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Abstract

Hyperspectral imaging (HSI), which acquires up to hundreds of bands, has been proposed as a 

promising imaging modality for digitized histology beyond RGB imaging to provide more 

quantitative information to assist pathologists with disease detection in samples. While digitized 

RGB histology is quite standardized and easy to acquire, histological HSI often requires custom-

made equipment and longer imaging times compared to RGB. In this work, we present a dataset of 

corresponding RGB digitized histology and histological HSI of breast cancer, and we develop a 

conditional generative adversarial network (GAN) to artificially synthesize HSI from standard 

RGB images of normal and cancer cells. The results of the GAN synthesized HSI are promising, 

showing structural similarity (SSIM) of approximately 80% and mean absolute error (MAE) of 6 

to 11%. Further work is needed to establish the ability of generating HSI from RGB images on 

larger datasets.

1. Introduction

In recent years, the use of hyperspectral imaging (HSI) for computer-aided histological 

sample analysis is increasing [1,2]. This trend is spurred by both increases in computational 
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pathology and the richness of information that HSI can provide. However, the acquisition of 

hyperspectral (HS) images can present several challenges compared to standard RGB 

digitized histology. HSI technology can be combined with machine learning algorithms to 

retrieve useful information for diagnosis support. Training machine learning algorithms and 

especially deep learning algorithms requires a large amount of data for convergence and 

generalization. Although several researchers have shown promising results in the diagnosis 

of pathological slides using HSI, the challenges regarding current acquisition methods may 

limit histological HSI to a few selected regions of interest within a slide. Therefore, data 

augmentation, such as flips and rotations, can increase the quantity of HS data for sufficient 

training of HS computer-aided diagnostic algorithms.

To overcome these challenges, we propose a technique for faster generation of HS data from 

only RGB information. The synthetic HS data generated could be used for augmentation of 

HS machine learning or perhaps for other clinical purposes. However, the RGB to HS 

transformation is restricted to only the visual range from 400 to 750 nm, which is by 

definition the range where RGB images are acquired. On the other hand, HSI technology can 

work on different ranges, most commonly the visual range (400 to 750 nm) and the near 

infrared (NIR, 750–1000 nm) [1]. The proposed technique could help in two ways. First, the 

spatial resolution of the synthesized HS images could be very high, depending on the RGB 

camera employed. This fact is caused by the relatively low spatial resolution of HS cameras 

compared to conventional RGB cameras. Secondly, a NIR camera could be used to quickly 

complement the spectral range beyond visible light, and the synthesized HS images from 

RGB could be used to increase the spatial characteristics of the real HS NIR images, leading 

in a reduction of cost and complexity of a high spectral range HS system.

In this research, we propose the use of a generative adversarial network (GAN) to generate 

new HS data from cellular level histological RGB images. The main motivation is that the 

annotation can be easily performed in RGB digitized slides, where the tissue can be 

examined at different magnification levels. This is currently not feasible in HS images 

because the acquisition of whole-slide-images using a HS camera is currently a challenge 

itself. The procedure employed to perform the experiments is as follows. First, a skilled 

pathologist annotated cells from selected regions within two histological RGB digitized 

slides from two patients with breast cancer. Next, several HS images were acquired with a 

HS microscope of these regions, and the images where registered with the correspondent 

RGB image. Finally, a conditional GAN was employed to generate synthetic HS images 

from conventional RGB digital images, which was compared with the original HS data.

2. Methods

2.1 Breast Cancer Histology Hyperspectral Dataset

In this study, two histopathological slides from two patients with breast cancer were 

included. The tissue sample was paraffin embedded, sectioned, and stained with 

hematoxylin and eosin (H&E). The whole-slide was digitized using a Pannoramic SCAN 

digital scanner, and a pathologist annotated the digitized slide image using Pannoramic 

Viewer software (3D Histech Ltd., Budapest, Hungary). Cellular-level annotations of both 

normal and breast cancer cells were manually performed by a skilled pathologist. 
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Histological sample selection, preparation, and annotation was performed by the department 

of pathology of the Hospital de Tortosa Verge de la Cinta, Spain. A push-broom HS camera 

(Hyperspec VNIR A-Series, HeadWall Photonics Inc., Fitchburg, MA, USA) was mounted 

to a conventional light microscope (Olympus BX-53, Tokyo, Japan), and a mechanical stage 

performed the movement necessary to capture the HS image. The regions of interest (ROIs) 

annotated by the pathologist were acquired from 400 to 1000 nm with a spectral resolution 

of 2.8 nm, producing 826 spectral bands. Standard calibration and a band reduction were 

preformed to reduce the number spectral bands to 159 between 400 to 750 nm, according to 

a previously described method [2].

