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Abstract. We discuss the possibility that steplike structures are formed in 
subcritical regions of vertically stratified shear flow. The mechanism we propose 
essentially consists of localized intense mixing in highly stratified and sheared flows, 
probably following frontogenesis. Its main assumption is that the vertical density 
flux increases monotonically with decreasing gradient Richardson numbers, which 
corresponds to enhanced stratification and/or diapycnal shear. This differs from 
Phillips' [1972] mechanism, which we argue may not apply to vertically stratified 
shear flow. An essential condition for the formation of constant density steps is the 
incorporation of a Langevin type equation which takes into account that turbulence 
must last for some finite characteristic time. We present numerical computations 
for the case of approximately constant diapycnal shear which lead to the formation 
of a staircase depth-density structure. 

1. The Phillips Mechanism 

Phillips [1972] suggested that small perturbations in 
an initially well stratified density profile will grow with 
time if a local increase in the vertical density gradient 
is accompanied by an even larger decrease of the (tur- 
bulent) vertical density diffusivity K. In this case, the 
vertical density flux will become smaller (larger) with 
increasing (decreasing) stratification, leading to verti- 
cal density divergence (convergence) where the density 
perturbation is negative (positive). The density per- 
turbations will turn into progressively better defined 
steps, until the turbulent density flux becomes equal in 
the well-stratified and well-mixed portions of the stair- 
case. He further parameterized K in terms of some 
local Richardson number, to show that the density lay- 
ers will form when the turbulent density diffusivity is a 
large enough inverse function of this local Richardson 
numb er. 

Posmentier [1977] examined the stability of the same 
vertically diffusive density equation used by Phillips 
[1972] (but with salinity rather than density): 

Op OF OF O•p 
0--• = Oz OI Oz • ' (1) 

where p is density, I = Op/Oz is the local vertical den- 
sity gradient, and F = w'p' is the vertical component 
of the turbulent density flux vector F. (Throughout 
the paper we will maintain the usual decomposition of 
instantaneous values as equal to ensemble mean plus 
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fluctuating values, and we will follow the notation that 
primed dependent variables refer to fluctuating quan- 
tities while unprimed dependent variables refer to en- 
semble mean quantities.) Posmentier pointed out that 
the solutions of this equation are unstable if OF/0I is 
positive, and suggested that this is the case when strat- 
ification is larger than a certain critical value. He did 
some numerical calculations using a parameterization 
for the vertical density diffusivity of the type proposed 
by Munk and Anderson [1948]: K = K0(1 +/•Ri) -•, 
where K0 is the maximum K value corresponding to 
vertical neutral conditions and /•, n are positive con- 
stants. In this expression, Ri is the local gradient 
Richardson number, defined as 

Ri - , (2) 
p(OV 2 

where v is the speed of the horizontal velocity, Ov/Oz is 
the vertical shear, and # is the gravity acceleration (the 
minus sign in the definition assures Ri to be positive for 
stable stratification). The numerical solution was able 
to reproduce the formation of a depth-density staircase 
structure. (Hereafter, whenever we use the symbol Ri, 
we will refer to this local gradient Richardson number, 
while other possible definitions for the Richardson num- 
ber will be adequately identified.) 

Barenblatt et al. [1993] have extended Phillips' mech- 
anism by allowing a finite time for the turbulence to 
adjust to the varying vertical density gradient. They 
specified this time delay through a linear expansion for 
the eddy diffusivity, which was then incorporated into 
the temperature vertical diffusion equation. They an- 
alyzed this equation and showed that the problem is 
mathematically well posed and the solution unique, and 
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further calculated some numerical solutions which show 

the formation of staircase type structures. Kranenburg 
[1996] has explored the interaction of the mean buoy- 
ancy and velocity fields in vertical diffusivity equations 
for both variables. He considered the slowness in the 

turbulence temporal adjustment by assuming that the 
vertical eddy diffusivity must evolve forced through a 
Prandtl-Kolmogorov type source term. He did an sta- 
bility analysis of the equations (using generalized Munk- 
Anderson density and momentum diffusivity coefficients 
specified in terms of Ri) and obtained rather restrictive 
conditions on the shape of both the vertical density flux 
and vertical momentum flux for the development of in- 
stabilities. He further showed that under these condi- 

tions the numerical solution of the density, momentum, 
and eddy diffusivity equations leads to the formation of 
evolving staircase type structures. 

The key assumption for Phillips' mechanism is the 
dependence of F on density stratification. This mech- 
anism requires F to be small both for well-mixed and 
highly stratified conditions, with a maximum at some 
critical stratification value. The physical justification 
is that for low stratification p' decreases while for high 
stratification w' is inhibited; additionally, under high 
stratification the correlation p'w' is reduced as the na- 
ture of the flow changes, with internal wave motions be- 
coming more dominant [Ivey and Imberger, 1991]. Lin- 
den [1979, 1980] reviewed and did many laboratory ex- 
periments on grid-generated mixing across density in- 
terfaces and found that in all of them, independent of 
the stirring rate, the dependence was similar to that 
required by Phillips' mechanism. Linden [1980] com- 
bined the experimental data to show a similar depen- 
dence of the flux Richardson number (defined as the 
ratio of change in potential energy to the loss of turbu- 
lent kinetic energy) as a function of a local Richardson 
number expressed using some characteristic turbulent 
velocity scale. Ivey and Imberger [1991] have also found 
a parallel relation using data from grid-generated mix- 
ing experiments in stratified water and wind tunnels. 

