the traditional 

currencies is completely unaffected by the cryptocurrency-specific variables. 

Individually, the Funding component of the Office of Financial Research‘s Financial 

Stress Index (Funding- a measure related to how easily financial institutions can fund 

their activities) contributes the most with a 2.61%, followed closely by Gold implied 

volatility (GVZ) with a 2.59%. 

 

Panel II shows a different picture where the cryptocurrency-specific variables 

overwhelmingly contribute the most to the total connectedness within the 

cryptocurrencies with 74.80%. Among those variables, the market capitalization of Dash 

and Ripple have the largest individual contributions, followed by the volume of all the 

cryptocurrencies (VALL). These findings confirm our previous results of the 

disconnection between both traditional and cryptocurrencies.  

 

Panels III and IV report the contributions to the directional volatility connectedness 

between blocks. In relative terms, the business cycle variables contribute the most to the 

spillover from the cryptocurrencies to traditional currencies (16.56%)  followed by the 

cryptocurrency-specific variables (11.93%). This may reflect the fact that the level and 

fluctuations of global real economic activity is a key determinant of asset prices in general 

and exchange rate in particular16 and that, as documented findings in Conrad et al. (2018) 

                                                            
16 Theory predicts that cyclical movements in the real exchange rate over the business cycle 

depend on the relative importance of different shocks that drive the cycle (see, e. g., Clarinda and 

Gali, 1994). Furthermore, Duarte et al. (2007) relate the volatility of exchange rates to their co-

movement with macroeconomic aggregates and business cycles.  
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for Bitcoin and with Walther and Klein (2018) four highly capitalized cryptocurrencies 

(Bitcoin, Etherium, Litecoin, and Ripple), that macroeconomic business cycle indicators 

contain important information for cryptocurrency volatility. Instead, the cryptocurrency-

specific variables (9.46%) have a slightly larger contribution than business cycles 

variables (6.89%) to the spillover from the traditional currencies to cryptocurrencies. 

Interestingly, the business cycles variables that have a marginal effect in both total 

connectedness within the traditional currencies and the total connectedness within 

cryptocurrencies have a non-negligent contribution to the spillover between both blocks. 

In both Panels III and IV, the individual explanatory variables with the largest 

contribution are the market capitalization of Ripple (CRIP) and the sum of the trade 

volume of all the cryptocurrencies (VALL). Last but not least, the first two columns of 

Table 5 verify that the optimal stepwise models have good predicted power with predicted 

means close to the actual ones. 

 

7. Concluding remarks 

The exponential growth of BitCoin and other cryptocurrencies is a phenomenon that has 

attracted considerable attention in recent years as a new alternative investment. Our study 

applies both the connectedness framework proposed by Diebold and Yilmaz (2014) and 

the modified approach of Antonakakis and Gabauer (2017) to investigate the transmission 

mechanism between cryptocurrencies and traditional currencies volatilities. To that end, 

we use data on four highly capitalized cryptocurrencies and four major exchange rates 

during the period February 2014-September 2018. 

The main findings of our research can be summarized as follows. In the first step, we 

found a system-wide value of 34.43% for the total connectedness between the eight 

cryptocurrencies and traditional currencies under study for the full sample period, 

indicating that the remainder 65.57% of the variation is due to idiosyncratic shocks. This 
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level is much lower than that obtained by Diebold and Yilmaz (2012) for international 

financial markets. In the second step, our results indicate that both blocks of currencies 

are highly intra-connected but highly disconnected to each other. In a third step, we assess 

the dynamic propagation of volatilities between the examined currencies using a time-

varying parameter vector autoregression (TVP-VAR)-based connectedness procedure, 

finding that volatility connectedness varies over time, with a surge during periods of 

increasing economic and financial instability. Finally, when analysing the determinants 

of the detected total and directional dynamic connectedness, our findings suggest that 

financial market variables are the main drivers of total connectedness within the 

traditional currencies, while the cryptocurrency-specific variables are identified as the 

key determinant for the total connectedness within the traditional currencies and a 

combination of business cycles and cryptocurrency-specific variables explain the 

directional volatility connectedness between both blocks. 