This study had two different imaging modalities, which required registration of the 

annotated regions from digitized RGB slides to the corresponding HS images using a 

synthetic RGB image obtained from the original HS image. Briefly, the previously described 

image registration process consists of a geometric transformation that matches the images, 

applied to the annotations of the HS image [2]. After image registration, patches are 

extracted from the digitized RGB slide and the HS image of corresponding cells that were 

annotated. From each cell centroid, patches are generated with a size of 39×39 spatial pixels 

and 159 spectral bands.

2.2 Conditional Generative Adversarial Network

A conditional generative adversarial network (cGAN) was implemented to generate 

synthetic HS images from the digitized, whole-slide RGB images on a cell-by-cell level. 

Figure 1 shows the schematic diagram of the experimental design proposed in this work. 

After extracting a total of 20,800 cell patches from both RGB and HSI, the patches were 

split into training (65%), validation (10%), and testing (25%). The cGAN was inspired by 

the pix2pix design, which consists of a generator (G) to synthesize data and a discriminator 

(D) to detect real and synthetic pairs [3]. For better spatial reconstruction, the RGB image 

patches (39×39×3) were stacked to match the spectral resolution size of the HS image output 

patch (39×39×159), according to the visible spectrum orientation, i.e. 53 blue channels, 53 

green channels, and 53 red channels. The generator was a modified U-Net consisting of 21 

layers that used the stacked RGB image (39×39×159) as input and generated a synthetic HS 

image (39×39×159) as output. The full modified architecture of the generator is described in 

Table 1. The discriminator consisted of 4 strided convolutional layers to produce a final size 

of (3×3×1), which allows fine-level detail to be learned, referred to as patchGAN [3]. The 

network was developed using the TensorFlow implementation of the Keras Deep Learning 

API [4].

Training the cGAN consisted of first training the discriminator and then the generator. In 

Figure 2, we show the framework for the training of one iteration of the cGAN. First, the 

discriminator is trained on real and synthetic pairs using L2 loss. Next, the generator is 

trained using the combined model with L2 loss and alone with L1 loss to the real HS image. 

The loss functions for the discriminator were L2 loss. For training the generator, the G and 

D were combined but the weights from D were frozen, which allows calculating both L1 

from the synthetic and real HS image pair and L2 loss from D. The optimizer used was 

stochastic gradient descend with a learning rate of 10−4 and a value of 0.90 for momentum. 

Halicek et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The cGAN was trained for 40 epochs, and optimization was performed using the validation 

set.

2.3 Validation

To evaluate the performance of the GAN, the synthetic HS image of the cells are compared 

to the real HS image using well-established metrics for single-band, panchromatic images, 

which are then averaged across all spectral bands. The structural similarity (SSIM) index is 

calculated on a band-by-band basis, with one band (R) from the real HSI and the 

corresponding band (S) from the synthetic HS image, according to the standard equation (1), 

as defined in [5].

SSIMλ(R, S) = 2μRμS + C1 2σRS + C2
μR

2 + μS
2 + C1 σR

2 + σS
2 + C2

(1)

Where the constants, C1 = (0.01 × L)2 = 0.0001 and C2 = (0.03 × L)2 = 0.0009, are chosen 

as the default nonzero values dependent on the dynamic range (L) of the image values, and μ 
and σ are the mean and standard deviations of images. The total SSIM for a cell HSI is the 

average of all SSIM values from all 159 bands, according to the equation (2) below.

SSIM( Real HSI  Synethtic HSI) = 1
159 ∑

λ = 1

159
SSIMλ(R, S) (2)

Additionally, the peak signal to noise ratio (PSNR) is calculated in the same way by 

averaging the values obtained in a band-by-band basis across all 159 spectral bands.

PSNR( Real HSI , Synethtic HSI ) = 1
159 ∑λ = 1

159 PSNRλ(R, S),  where PSNRλ(R, S)

= 10log10  peak value 2/MSE

Where MSE is the mean squared error term. The final evaluation metric was mean absolute 

error (MAE), which was also calculated on a band-by-band basis between the real and 

synthetic HS images, and the final result for an HS image was obtained by averaged the 

results of all spectral bands.