Ruddick et al. [1989] and Park et al. [1994] have re- 
cently presented laboratory experiments with mixing in- 
duced by stirring with arrays of vertical rods, leading 
to the formation of density steps. Park et al. [1994] 
defined an overall Richardson number depending on 
the initial stratification and on the speed of the rod. 
Their experiments clearly show that there is a criti- 
cal value for this Richardson number (which depends 
on the Reynolds number), above which instabilities de- 
velop and turn into a set of temporally evolving and 
merging steps. They used a local Richardson number 
defined in terms of the step thickness and the speed of 
the rod. They found that the density flux decreased as 
this local Richardson number increased between 1 and 

10, beyond which it became uniform, but they could not 
accurately confirm that the density flux decreased for 
values below 1. They further observed that the steps 
reached an equilibrium state which corresponded to a 
uniform density flux in the layered region. 

These theoretical and experimental works appear to 

confirm the formation of a staircase type structure 
through a Phillips type mechanism. The similarity in 
the evolution and merging of steps seen in both Parle 
et al.'s [1994] experiments and Barenblatt et al.'s [1993] 
and Kranenburg's [1996] numerical calculations is strik- 
ing and rather convincing. One aspect that remains 
unclear, we believe, is the identification of the forcing 
mechanism that leads to the formation of the fine struc- 
ture. 

2. What Is the Role of Vertical Shear? 

In the experiments reported by Ruddick el al. [1989] 
and Park et al. [1994] it is clear that turbulence is the 
result of the rods' movement, but we may wonder to 
what physical mechanism this corresponds in nature. 
In particular, it is hard to believe that this (external) 
source of turbulence corresponds to Kelvin-Helmholtz 
type instabilities, which develop in vertically stratified 
shear flow [Turner, 1986; Thorpe, 1987]. Hence it seems 
difficult to justify that the growth of the (experimen- 
tally and numerically) observed instabilities may have 
any dependence on Ri, which is defined in terms of the 
local vertical shear. 

The theoretical assumptions used by Phillips [1972] 
and Posmentier [1977] actually do not rely on any 
specific dependence of F on Ri (although Posmentier 
[1977] did his numerical calculations using Ri calculated 
from a diagnostic depth dependence of the velocity pro- 
file). Instead they rely on the dependence of the verti- 
cal density diffusivity on a properly defined Richardson 
number, which is a function of the local vertical density 
gradient. To illustrate this, let us temporarily take a 
constant vertical shear, such that Ri = Ri(I). In this 
case, equation (4) of Phillips [1972] may be differenti- 
ated to give 

Oz v, ORi Oz (3) 
Og(I) 

0I 0z 2 ' 

where b'w' is the vertical buoyancy flux (proportional to 
the vertical density flux F), v, is an externally imposed 
characteristic velocity, V' = Ov/Oz is the (constant) 
vertical shear, and g, G are undetermined functions of 
I which satisfy Ri•/2G(Ri) c< I•/2G(I) _= g(I); note 
that the change in sign takes place because Ri is always 
taken as a positive value. 

The same argument used in equation (1) allows us 
now to conclude that Phillips mechanism is really in- 
dependent of the amount of vertical shear, i.e., it may 
happen for any V' different from zero. If V' > O, density 
perturbations are unstable when O(Ri•/2G)/ORi < 0 
(Phillips' statement) or Og/0I > 0 (Posmentier's state- 
ment); the opposite occurs for V' < O. Of course, V' 
may not be constant in z but the condition for instabil- 
ity does not depend on this. It may be clarifying that if 
we were to try the case of constant density stratification 
(constant I), then the instability condition could not be 
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obtained. We may conclude that Phillips' m•chanism 
is not caused by turbulence induced through vertical 
shear and that any analysis of this mechanism is incon- 
sistent both with the specification of the vertical density 
diffusivity K in terms of a local gradient Ri and with 
the utilization of a Munk-Anderson type of parameter- 
ization (which is supposed to apply only for stratified 
shear flow). 

The above discussion is, of course, an oversimplifica- 
tion of the problem because it assumes that the vertical 
density flux will only depend on the density stratifica- 
tion, but it is illustrative of the sort of formal difficulties 
encountered if the density flux is left to depend on Ri. 
This density flux should actually depend on the local 
vertical density gradient, on the rate of dissipation of 
turbulent kinetic energy e, on the kinematic viscosity •, 
and on the size D and velocity V of the eddies (propor- 
tional to the diameter and velocity of the rod). The nu- 
merical and experimental evidence supporting Phillips' 
mechanism suggests that the dependence of the vertical 
density flux on the local stratification K(I) should lead 
to a F(I) type of dependence with a single maximum, as 
required by Phillips mechanism. The main difficulty in 
assessing this dependence, however, is due to the fact 
that most results in the literature are in terms of an 

overall density stratification [Linden, 1979,1980; Ivey 
and Imberger, 1991]. 