Overall, our study has important implications for market participants in cryptocurrencies 

and traditional currencies markets, as well as within these markets. Sound knowledge of 

connectedness among different assets and markets is useful for investors to determine 

hedging positions for risk minimisation through optimal portfolio construction. In 

addition, the results also give guidance to international portfolio risk managers, who seek 

greater diversification of portfolios. 
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Appendix 1: Definition of the explanatory variables and data sources 

Appendix A.1: Definition of the macroeconomic/business cycle explanatory variables in the stepwise regression and data sources 

Name Variable Source 

DEF Difference between interest rates on BBB-rated corporate bonds and 10-year Treasury bonds Federal Reserve Bank of St. Louis 

TED Difference between 3-Month LIBOR based on US dollars and 3-Month Treasury Bill Federal Reserve Bank of St. Louis 

T10Y3M Difference between 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant 

Maturity 

Federal Reserve Bank of St. Louis 

EPU Economic Policy Uncertainty Index for United States Federal Reserve Bank of St. Louis 

CISS Composite Indicator of Systemic Stress (linear interpolation from weekly data) European Central Bank 

Oildem  Cumulative Demand Shocks in Oil Price (linear interpolation from weekly data) Federal Reserve Bank of New York 

Oilsup  Cumulative Supply Shocks in Oil Price (linear interpolation from weekly data) Federal Reserve Bank of New York 

Oilres  Cumulative Residual Shocks in Oil Price (linear interpolation from weekly data) Federal Reserve Bank of New York 

BCI Aruoba-Diebold-Scotti Business Conditions Index Federal Reserve Bank of Philadelphia 

USESI USA Economic Surprise Index Caixabank Research using data from Citigroup and Bloomberg 

EZESI Eurozone Economic Surprise Index Caixabank Research using data from Citigroup and Bloomberg 

EMESI Emerging Market Economic Surprise Index Caixabank Research using data from Citigroup and Bloomberg 
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Appendix A.2: Definition of the financial explanatory variables in the stepwise regression and data sources 

Name Variable Source 

SP500 Standard & Poor's 500 Index Federal Reserve Bank of St. Louis 

EFA ETF The iShares MSCI EAFE ETF tracks a market-cap-weighted index of developed-market securities based in 

Europe, Australia and the Far East. It excludes the US and Canada, and small-caps 

Thomson Reuters Datastream 

BarGov Barclays U.S. Government (USD) Thomson Reuters Datastream 

Gold Gold spot Fixing Price 3:00 P.M., London time, in London Bullion Market, based in U.S. Dollars Federal Reserve Bank of St. Louis 

Brent Brent Crude oil spot prices Federal Reserve Bank of St. Louis 

VIX The CBOE Volatility Index Thomson Reuters Datastream 

VXEFA CBOE EFA ETF Volatility Index Thomson Reuters Datastream 

GVZ CBOE Gold Volatility Index Thomson Reuters Datastream 

EVZ CBOE Eurocurrency Volatility Index Thomson Reuters Datastream 

OVX CBOE Crude Oil Volatility Index Thomson Reuters Datastream 

TYVIX CBOE/CBOT 10-year U.S. Treasury Note Volatility Index Thomson Reuters Datastream 

Risk Indicator of risk appetite (linear interpolation from weekly data) BBVA Research from EPFR Fund Flows 

Bull Percentage of optimistic investors AAII Investor Sentiment Survey 

Bear Percentage of pessimistic investors AAII Investor Sentiment Survey 

Neutral Percentage of neutral investors AAII Investor Sentiment Survey 

FSI St. Louis Fed Financial Stress Index (linear interpolation from weekly data) Federal Reserve Bank of St. Louis 

FCI Chicago Fed National Financial Conditions Index (linear interpolation from weekly data) Federal Reserve Bank of St. Louis 

USFTI Financial Tension Index USA (linear interpolation from weekly data) BBVA research 
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Cont. Appendix A.2: Definition of the financial explanatory variables in the stepwise regression and data sources 

Name Variable Source 

DMFTI Financial Tension Index, Developed markets without the effect of US (linear interpolation from weekly data) BBVA research 

PDD Portfolio distance-to-default, reflecting the market’s perception of the systematic insolvency risk of the banking 

system as a whole 

Federal Reserve Bank of Cleveland 

ADD Average distance-to-default, reflecting the market’s perception of the average risk of insolvency among major US 

banks 

Federal Reserve Bank of Cleveland 

Spread Difference between PDD and ADD Federal Reserve Bank of Cleveland 

KBE KBE ETF index, tracking an equal-weighted index of US banking stocks Federal Reserve Bank of Cleveland 