Parameter optimization was performed on the validation set using all the evaluation metrics 

above, and the final performance was calculated on the test set. The validation set was 

always from the same slide as the training set. Since two slides from two different patients 

were used in this study, the testing results were calculated on both, the same slide and the 

other patient’s slide and reported separately. For calculating MAE, because we are interested 

in the HS signature of the cells, only the pixels within the annotated cell nuclei are used for 

calculation and background is excluded. For calculating both the SSIM and PSNR, the three 

pixels at each edge of the cell image-patch are not used for calculation, for the same reason. 

All performance calculations were performed in MATLAB (MathWorks, Inc., Natick, MA).
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3. Results

The quantitative experimental results obtained in this work are shown in Table 2. As stated 

previously, to measure the quality of synthetic HSI generation, the metrics utilized were 

SSIM, PSNR, and MAE. The SSIM and PSNR measures are more related to the spatial 

component of the HS image, while the MAE is more sensitive to errors in the spectral 

component. The results from the testing group were separated by normal cells and breast 

cancer cells. The average SSIM was around 80% for both cell types when testing on the 

same patient (intra-slide test). When testing on the other patient slide (inter-slide test), the 

average SSIM was slightly lower at 78%. However, the PSNR (18 dB) and the MAE (11%) 

were equivalent testing intra-slide or inter-slide patients. Additionally, the MAE of the 

normal cells was lower than breast cancer cells.

The outcomes of the HS images generated using the proposed cGAN were investigated both 

qualitatively and quantitatively. The spatial components are shown in Figure 3 with single-

band images and synthetic RGBs for both real and synthetized HS images, which shows a 

strong relationship between the real images and the synthetic ones. Nevertheless, although 

the most relevant spatial features of the cells are generated successfully by the cGAN, the 

spatial information is quite blurry compared to the sharp edges of the real HS image. In 

Figure 4 and 5, the spectral signatures from real and synthetic HS images are plotted for 

both normal and breast cancer cells, respectively. The synthetic HS image generated from 

intra-slide cGAN training is shown in blue, and inter-slide cGAN training is shown in red. It 

can be observed that our method provides a good approximation of the spectral signature of 

each type of cell. However, the normal cells (Figure 4) have more realistic signatures than 

cancer cells (Figure 5). Additionally, the intra-patient training yields more realistic spectral 

signatures, compared to inter-patient cGAN training.

4. Discussion

In this work, we present the use of conditional GAN to use digitized RGB information to 

construct artificial HS images of normal and breast cancer cells from two histology slides. 

The novelty of this approach is the dataset of an annotated slide with both HSI and RGB 

components, which allows training a GAN. In the literature, GANs have been utilized for 

artificial staining of histological samples with HSI [6], but this is the first application for 

direct synthesis of HS data from RGB data for breast cancer histology on a cellular level. 

Future work is necessary to expand the dataset to more patient slides for training to allow 

better generalization to new slides. Additionally, other organ systems, cell types, and even 

other staining techniques need to be explored using the proposed method.

From the preliminary results shown in this study, it was observed that normal cells have 

better spectral representations synthesized from RGB than cancer cells. The reason for this 

could be that there is more consistency in spectral signatures of normal cells and larger 

heterogeneity in the signatures of breast cancer cells (Figure 5). Both the shape and standard 

deviation of the signatures are more realistic for normal cells (Figure 4). The relative shapes 

and peaks appear worse for cancer cells. Most notably, the standard deviation for real 
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spectral signatures of cancer cells from the second patient is quite substantial, but the 

synthetic curves do not have the same heterogeneity.

The results from intra-patient compared with inter-patient cGAN training appear to be 

equivalent quantitatively, with both around 11% error. However, inspecting the spectral 

signatures in Figures 4 and 5, more appropriate curves are generated when the GAN is 

trained on the same patient’s data. This result indicates that more patient data is required for 

training and generalization. Additionally, the optimization of the modified U-net generator 

component of the GAN was done on the P1 experiment. As a result of this, the synthetic 

spectral representations look better for this patient, compared to P2. The GAN architecture 

and hyper parameters should be optimized on a large dataset with cells from multiple 

patients.