Let us now consider the behavior of the vertical den- 

sity flux F for shear-induced instabilities. In this case 
the parameterizations employed for the vertical den- 
sity diffusivity K are frequently of the Munk-Anderson 
type; for reviews and applications, see Pacanowski and 
Philander [1981], Turner [1986], Fernando [1991], and 
Pelegrf and Csanady [1994]. Another type of parame- 
terization corresponds to Peters et al. [1988], who ob- 
tained a two-regime functional form K - K(Ri) for the 
equatorial undercurrent, with a Munk-Anderson type 
expression for Ri _> 0.4 and an expression of the form 
K ..0 Ri -9 for lower Ri values (Figure 1). F is usually 
approximated in terms of K as follows [e.g., Posmen- 
tier, 1977; Csanady, 1990; McDougall and You, 1990; 
Pelegrf and Csanady, 1994]' 

F__KO.•_p_. K Oz 2 ' (4) 
where d - 1/I - Oz/Op, or the JacobJan of the trans- 
formation from the vertical (z,y,z) to the isopycnic 
(z, y, p) reference system. An alternative expression for 
F is obtained introducing equation (2) into the first 
equality of equation (4) 

F=pRiK (Ov) 2 g •zz ' (5) 
This suggests that with a Munk-Anderson type of pa- 
rameterization, F may have a maximum value at some 
low critical Ri value. However, if we accept Peters et 
al.'s [1988] dependence for low Ri values (Ix' .-0 Ri-9), 
then F probably increases continuously with decreasing 
Ri. Peters et al.'s [1988] high inverse dependence of K 
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Figure 1. Vertical density diffusivity as a function of 
the local gradient Richardson number according to the 
parameterizations of Pacanowski and Philander [1981], 
Peters et al. [1988], and Pelegrf and Csanady [1994]. 
We have adapted a curve to the Peters et al. [1988] 
measurements (dots) for the Ri _• 0.4 region. 

for low Ri values is very attractive because it conforms 
to a near-catastrophic shear-mixing criterion, with mix- 
ing taking place below a critical Ri value, in agree- 
ment with theoretical energy arguments [Miles, 1961; 
Howard, 1961; Pollard et al., 1973]. However, in both 
cases the exact behavior depends on how Ov/Oz changes 
with decreasing Ri. 

For the particular case of constant Ov/Oz, we may 
define 

Oz 

and use equation (5) to evaluate OFz/ORi = 0 for any 
parameterization of K, in order to find out if there is 
a value of Ri for which F is a maximum. The utiliza- 

tion of a Munk-Anderson relation K = K0(1 +/•Ri) -'• 
gives a vertical density flux with a maximum at Ri = 
[/•(n- 1)]-1; for example, for n : 3/2 and /• = 10 
[Pelegr( and Csanady, 1994], Fz has a maximum at 
Ri = 0.2. If we use Peters et al.'s [1988] parameteri- 
zation, however, we obtain no maximum, meaning that 
F• increases monotonically with decreasing Ri. Figure 
2a illustrates these results using both the Pelegrl and 
Csanady [1994] and the Peters et al. [1988] expressions. 
For these calculations, we have used Ov/Oz = 10 -2 s -1 
of the same order as the maximum values reported by 
Bane et al. [1981] for the Gulf Stream. 

Under the condition of constant vertical shear the 

Munk-Anderson parameterization (provided that n > 
1) results in a F(Ri) dependence which resembles the 
shape required for the Phillips mechanism. This pro- 
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Figure 2. Vertical density flux as a function of the 
local gradient Richardson number for the cases of (a) 
constant vertical shear (F _= Fz) and (b) constant di- 
apycnal shear (F _= Fp). The distributions are shown 
for both the Peters et al. [1988] and the Pelegr{ and 
Usanady's [1994] K(Ri) parameterizations. 

duces a factual justification (based on the facts but 
not on reasoning) for relating this mechanism to shear- 
induced instabilities. An adequate knowledge of the ex- 
act dependence K(I, e, •, V, D), however, is very impor- 
tant in order to specify the instability conditions neces- 
sary for Phillips' mechanism to develop. In particular, 
this knowledge is critical when taking into account the 
interaction between the density and velocity fields. The 
inadequacy of a Munk-Anderson type of K parameter- 
ization is probably the reason for the very restrictive 
instability conditions found by Kranenburg [1996]. 

A common discourse is that low-R/values imply low 
vertical density gradients, which in turn, are responsi- 
ble for very small density fluctuations and a decrease 
in F [Posmentier, 1977; Ruddick et al., 1989; Park et 
al., 1994; Kranenburg, 1996]. This is a sensible argu- 
ment for a Richardson number defined in terms of a 

(constant) characteristic turbulent velocity, which is re- 
lated to the speed of the regularly moving rods. For 
shear-induced instabilities, however, we find no phys- 
ical reason to support the assumption that F has to 
decrease when Ri becomes small: these small values 

are only indicative of a very unstable situation, prior to 
very active mixing. 

It must be emphasized that our purpose is not to op- 
pose Phillips' mechanism but to warn that its origin 
has probably nothing to do with shear-induced mixing 

and to point out the necessity of expressing the verti- 
cal density flux in terms of some properly defined lo- 
cal Richardson number (instead of Ri). This necessity 
has probably been appreciated by other authors such as 
Park et al. [1994], who always refer to a "suitably de- 
fined Richardson number" rather than to Ri, but it is 
fair to say that the differences have not yet been prop- 
erly pointed out. In the next section we will further 
illustrate the role of shear by considering the problem 
in isopycnic coordinates. This will naturally lead to an 
alternative mechanism for the formation of steps in ver- 
tically stratified flow, which operates in a completely 
opposite fashion and has its origin on instabilities in- 
duced by vertical shear. 