OFR FSI Financial Stress Index Office of Financial Research 

Credit Credit component of OFR FSI Office of Financial Research 

EquVal Equity valuation component of OFR FSI Office of Financial Research 

Safe Safe assets component of OFR FSI Office of Financial Research 

Funding Funding component of OFR FSI Office of Financial Research 

VOL Volatility component of OFR FSI Office of Financial Research 

US United States component of OFR FSI Office of Financial Research 

OAE Other advanced economies component of OFR FSI Office of Financial Research 

EME Emerging markets component of OFR FSI Office of Financial Research 
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Appendix A.3: Definition of the cryptocurrency-specific explanatory variables in the stepwise regression and data sources 

Name Variable Source 

WBIT Wikipedia search for keyword "Bitcoin" https://tools.wmflabs.org/pageviews 

WLIT Wikipedia search for keyword "Litecoin" https://tools.wmflabs.org/pageviews 

WDAS Wikipedia search for keyword "Dash (cryptocurrency)" https://tools.wmflabs.org/pageviews 

WRIP Wikipedia search for keyword "Ripple (payment protocol)" https://tools.wmflabs.org/pageviews 

WSUM Sum of Wikipedia searches "Bitcoin", "Litecoin", "Dash (cryptocurrency)" and "Ripple (payment protocol)" https://tools.wmflabs.org/pageviews 

VBIT Trade volume for Bitcoin https://coinmarketcap.com/ 

CBIT Market capitalization for Bitcoin https://coinmarketcap.com/ 

VLIT Trade volume for Litecoin https://coinmarketcap.com/ 

CLIT Market capitalization for Litecoin https://coinmarketcap.com/ 

VDAS Trade volume for Dash https://coinmarketcap.com/ 

CDAS Market capitalization for Dash https://coinmarketcap.com/ 

VRIP Trade volume for Ripple https://coinmarketcap.com/ 

CRIP Market capitalization for Ripple https://coinmarketcap.com/ 

VALL Sum of trade volume for Bitcoin, Litecoin, Dash and Ripple https://coinmarketcap.com/ 

CALL Sum of market capitalization for Bitcoin, Litecoin, Dash and Ripple https://coinmarketcap.com/ 
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Appendix B. Statistical properties of connectedness indices 

Panel I: Total connectedness index within traditional currencies  

Mean 36.5693 Standard Deviation 8.1676 

Minimum 17.0052 Maximum 57.7772 

ADF test in levels (1) -4.4311a (<0.0010)   

KPSS test in levels (2) 0.4630 (>0.1000)   

DW test 2.0391 (0.6578)   

Engle’ arch test (5 lags) 0.9645 (0.9752) Engle’arch test (20 lags) 3.4481 (1.0000) 

Panel II: Total connectedness index within cryptocurrencies  

Mean 34.1805 Standard Deviation 16.8184 

Minimum 6.8028 Maximum 69.7333 

ADF test in levels (1) -2.2874 (0.4504) ADF test in differences (1) -6.4628a (<0.0010) 

KPSS test in levels (2) 0.5081a (<0.0100) KPSS test in differences (2) 0.1264 (>0.1000) 

DW test 2.0035 (0.9346)   

Engle’ arch test (5 lags) 0.1656 (0.9994) Engle’ arch test (20 lags) 2.5813 (1.0000) 

Panel III: Directional volatility conn. from cryptocurrencies (block) to traditional currencies (block)  

 

Mean 5.4232 Standard Deviation 2.0508 

Minimum 1.4706 Maximum 12.5992 

ADF test in levels (1) -4.0038a (0.0019)   

KPSS test in levels (2) 0.2953 (>0.1000)   

DW test 2.0331 (0.6629)   

Engle’ arch test (5 lags) 4.5633 (0.4714) Engle’ arch test (20 lags) 11.9630 (0.9173) 

Panel IV: Directional volatility conn. from traditional currencies (block) to cryptocurrencies (block)  

Mean 5.2904 Standard Deviation 2.4389 

Minimum 0.8372 Maximum 11.2316 

ADF test in levels (1) -3.6739b (0.0248) ADF test (1) -3.6824a (<0.0010) 

KPSS test in levels (2) 0.1409c (0.0594) KPSS test (2) 0.1409 (>0.1000) 

DW test 2.1109 (0.1248)   

Engle’ arch test (5 lags) 7.5586 (0.1823) Engle’ arch test (20 lags) 12.7778 (0.8867) 

Notes: 
a, b, c indicates significance at the 1%, 5% and 10% level, respectively. 