In conclusion, histological HSI may be able to provide more information for computer-aided 

diagnostic algorithms compared to standard RGB digitized histology, but HSI is currently 

more difficult to acquire, especially in whole-slide fashion. In this work, we present a dataset 

of corresponding RGB digitized histology and histological HSI of breast cancer and develop 

a conditional GAN to artificially synthesize HSI from standard RGB images of normal and 

cancer cells. The results of the GAN synthesized HS images are promising, showing SSIM 

of approximately 80% and mean absolute error of 11%. Further work is needed to establish 

the ability of generating HSI from RGB images on larger datasets with more diverse cancer 

morphologies, different organ systems, and different staining techniques. Additionally, it is 

necessary to demonstrate the ability of GAN-synthesized HS data from RGB to improve 

training and classification ability of CNNs when the GAN is utilized for data augmentation 

proposes. Alternatively, the method of GAN-synthesized data combined with real HS data 

for extending spectral or spatial information and reducing costs needs to be investigated.
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Figure 1: 
Schematic diagram of the experimental design. A standard RGB digitized whole-slide image 

is taken of the H&E slide of the breast cancer specimen. A pathologist manually annotated 

cell nuclei in selected ROIs (red is cancer, green is normal). HSI is acquired of the selected 

ROIs. Image patches are made that correspond from the RGB digitized images and the 

original HS images. The generator (G) is trained to make synthetic HS images from the 

RGB images. A discriminator (D) is trained to detect synthetic and real HS images to better 

train the generator.
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Figure 2. 
Framework for one iteration (i-th) of training the cGAN. The preliminary step is to generate 

the synthetic HS image from the previous training iteration (step 0). For training, first, the 

discriminator is trained on real (step 1) and synthetic (step 2) pairs using L2 loss. Next, the 

generator is trained using the combined model with L2 loss and alone with L1 loss to the 

real HS image (step 3).
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Figure 3. 
Single-band images from HSI and RGB composite from HSI showing the spatial features of 

a breast cancer cell (left) and normal cell (right).
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Figure 4. 
Plots of the spectral signatures of normal cells from both patients (P1 and P2). Real HS 

spectral signatures are shown in black (left). Synthetic HS spectral signatures using cGAN 

trained on same patient’s data (intra-slide) are shown in blue (middle). Synthetic HS spectral 

signatures using cGAN trained on the other patient’s data (inter-slide) are shown in red 

(right).
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Figure 5. 
Plots of the spectral signatures of breast cancer cells from both patients (P1 and P2). Real 

HS spectral signatures are shown in black (left). Synthetic HS spectral signatures using 

cGAN trained on same patient’s data (intra-slide) are shown in blue (middle). Synthetic HS 

spectral signatures using cGAN trained on the other patient’s data (inter-slide) are shown in 

red (right).
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Table 1.

Schematic of the Generator (G), which was a modified U-Net CNN.

Layer Notes Shape / Filters

Input Real RGB (Stacked) 39×39×159

Conv2D Strided, 3×3 20×20×256

Conv2D Padded, 3×3 20×20×512

Conv2D Strided, 3×3 10×10×768

Conv2D Padded, 3×3 10×10×1024

Conv2D Strided, 3×3 5×5×1280

Conv2D Padded, 3×3 5×5×1536

Conv2D_Transpose Strided, 3×3 10×10×1536

Concatenation Skip Connection 10×10×2560

Conv2D Padded, 3×3 10×10×1280

Conv2D_Transpose Padded, 3×3 20×20×1024

Concatenation Skip Connection 20×20×1536

Conv2D Padded, 3×3 20×20×768

Conv2D_Transpose Padded, 3×3 40×40×320

Cropping 2D 1 Pixel 39×39×320

Concatenation Skip Connection 39×39×479

Conv2D Padded, 3×3 39×39×296

Conv2D Padded, 3×3 39×39×284

Conv2D Padded, 3×3 39×39×256

Conv2D Padded, 3×3 39×39×220

Conv2D Padded, 3×3 39×39×196

Conv2D Padded, 3×3 39×39×159

Output Synthetic HSI 39×39×159
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Table 2:

Quantitative results of the cGAN-synthetized HSI of normal and cancer cells from both patients.

Group Patient Cell Type No. of Cells SSIM (%) PSNR (dB) MAE (%)

Validation Intra-slide
P1 Combined 1281 80 ± 5 18 ± 3 10 ± 4

P2 Combined 798 81 ± 5 20 ± 5 10 ± 5

Test Intra-slide

P1
Cancer 3106 80 ± 4 17 ± 2 11 ± 4

Normal 75 81 ± 6 21 ± 3 6 ± 2

P2
Cancer 1900 79 ± 6 18 ± 4 13 ± 7

Normal 91 84 ± 2 23 ± 2 6 ± 2

Average 80 ± 4 18 ± 3 11 ± 5

Test Inter-slide

P1
Cancer 3106 76 ± 4 19 ± 2 10 ± 2

Normal 75 78 ± 7 20 ± 1 9 ± 1

P2
Cancer 1900 81 ± 3 17 ± 3 13 ± 5

Normal 91 83 ± 2 14 ± 2 18 ± 5

Average 78 ± 4 18 ± 2 11 ± 3
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