3. An Alternative View 

There is some uncertainty on how to apply the defi- 
nition for Ri (equation (2))to adjacent layers in a stair- 
case type of stratification. In this case we have constant 
density layers separated by a stratified region, both usu- 
ally of similar vertical thickness [Pclcgri and Csanady, 
1994], and we may wonder which is the most appropri- 
ate vertical scale 5z to calculate the change in veloc- 
ity 6v: the thickness of the whole region (both layers 
and interface) or the thickness of the stratified region 
(interface)? The answer, however, is immediate if we 
consider the problem in isopycnic coordinates because 
both constant density layers reduce to one single p coor- 
dinate in the isopycnic coordinate system, each of them 
having an approximate constant velocity value. This 
practical advantage comes along with a powerful argu- 
ment for using isopycnic coordinates, which was long 
ago clearly stated by Rossby [1936, p. 5]: "... water, be- 
cause of its stratification, has a cellular structure, each 
cell being separated through approximately horizontal 
surfaces of discontinuity from the cells above and below. 
Each boundary surface would then act as a 'false' bot- 
tom and each cell would have a practically independent 
circulation" (see also Csanady [1989] and Csanady and 
Peltgrail995]). 

The above reasoning suggests that the natural repre- 
sentation for Ri is using isopycnic coordinates [Pelegr• 
and Csanady, 1994]: 

-gJ 
Ri - • . (6) 

P • 

In this case the vertical density flux becomes 

gK 
r = , (7) 

pRi 57 
and we may again ask ourselves what is the behavior 
of F • a function of Ri. The key hctor now is not 
the vertical shear, but the diapycnal shear, Ov/Op, i.e., 
the dependence of this quantity with Ri. The simplest 
possibility is to •sume Ov/Op constant, as we did before 
for Ov/Oz. In this case we define 
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and we can use equation (7) to evaluate OFp/ORi- 0 
for any particular parameterization of K. This calcu- 
lation shows that Fp has a maximum neither for the 
Munk-Anderson nor for the Peters et al. [1988] param- 
eterizations, in both cases Fp monotonically increases 
for decreasing Ri. Figure 2b illustrates these results us- 
ing both the Pelegri and Csanady [1994] and the Peters 
et al. [1988] expressions. For these calculations we have 
used Ov/Op - 2.5 m 4 kg -1 s -1 of the same order as 
the maximum values reported by Pelegri and Csanady 
[1994] for the Gulf Stream. The curve corresponding 
to the Pelegri and Csanady [1994] parameterization (of 
the Munk-Anderson type) is strikingly different to its 
counterpart in Figure 2a. 

Equations (2)and (6) are the expressions for Ri 
in vertical and isopycnic coordinates, respectively. At 
first sight, they may suggest very different situations' 
equation (2) shows that Ri increases with stratification 
(larger Op/Oz), while equation (6)shows that Ri de- 
creases with stratification (smaller J - Oz/Op values). 
The solution of this apparent paradox rests on the ve- 
locity profile, the diapycnal and vertical shears being 
related through the Jacobian, i.e., Ov/Op - J Ov/Oz. 
For staircase type conditions, the conceptual idea of 
independent motions along adjacent constant density 
layers suggests that the difference in velocity between 
adjacent isopycnals will usually be a much better con- 
served quantity than vertical shear, which probably has 
a strong dependence on the evolution of the interfaces. 
With this assumption, equation (7) shows that the ver- 
tical density flux will have a local maximum at the po- 
sition of highest stratification (the minimum in J)' this 
is a statically stable region but it turns out to be dy- 
namically very unstable [Pelegri and Csanady, 1994]. 

In view of the lack of experimental or field data, it is 
clear that the assumption of constant diapycnal shear 
cannot be generalized, but it is attractive under fron- 
togenetical conditions. Consider, for example, the very 
simple case where the isopycnals are vertically and hori- 
zontally compressed with time but maintain their slope. 
Recalling the thermal wind equation in isopycnic coor- 
dinates (pf Ov/Op- gOz/Ox), we may appreciate that 
under the geostrophic approximation a constant diapy- 
cnal shear would be appropriate. Under the same ap- 
proximation, however, the increased horizontal density 
gradient would lead to an increase in vertical shear. 
Consider now a slightly more complex situation, with 
the isopycnals getting both compressed and tilted with 
time. This would cause a decrease in the Jacobian and 

an increase in both the diapycnal and vertical shears. 
In these circumstances the diapycnal shear is not con- 
stant, but it is probably more realistic to let J decrease 
and take a constant Ov/Op (leading to a decrease in Ri 
through equation 6) rather than allowing J to decrease 
and taking a constant Ov/Oz (producing an increase in 
Ri according to equation (2)). 

Following the above discussion, we are now ready to 
discuss an alternative process that leads to the forma- 
tion of a step of constant density, i.e., to the partition 
of the single minimum in J into two adjacent minima 
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Figure 3. Schematic representation of density stratifi- 
cation before (solid line) and after mixing in the central 
region (dashed line). The arrows represent the situation 
previous to intense mixing: the white arrows represent 
the vertical density flux, and the black arrows represent 
the density tendency. 

as illustrated in Figure 3. The density tendency, or ma- 
terial derivative of the density, is given by [Pelegrl and 
Csanady, 1994] 

Dp 0 w •/ 
Wp = Dt - Oz ' (8) 

where Dp/Dt = O/Or + uO/Ox + vO/Oy + wO/Oz is the 
material derivative in (x,y,z) coordinates. The solid 
line in Figure 3 represents the original density stratifi- 
cation, with a central highly stratified region which cor- 
responds to the minimum absolute J values. The upper 
part of the region of high stratification corresponds to 
vertical convergence of density flux (positive Wp), while 
its lower part corresponds to vertical divergence (nega- 
tive Wp). This situation, if maintained for a finite time, 
will cause a density increase in the upper part and a 
density decrease in the lower portion (dotted line). This 
will naturally lead to a decrease of the stratification in 
the central region (the creation of a well-mixed region) 
and to an increase at both sides of this newly formed 
mixed region (the creation of interfaces). A similar ar- 
gument could now apply to the new interfaces, which 
should be prone to undergo mixing and to split into new 
steps of a forming staircase. 

