Optimization of an on-line solid phase extraction (SPE) coupled with UHPLC-MS/MS, for the determination of hormonal compounds in sewage from wastewater treatment plants of Gran Canaria (Spain)

Rayco Guedes-Alonso, Sarah Montesdeoca-Esponda, Zoraida Sosa-Ferrera, José Juan Santana-Rodríguez

Departamento de Química, Universidad de Las Palmas de Gran Canaria. 35017, Las Palmas de Gran Canaria. Spain. E-mail: josejuan.santana@ulpgc.es

Steroid hormones are an important group inside of the emerging pollutants, and are considered as endocrine disruptor compounds (EDCs) due to their capacity of altering the natural hormonal equilibrium, producing harmful effects in animals, humans and their progeny. These changes are more noticeable in the marine environment [1]. The consumption of steroid hormones has increased exponentially in last decades, due to their use in human and veterinary medicine and the principal source of these pollutants are the wastewater treatment plants. Several studies have determined the presence of this type of compounds in wastewater samples [2].

An on-line solid phase extraction process coupled with ultra-high performance liquid chromatography following by mass spectrometry detection (UHPLC-MS/MS) has been optimized to determine fourteen natural and synthetic hormones (Table 1).

Extraction and chromatographic conditions:

Compounds studied:

EXPERIMENTAL:

|--|

Androgens	Progestogens	Corticosteroids
Boldenone (BOL)	Norethisterone (NOR)	Prednisone (PRD)
Nandrolone (NAN)	Norgestrel (NRG)	Cortisone (COR)
Testosterone (TES)	Megestrol Acetate (MGA)	Prednisolone (PRDL)
	Progesterone (PRO)	
	Androgens Boldenone (BOL) Nandrolone (NAN) Testosterone (TES)	AndrogensProgestogensBoldenone (BOL)Norethisterone (NOR)Nandrolone (NAN)Norgestrel (NRG)Testosterone (TES)Megestrol Acetate (MGA)Lestosterone (DRO)Progesterone (PRO)

Table 1: Compounds studied

On-line SPE optimization: i) Cartridge used

Two Oasis HLB columns (20 µm, **2.1x30mm)** working in parallel. Flow rate: 2 mL \cdot min⁻¹. Mobile phases consist of:

A2: water (0.05% acetic acid) B2: water without additives C: methanol without additives D: methanol:acetone:hexane

Time		BSIM				QSIVI			
(min)	Flow (mL∙min⁻¹)	A (%)	B (%)	Flow (mL∙min⁻¹)	A2 (%)	B2 (%)	C (%)	D (%)	
0.00	0.300	80	20	2.000	100	0	0	0	Loading phase
0.50	0.300	80	20	2.000	0	100	0	0	
3.80	0.300	80	20	2.000	0	100	0	0	Weak wash step
4.10	0.300	80	20	2.000	0	0	0	100	Strong wash of the cartridges
7.00	0.300	0	100	2.000	100	0	0	0	Re-equilibration time
8.00	0.300	0	100	2.000	100	0	0	0	
10.50	0.300	80	20	2.000	100	0	0	0	Table 2: Gradient used for extraction
• Colum	η. ΔΟΟΙΠΤ		C BEH V	Vaters C18	(50×2)) 1 mm	17.um)	process and chromatographic

• Column: ACQUITY UPLC BEH Waters C18 (50 x 2.1 mm, 1.7 μ m) • Mobile phases: A: Water + 0.1% NH₃ and B: Methanol

separation

Estriol

Basel 2014

SETAC Europe

iii) Load phase and sample volume Load phases studied:

- \rightarrow pH = 3.4 (Water + 0.05% CH₃COOH)
- \rightarrow pH = 5.8 (Water)
- \rightarrow pH = 8.1 (Water + 0.1% NH₃ + 0.1M CH₃COONH₄)
- \rightarrow pH = 10.1 (Water 0.1% NH₃)

Sample volume: 1, 2, 3, 4 and 5 mL of wastewater

ii) pH of the sample

pH studied:

 \rightarrow pH = 3.5 (using acetic acid) \rightarrow pH = 5.7 (without additives) \rightarrow pH = 10.4 (using NH₃)

iv) Wash step

Solvents studied:

- → Water and MeOH without additives
- \rightarrow Water and MeOH with 0.1% NH₃

% of organic solvent: \rightarrow 0% of MeOH \rightarrow 10% of MeOH \rightarrow 20% of MeOH \rightarrow 30% of MeOH \rightarrow 40% of MeOH

RESULTS:

Analytical parameters:

	Detection	100 ng	:•L ⁻¹	500 ng∙L ⁻¹	
Compound	limit (ng·L ⁻¹)	Recovery (%) n=6	RSD* (%) n=6	Recovery (%) n=6	RSD* (%) n=6
Diethylstilbestrol	13.2	44.3	7.3	42.3	14.7
17β-estradiol	8.5	88.8	26.4	104.0	7.0
Estrone	4.1	75.1	15.1	81.6	8.8
Estriol	4.5	76.8	5.2	69.7	17.1
Norgestrel	1.6	34.5	8.6	36.7	11.6
Testosterone	1.0	43.1	6.9	48.3	3.7
Megestrol acet.	1.2	138.7	6.8	154.4	10.8
Prednisone	9.2	61.7	11.5	60.7	5.0
Prednisolone	6.1	95.2	9.4	100.0	8.7
Cortisone	2.1	69.5	7.3	66.3	3.2
Boldenone	0.7	61.1	4.5	67.5	2.7
Norethisterone	2.3	42.7	2.9	44.3	3.3
Nandrolone	4.1	59.0	9.6	59.6	3.3
Progesterone	0.5	43.4	10.7	43.7	10.3
Table 3. Analytica	elative standard	d deviation			

Real samples:

Figure 3. Concentrations detected in influent sample

Wastewater samples were collected from a WWTP located in Gran Canaria (Spain) WWTP had a novel membrane bioreactor system (MBR). The samples were taken from the influent of the plant.

CONCLUSIONS

In accordance with the obtained results, the on-line SPE-UHPLC-MS/MS procedure is easy, cheap, selective and sensitive, with low detection and quantification limits. The application in real samples from WWTPs was satisfactory. REFERENCES [1] R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli. Science. **313** (2006) 1072-1077

[2] P.B. Fayad, M. Prévost, S. Sauvé. Talanta. **115** (2013) 349-360