(1) Schwert (1989) suggest that a maximum lag  
1

412 100
 
 
 

T , where T is the sample size, 

(2) Kwiatkowski et al.  (1994) suggest that a number of lags on the order of T , where T is 

the sample size. 
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Appendix C. Stepwise regression results 

Panel I: Total connectedness within traditional currencies as dependent variable 

Lagged dep. Total connectedness within traditional currencies 0.9543a (0.0000) 

EPU Economic Policy Uncertainty Index for United States 0.0038b (0.0298) 

Gold Gold spot Fixing Price 3:00 P.M., London time, based in U.S. Dollars 17.8486b (0.0432) 

VXEFA CBOE EFA ETF Volatility Index -0.0637a (0.0071) 

GVZ CBOE Gold Volatility Index 0.1045a (0.0011) 

Bull Percentage of optimistic investors 0.0231a (0.0046) 

Funding Funding component of OFR FSI 11.1373a (0.0021) 

Radj
2 0.9336 h-DW test -0.5667 (0.5710) BG test  11.859 (0.9208) Engle test 3.1513 (1.0000) 

Panel II: Total connectedness within cryptocurrencies as dependent variable 

Lagged dep. Total connectedness within cryptocurrencies 0.0847a (0.0106) 

Oilres Cumulative Residual Shocks in Oil Price -9.0506b (0.0297) 

OFR FSI Financial Stress Index 0.7820a (0.0080) 

WBIT Wikipedia search for keyword "Bitcoin" -0.000 a (0.0016) 

WDAS Wikipedia search for keyword "Dash" 0.0009b (0.0218) 

WSUM Sum of Wikipedia searches "Bitcoin", "Litecoin", "Dash" and "Ripple" 0.0001a (0.0071) 

CDAS Market capitalization for Dash -1.5851e-09a (0.0000) 

CRIP Market capitalization for Ripple -1.3979e-10a (0.0000) 

VALL Sum of trade volume for Bitcoin, Litecoin, Dash and Ripple 1.7008e-10a (0.0006) 

CALL Sum of market capitalization for Bitcoin, Litecoin, Dash and Ripple -2.0623e-10a (0.0900) 

Radj
2 0.1605 h-DW test 0.2474 (0.8046) BG test  37.4761 (0.0103) Engle test 23.4540 (0.2671) 

Panel III: Directional volatility conn. from cryptocurrencies to traditional currencies as dependent variable 

Lagged dep. Directional conn. from cryptocurr. (block) to traditional curr. (block) 0.8665a (0.0000) 

TED Difference between 3-Month LIBOR ($) and 3-Month Treasury Bill -0.6974b (0.0220) 

T10Y3M Difference between 10-Year Treasury Minus 3-Month Treasury -0.1649b (0.0391) 

Oilres Cumulative Residual Shocks in Oil Price -7.4770a (0.0002) 

USESI USA Economic Surprise Index 0.0035a (0.0015) 

EMESI Emerging Market Economic Surprise Index -0.0040c (0.0557) 

Risk Indicator of risk appetite -0.1330a (0.0096) 

DMFTI Financial Tension Index, Developed markets without the effect of US 1.5340a (0.0017) 

OFR FSI Financial Stress Index 0.3443b (0.0145) 

CRIP Market capitalization for Ripple -5.1664e-11a (0.0000) 

VALL Sum of trade volume for Bitcoin, Litecoin, Dash and Ripple 9.9368e-11a (0.0000) 

Radj
2 0.8414 h-DW test -0.3155 (0.7524) BG test  11.550 (0.9307) Engle test 10.5503 (0.9672) 

Panel IV: Directional volatility conn. from traditional currencies to cryptocurrencies as dependent variable 

Lagged dep. Directional conn. from traditional curr.  (block) to cryptocurr. (block) 0.9066a (0.0000) 

EPU Economic Policy Uncertainty Index for United States 0.0016a (0.0093) 

Oilres Cumulative Residual Shocks in Oil Price -4.6652a (0.0093) 

OFR FSI Financial Stress Index 0.2461c (0.0604) 

Funding Funding component of OFR FSI 2.5907b (0.0485) 

CRIP Market capitalization for Ripple -3.8080e-11a (0.0003) 

VALL Sum of trade volume for Bitcoin, Litecoin, Dash and Ripple 6.2705e-11a (0.0005) 

Radj
2 0.8243 h-DW test -1.3758 (0.1689) BG test  16.7039 (0.6721) Engle test 17.4038 (0.6266) 

Notes:                  

 a, b, c indicates significance at the 1%, 5% and 10% level, respectively.  