Another way to visualize the above idea is through 
the mass conservation equation in isopycnic coordi- 
nates. Pelegrf and Csanady [1994] showed that under 
the condition of dominant diapycnal convergence/diver 
gence OWp/Op, i.e., neglecting epipycnal convergence/ 
divergence and horizontal Reynolds mass fluxes, the 
mass conservation equation reduces to 

l)j Owp 
T)t- j Op ' (9) 
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where j: Yp is an index of separation between adja- 
cent isopycnals and •9/l•t: O/Or + u O/Ox + v O/Oy + 
wpO/Op is the m•terial derivative in isopycnic coordi- 
nates. Applying this equation to the situation in Figure 
3, we can see that it gives •9j/l•t < 0 for the central 
region, indicating that the absolute value of J: j/p 
will increase with time, i.e., a decrease in the degree of 
stratification. Similarly, it may be appreciated that the 
stratification will increase with time in the upper and 
lower portions of the central region. 

The creation of well-mixed regions following a local- 
ized maximum in the vertical density flux was already 
proposed by Pclcgri and Csanady [1994] in a simple 
cause-effect model. They hypothesized a distribution 
of the vertical density flux with a maximum on some 
isopycnal level and estimated the corresponding J and 
Ri distributions, with the Ri distribution showing a 
minimum below the critical Ri value. Their assump- 
tion was that this condition, if maintained for a finite 
time, would cause the vertical density flux to be largely 
reduced in the subcritical region. They simulated the 
modified w •p• distribution and recalculated the J distri- 
bution and the z(p) profile, which showed the formation 
of one step. In their paper Pclcgr( and Csanady [1994] 
proposed that mixing would be induced in shear un- 
stable regions after frontogenesis, but they inaccurately 
mentioned that the physical process resembles Phillips' 
mechanism. 

Figure 4 illustrates the instability processes for both 
the Phillips and the new mechanism, emphasizing their 

completely different kinematics. In Phillips' mecha- 
nism a perturbation that reduces the stratification of 
the depth-density profile will grow in time until it be- 
comes a well-mixed region and adjacent well-stratified 
layers are formed (Figure 4a). In the proposed alter- 
native mechanism a highly stratified region is unstable 
and mixes up, splitting into a well mixed region and 
two adjacent interfaces (Figure 4b). 

The production of local oceanic finestructure through 
a mechanism based on localized shear-induced mixing in 
stratified regions was long ago endorsed by Woods [1968] 
and Woods and Wiley [1972], and discussed at some 
length by Turner [1973, pp. 104, 121,325]. They argued 
that the passage of long internal waves along sharp in- 
terfaces can lead to local instabilities in well stratified 

regions, particularly at the crests and troughs of inter- 
nal waves. Portions of the stratified region are then 
substituted by relatively well mixed fluid, which is then 
elongated horizontally by vertical shear and epipycnal 
spreading. Some oceanic observations on local mixing 
in stratified regions, apparently associated to crests and 
troughs of traveling internal waves, have also been doc- 
umented by Woods [1968] and Woods and Wiley [1972]. 

The mechanism here proposed does not require the 
passage of internal waves and can operate on horizontal 
scales much larger than localized regions over crests or 
troughs of internal waves. It is based on the creation 
of subcritical regions during frontogenetical situations, 
either because of shrinking of isopycnal layers (J is re- 
duced) or because of tilting of the isopycnals, followed 

z 
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Figure 4. Schematic drawings to illustrate the kinematics of mixing for (b) Phillips' mechanism 
and (a) the proposed alternative mechanism. 
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by instabilities of the Kelvin-Helmholtz type. The ac- 
tual condition for the well stratified layers to become 
sub critical is derived from equation (6): 

- , 
g 

where Ric _• 0.25 is the theoretical critical value of Ri 
for mixing to develop. 

Some laboratory evidence that supports this mecha- 
nism can be found in a preliminary experiment reported 
by Thorpe [1971]. In this experiment a long tank was 
completely filled with two fluids of different density and 
tilted for a short period, just enough for the interface 
to become unstable, and then returned to its horizontal 
position. Kelvin-Helmholtz instabilities developed at 
the interface, which became approximately well mixed, 
and two interfaces were formed at the edges of this cen- 
tral mixed region. Several related experiments have 
been recently performed, and some preliminary results 
appear to confirm the splitting of a thin interface into 
a well-mixed layer and adjacent interfaces [Cisneros- 
Aguirre et al., 1997; Fernando, 1997]. 

Some interesting atmospheric data were long ago pre- 
sented by Browning and Watkins [1970]. They used a 
high power radar and simultaneous radiosonde ascents 
to examine the evolution of regions of high static stabil- 
ity. Their observations showed the formation and evo- 
lution of Kelvin-Helmholtz billows in a highly stratified 
region, which lead to the splitting of this region into an 
approximately mixed layer and two adjacent interfaces. 
The oceanographic field evidence, however, is limited by 
the difficulties in repeating hydrographic cross sections 
in times shorter than the passage of frontal mesoscale 
features. Some indirect evidence, obtained through 
analyses of the distribution and fluxes of properties such 
as nutrients and potential vorticity, is consistent with 
the intermittent mixing associated with this mechanism 
[Pelegri and Csanady, 1991; Pelegr{ et al., 1996]. 

The horizontal and vertical extension of the subcrit- 

ical regions depend on the frontogenetical mechanism 
itself, whether it is a mesoscale or basin-wide feature. 
Those layers with high stratification during the initial 
stages offrontogenesis will be susceptible to convert into 
well-mixed regions of the staircase, while sharp inter- 
faces will form at the adjacent layers. If frontogene- 
sis continues, the adjacent risers will also mix up, each 
splitting into a new mixed layer and two new adjacent 
interfaces; eventually, diapycnal mixing may become so 
large that it can prevent further frontogenesis to con- 
tinue. The vertical and temporal scales for the forma- 
tion of the well-mixed regions will arise from the corre- 
sponding scales of the Kelvin-Helmholtz billows, which 
depend mainly on the vertical stratification. In the lab- 
oratory, for example, stratification is usually very large, 
and the height of the billows may be of the order of 0.01 
m, while their timescale may be of the order of 1 s; in 
an oceanic frontal system, however, these scales could 
be 1-10 m and up to 1 hour. 

In general, we may expect that the strongest oceanic 
frontogenetical processes will be intermittent and usu- 

ally associated with mesoscale features such as mean- 
ders in the Gulf Stream [e.g., Csanady, 1988; Lee and 
Csanady, 1994] or the coastal upwelling jet [e.g., Bane 
et al., 1981; Csanady, 1977, 1982], evolving vortices 
or rings [e.g., Miller and Evans, 1985; Aristegui ctal., 
1994], or other types of frontal structures [e.g., Csanady, 
1981; Simpson, 1981]. In all these cases the temporal 
scale of maximum frontogenetical conditions will last 
long enough (of the order of several hours or days) to 
guarantee that. subcritical conditions are attained. 

4. Temporal Memory of Turbulence 

One point crucial to our previous analysis is the cre- 
ation of a maximum density flux in the highly stratified 
region. It is not enough, however, to generate such an 
instantaneous maximum: for our mechanism to work it 

is fundamental that the density flux (with convergence 
and divergence regions above and below, respectively) is 
maintained at a high level for a finite time (Figure 3). 
Otherwise, the convergence and divergence of density 
toward the neighboring regions will reduce the origi- 
nal density gradient (increase the Jacobian), and the 
density flux will consequently decrease. The result will 
simply be upward mass diffusion and smoothing of the 
original strong density gradient. The temporal mainte- 
nance of such a high-density flux at the location of the 
minimum in J has its physical justification on the fact 
that once turbulence is produced it will last for a char- 
acteristic finite time at a considerably high level. Even 
if the original unstable conditions disappear, turbulence 
will not immediately do so, i.e., once it is activated, it 
will decay at its own natural rate. 

Barenblatt et al. [1993] and Kranenburg [1996] have 
pointed out the necessity of allowing a finite time ad- 
justment for turbulence and have applied this idea to 
modify Phillips' mechanism. Such a time adjustment is 
not critical for their solution to work, although Baren- 
blatt et al. [1993] have shown that it is necessary in order 
to make the problem mathematically well posed and 
the solution unique. Barenblatt et al. [1993] specified 
the time delay by using an elegant simple temporal ex- 
pansion for the vertical density diffusivity. Kranenburg 
[1996] followed the same idea but justified the tempo- 
ral evolution of the vertical density diffusivity through 
forcing by a Prandtl-Kolmogorov type source term. 

In this work we essentially follow Barenblatt et al.'s 
[1993] approach to take account of the temporal mem- 
ory of the turbulence field. This is done in a very simple 
manner, by approximating the vertical density diffusiv- 
ity K with the first term of a Taylor expansion: 

(OK) r . (11) 0t 
This equation, which relates the vertical density diffu- 
sivity at time t with those conditions that took place 
some time r ago, immediately suggests equation (9) of 
Kranenburg [1996]: 

0•- r - -Kt + K: , (12) 
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where we have defined two different functions which cor- 

respond to the vertical density diffusivity evaluated at 
different times, K! _-- K(t) and Kt = K(t- r). Equa- 
tion (12) is Langevin's equation and has its appealing 
physical meaning of a slowly decaying field (the turbu- 
lence with its own characteristic temporal scale) which 
is continuously changing due to external forcing (the 
local stratification); for a nice discussion see Usanady 
[1973]. If there was no external forcing, the solution 
would decay exponentially as exp(-t/r), which shows 
that r corresponds to the characteristic temporal scale 
of the turbulence. 

All that is required now is to specify a value for r. 
Under the restoring force of gravity, perturbations have 
an angular velocity which is given by the buoyancy fre- 
quency N, defined in terms of the local vertical density 
gradient as N 2: -#/j Hence it may be expected that 
the natural period for the vertical density flux will be of 
the order of N -• This agrees well with numerical and 
experimental results compiled by Gregg [1987], which 
show that the age of the energy-contain'ing eddies will 
be somewhere between 0.1N -• and N -• More recent 

numerical calculations by Holt et al. [1992] also show 
that the vertical density flux remains large for times 
of the order of N -• According to these arguments, 
we have chosen r = N -• as the characteristic tem- 

poral scale of turbulence, to be used in the numerical 
calculations below. Because of the importance of local 
stratification in specifying the vertical density flux, we 
have decided to let r vary vertically and temporally, 
depending on the instantaneous local vertical stratifi- 
cation. This has been preferred over the alternative of 
specifying r in terms of the background initial stratifi- 
cation (as is done by Kranenburg [1996]). 