All the models include an unreported constant. 
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Appendix D. Procedure to standardize regression coefficients and to calculate relative 

contributions 

Bring (1994) suggested an approach to calculate the standardized coefficient, multiplying 

the ordinary coefficient i̂  by the partial or conditional standard deviation,  

 * *

i i i
ˆ ˆ s   

where the partial or conditional standard deviation 
*

is  can be estimated by regressing ix  

on the other independent variables. This estimated can obtain by using the variance 

inflation, VIF. When y is regressed on 1 2 kx , x , , x each independent variable is 

associated with a VIF: 

2

1

1

1 


 k

VIF
R

 

where
2

1kR  is the coefficient of determination when ix  is regressed on the 1k  other 

independent variables. Then the partial standard deviation is 

1




* i
i

i

s n
s

n kVIF
 

The individual relative contributions of the optimal explanatory variables in a stepwise 

regression after normalization would be  

1

100



 



*

i

i k
*

i

i

ˆ

rc _ x
ˆ





,  1 2i , , ,k . 
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Table 1: Schematic connectedness table 
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Table 2: Descriptive statistics and contemporaneous Pearson correlations of daily normalized volatilities 

 

 EUR GBP AUD JPY XBT XRP XLT XDS 

Panel A: Descriptive statistics  

Min -5.563092 -8.265512 -4.446462 -5.23395 -6.991469 -6.098891 -5.142891 -7.378419 

Median -0.049344 -0.012208 0 -0.045822 0.061895 -0.070824 0 -0.04295 

Max 4.871424 4.148731 3.279684 5.795282 5.698112 8.698162 11.23695 5.602051 

Skewness -0.221685 -0.552769 -0.146898 0.134574 -0.399539 0.875759 1.54224 -0.03962 

Kurtosis 5.148096 7.86181 3.80522 5.561507 9.446596 13.15702 22.11406 8.275951 

Observations 1159 1159 1159 1159 1159 1159 1159 1159 

Jarque-Bera 232.326a 1200.503a 35.47968a 320.3553a 2037.769a 5130.16a 18102.68a 1344.533a 

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

 

 EUR GBP AUD JPY XBT XRP XLT XDS 

Panel B: Matrix correlations 

EUR 1.0000        

GBP 0.5309a 1.0000       

AUD 0.4485a 0.3990a 1.0000      

JPY 0.4680 a 0.2298a 0.3081a 1.0000     

XBT 0.0102 -0.0176 -0.0067 -0.0028 1.0000    

XRP 0.0032 0.0034 -0.0258 0.0149 0.1543a 1.0000   

XLT -0.0147 -0.0320 -0.0050 -0.0053 0.5959a 0.1342a 1.0000  

XDS 0.0064 -0.0220 -0.0052 -0.0816a 0.4052a 0.0983a 0.3441a 1.0000 

Notes:  

Daily data from February 14, 2014 to September 28, 2018.  
a, b, c indicates significance at the 1%, 5% and 10% level, respectively 
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Table 3: Full-sample connectedness 

  

EUR GBP AUD JPY XBT XRP XLT XDS 

Directional 

FROM 

Others 

EUR 57.7058 16.7002 12.2844 12.3470 0.0490 0.1745 0.0535 0.6858 42.2942 

GBP 19.0523 65.9000 10.5386 3.2539 0.4227 0.1700 0.3210 0.3413 34.1000 

AUD 14.3228 11.1161 67.7276 6.4921 0.0297 0.0410 0.0152 0.2556 32.2724 

JPY 15.2860 3.6545 7.2166 72.9712 0.0365 0.0635 0.0117 0.7601 27.0288 

XBT 0.0061 0.0433 0.1508 0.0169 58.7197 7.5710 22.1151 11.3771 41.2803 

XRP 0.2530 0.1983 0.0803 0.4650 9.1989 72.6631 10.6362 6.5051 27.3369 

XLT 0.0876 0.1206 0.1807 0.0648 22.5928 8.4122 59.6596 8.8817 40.3404 

XDS 0.0310 0.1262 0.0512 0.5043 13.5031 6.3939 10.1682 69.2223 30.7777 

Directional 

TO Others 
49.0388 31.9592 30.5026 23.1440 45.8327 22.8260 43.3208 28.8066 34.4288 

Net 

Contribution 

(To – From) 

Others 

6.7446 -2.1408 -1.7698 -3.8848 4.5524 -4.5108 2.9804 -1.9711 - 

 

  



55 
 

Table 4: Full-sample connectedness by blocks of currencies 

   