5. Numerical Procedure 

For dominant diapycnal mass transfer, the advective 
terms u Oj/Ox + v Oj/cgy are relatively small and equa- 
tion (9) may also be approximated as 

Oj • _ cg(jwp) (13) 
ot- Op ' 

where we have incorporated the diapycnal advection of 
j into the right-hand side. This equation simply states 
that changes in the distance between adjacent isopy- 
cnals are due to diapycnal convergence/divergence; it 
could have been derived from first principles by recall- 
ing that the mass flux (per unit area) through entrained 
water (water crossing an isopycnal with vertical speed 
we) is given by pw• = pJwp : jwp. 

Equation (12) provides the time evolution of the cur- 
rent density diffusivity Kt, which slowly changes as it 
decays and is forced by the eddy diffusivity K! calcu- 
lated from the local density field. In order to solve it, 
we will use a functional form K! = Kf(Ri) similar to 
that proposed by Peters et al. [1988], mainly because 
it conforms well to the catastrophic dependence that 
is expected for subcritical Ri numbers. For values of 

/•i < 0.33, we will use exactly the same dependence as 
specified by Peters et al. [1988] (K! oc Ri-9'2), while for 
the range Ri _> 0.33, we will use Pelegrf and Csanady's 
[1994] parameterization (Figure 1 illustrates that both 
functions intersect at Ri - 0.33). A second possibil- 
ity would be to use a Munk-Anderson parameterization 
for all Ri values. The exact K! dependence is not de- 
cisive, for constant diapycnal shear both the Peters et 
al. and the Munk-Anderson parameterizations result in 
K! monotonically increasing with decreasing stratifi- 
cation, but some important differences arise (see the 
discussion at the end of section 6). 

Summarizing, we will solve equations (12) •nd (13) 
together with the following parameterizations for den- 
sity tendency: 

wp - •zz - J Op , (14) 
and for the forcing vertical density diffusivity: 

1.1 x 10 -sRi-9'2 ,/•i < 0.33 K! - 2.6 x 10-a(1 + 10Ri) -a/2 ,Ri > 0.33 
(15) 

where Ri is given by equation (6). According to the dis- 
cussion in last section, we will a priori specify a value 
for the diapycnal shear, with the main test case corre- 
sponding to constant diapycnal shear. 

These equations are solved numerically in the (t, p) 
space (forward in time and centered in p) to predict 
the temporal evolution of the vertical density diffusiv- 
ity and Jacobian fields. The grid spacing is chosen as 
5p - 0.005 kg m -a and 5t - 0.1 s. Equation (13) 
requires the specification of boundary conditions for 
j; these have been chosen as constant j values, which 
imply that at the boundary isopycnals there is no di- 
apycnal convergence/divergence. Once the Jacobian 
J - j/p is known, we may immediately calculate the 
depth field z through integration from z -0. Since we 
consider constant diapycnal shear, equation (15) shows 
that OK! lop may be discontinuous at those density val- 
ues where Ri - 0.33. This causes some small numerical 

instabilities, which are removed (at each time step) by 
applying Shapiro's running filter [Shapiro, 1970] three 
times to K•. 

The initial stratification corresponds to the depth lin- 
early decreasing with density (from 0 to-200 m in 0.5 
kg m-a), over which we superimpose a sinusoidal depth 
fluctuation (25 m fluctuation with wavelength ,•p- 0.5 
kg m-a). The amplitude of the fluctuation is chosen 
such that its maximum slope is less than the background 
density slope. The diapycnal shear has been taken as 
2.5 m 4 kg -• s -•, of the same order of magnitude as 
the maximum values reported by Pelegr{ and Csanady 
[1994]. Figure 5 shows the initial conditions specified 
for the z(p) field, and the corresponding initial condi- 
tion for the Jacobian J, the vertical density flux w•p •, 
and the density tendency wp. Hereafter, in all figures 
we use rr - p- 1000, with p being the absolute value of 
density in MKS units. 
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Figure 5. Initial conditions for the numerical calculations. (a) The density stratification is spec- 
ified as the sum of a background linear stratification and a wave type depth-density perturbation. 
From the z = z(p) field and using Ov/Op = 2.5 kg m -3 s -1, we obtain the initial (b) Jacobian, 
(c) vertical density flux, and (d) density tendency. 

6. Results and Discussion 

Figure 6 shows the temporal evolution of the rele- 
vant variables for the purely diffusive case, which corre- 
sponds to r = 0. In this case the system has no memory 
of turbulence: the maximum in the vertical density flux 
is responsible for the very rapid initial density conver- 
gence/divergence, but the vertical density flux decays 
simultaneously with the reduction of the density gradi- 
ent, which inhibits the maintenance of the large den- 
sity convergence/divergence necessary to produce the 
well-mixed region. The result is rather rapid density 
diffusion and the smoothing of the well-stratified region 
(Figures 6a and 6b), the vertical density flux (Figure 
6c), the density tendency (Figure 6d), the diffusion co- 
efficient (Figure 6e; since r = 0, this case corresponds 
to Kt = K!), and the local gradient Richardson num- 

ber (Figure 6f; since Ov/Op is constant, Ri parallels J, 
Figure 6b). Figure 6f illustrates that Ri remains low 
during a long period but it is almost constant over a 
large density range, implying that K! (Figure 6e) is 
rather smooth. 