 Traditional currencies Cryptocurrencies 

Traditional currencies 99.14 0.86 

Total connectedness within Trad. currencies 33.07 - 

Cryptocurrencies 0.60 99.40 

Total connectedness within Cryptocurrencies - 34.34 

Net Contribution (To – From) Others -0.26 0.26 

Total connectedness across blocks  0.73 
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Table 5: Predicted power and relative contributions of explanatory variables 

Panel I: Total connectedness within traditional currencies as dependent variable 

 Individual contribution (%) 

Actual 

36.5693 

Predicted 

36.5692 

Lagged dep EPU Gold VXEFA GVZ Bull Funding 

87.2657 1.8359 1.7151 2.2379 2.5913 1.7436 2.6104 

 Aggregate contribution (%) 

 Business cycles variables Financial market variables Cryptocurrency-specific variables 

 1.8359 10.8984 0 

Panel II: Total connectedness within cryptocurrencies as dependent variable 

 Individual contribution (%) 

Actual 

34.1805 

Predicted 

34.1350 

Lagged dep Oilres OFR FSI  WBIT WDAS WSUM CDAS CRIP VALL CALL 

8.7333 7.4041 9.0680  10.8210 7.8361 9.9203 15.1372 14.2951 11.7163 5.7586 

 Aggregate contribution (%) 

 Business cycles variables Financial market variables Cryptocurrency-specific variables 

 7.4041 9.0680 74.7964 

 

Panel III: Directional volatility connectedness from cryptocurrencies (block) to traditional currencies (block) as dependent variable 

 Individual contribution (%) 

Actual 

5.4232 

Predicted 

5.4232 

Lagged dep TED T10Y3M Oilres USESI EMESI Risk DMFTI OFR FSI CRIP VALL 

61.1862 2.8890 2.6015 4.6488 4.0068 2.4123 3.2695 3.9724 3.0845 5.6342 6.2949 

 Aggregate contribution (%) 

 Business cycles variables Financial market variables Cryptocurrency-specific variables 

 16.5583 10.3264 11.9290 

Panel IV: Directional volatility connectedness from traditional currencies (block) to cryptocurrencies (block) as dependent variable 

 Individual contribution (%) 

Actual 

5.2904 

Predicted 

5.2904 

Lagged dep EPU Oilres  OFR FSI Funding CRIP VALL 

78.5580 3.4429 3.4433 2.4825 2.6081 4.8527 4.6125 

 Aggregate contribution (%) 

 Business cycles variables Financial market variables Cryptocurrency-specific variables 

 6.8862 5.0906 9.4652 
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Figure 1a: Daily exchange rates 

Panel A: Traditional currencies 
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Cont. Figure 1a: Daily exchange rates  

Panel B: Cryptocurrencies 
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Figure 1b: Daily normalized volatilities 

Panel A: Traditional currencies 
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Cont. Figure 1b: Daily normalized volatilities 

Panel B: Cryptocurrencies 
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Figure 2: Dynamic total connectedness for the eight currencies and by blocks of currencies 

  

— Total connectedness for the eight currencies — Total connectedness within traditional currencies — Total connectedness within cryptocurrencies 

Note: The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3a: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for EUR

 

— EUR — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3b: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for GBP

 

— GBP — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3c: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for AUD

 

— AUD — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 



65 
 

Figure 3d: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for JPY

 

— JPY — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3e: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for XBT

 

— XBT — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3f: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for XRP

 

— XRP — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3g: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for XLT

 

— XLT — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 3h: Net directional connectedness and net pair-wise directional connectedness by blocks of currencies for XDS

 

— XDS — Traditional currencies — Cryptocurrencies 

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 4: Dynamic net connectedness from the block of traditional currencies to the block of cryptocurrencies

  

Note:  The vertical lines delimit the following episodes: I: March 2014-April 2014; II: April 2014-May 2014, III: May 2014-August 2014, IV: August 2014-July 2015,  

V: July 2015-November 2016, VI: November 2016-March 2017, VII: March 2017-July 2017, VIII: July 2017-October 2017, IX: October 2017-January 2018,  

X: January 2018-Sep 2018. 
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Figure 5: Dynamic directional volatility connectedness from the block of traditional currencies to the block of cryptocurrencies and vice versa      

 

— From traditional currencies to cryptocurrencies — From cryptocurrencies to traditional currencies   

Note:  

The vertical lines delimit the following episodes: I: July 2015-November 2016, II: November 2016-March 2017, III: March 2017-July 2017,  

IV: July 2017-October 2017, V October 2017-January 2018, VI: January 2018-Sep 2018. 

The black straight lines represent the trends in both directional connectedness. 
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