Figures 7 and 8 show the temporal evolution for the 
case where we choose r = N -1, as discussed in section 
4. The initial r values, for example, range somewhere 
between 200 s and 100 s for those regions with mini- 
mum and maximum stratification, respectively. Figure 
7 presents the evolution of the depth, Jacobian, vertical 
density flux, and density tendency at different times. 
The situation is quite different from the diffusive case 
(r = 0), and it shows how the initially well-stratified 
region turns into a well-mixed region (Figures 7a and 
7b). This mixed region is actually produced by the slow 
decrease experienced in the vertical density flux and the 
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Figure 6. Case with r - 0, showing the temporal evolution of the density distribution for (a) 
depth, (b) Jacobian, (c) vertical density flux, (d) density tendency, (e) actual density diffusivity, 
and (f) local gradient Richardson number. 

density tendency (Figures 7c and 7d). Figure 8 clearly 
illustrates the different behavior of Kt and K/, showing 
how the forcing density diffusivity K! is rapidly reduced 
(Figure 8b) while the actual density diffusivity Kt re- 
mains high much longer due to the temporal memory 
of turbulence (Figure 8a). Figure 8c shows the evolu- 
tion of Ri (again paralleling the Jacobian): the initial 
minimum is rapidly replaced by a maximum with two 
adjacent minima. The maximum corresponds to the 
formation of the well mixed layer, while the minima 
indicate the locations prone to undergo future mixing. 

Figures 9 and 10 correspond to the same case as be- 
fore, with the difference that Shapiro's running filter is 
applied 30 times to Ri at each time step. Note that 

averaging Ri but not d breaks the constant diapyc- 
nal shear assumption (equation (6)). The justification 
for doing so comes from the anisotropy associated with 
Kelvin-Helmholtz instabilities, which implies that they 
cannot take place at scales shorter than the Ozmidov 
scale [Miller and Evans, 1985]; by averaging only Ri, 
we ponder this minimum vertical size of shear-induced 
turbulence. Several studies [Miller and Evans, 1985; 
Gregg, 1987] suggest that in moderately to highly strat- 
ified regions the Ozmidov scale will be about 2 - 3 m. 
Taking 3 m and dividing by 100 kg m -3 (a characteris- 
tic value of the Jacobian in the well stratified regions) 
gives a corresponding density scale of 0.03 kg m -3. This 
shows that about six density levels in our model (re- 



PELEGRf AND SANGR.•' LAYER FORMATION IN STRATIFIED FLOW 30,689 

25.85 t•01 

........ t= 100, / 

25.95" 

26.05- 

/ , (a) 
-130 -1•0 -90 

z(m) 

25.85 

25.95- 

26.05- 

26.15 

0 -800 

t=Os 
........ t-100s 

t 100o 

\ 
\ 

\ 
x 

\ 

/ 
/ 

/ 

/ 

-•oo -4o0 

J (m3cg '•) 

(b) 
i 

-200 0 

25.85 I .......... •=a-•' 25.85 I 

26.0• • / • 26.05 

4.0 -o.s o.o 

Fp 10' Ocg m': s") 

(d) 
0.5 -1.o 

wp 10' Ocg m • S'I) 

Figure 7. Case with r - N -I, showing the temporal evolution of the density distribution for 
(a) depth, (b) Jacobian, (c) vertical density flux, and (d) density tendency. 

call 6p = 0.005 kg m -a) should be averaged to avoid 
contamination from small-scale turbulence; this is ap- 
proximately attained with the above running filter. The 
vertical averaging is clear in the Ri distribution (Figure 
10c), which now shows substantial differences from the 
J distribution (Figure 9b). The main difference with 
the previous calculations is that the maxima and min- 
ima in the different variables are better defined, which 
results in a clearer steplike structure: the central mixed 
layer and adjacent interfaces are sharper and additional 
steps of the staircase are also suggested (Figure 9a). 

Several additional runs have been done (1) to exam- 
ine the differences related to using either the Munk- 
Anderson or the Peters et al. parameterizations, and 
(2) to assess the sensitivity to the constant diapycnal 
shear assumption. The results are not shown here for 

the sake of brevity, but they indicate that the Munk- 
Anderson parameterization can also lead to the gener- 
ation of mixed layers. The difficulty with this parame- 
terization, however, is that the above initial conditions 
give values of wp which are several orders of magnitude 
too small for the mechanism to operate. In order to 
attain sufficiently large density tendency values this re- 
quires some extra forcing, either through a much larger 
diapycnal shear or a much smaller J acobian. A low 
Jacobian, however, implies a too short turbulent tem- 
poral memory (r -- N-i), so the mechanism operates 
only with unrealistically high diapycnal shear. The sec- 
ond conclusion arising from the test runs is that the 
assumption of constant diapycnal shear is not critical 
for the proposed mechanism to operate. This was ac- 
tually anticipated by the numerical runs shown in Fig- 
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Figure 8. Case with r- N -1, showing the temporal evolution of (a) actual density diffusivity, 
(b) instantaneous forcing density diffusivity, and (c) local gradient Richardson number. 

ures 9 and 10. We have made other tests, such as letting 
Ov/Op decrease with time, and similar results have been 
obtained. The conclusion is that as long as Ov/Op re- 
mains of the same order, the level of turbulence (and 
hence K/) is substantially unchanged. 

Despite the conceptual justifications for a constant 
diapycnal shear and the relatively low sensitivity of the 
model to changes in Ov/Op, it is clear that the lack of 
dynamics is a major limitation of our model. However, 
we believe that for geophysical flows our simple model 
probably reproduces the main features, leading to the 
evolution from continuous stratification into mixed lay- 
ers. This statement is further supported by the fol- 
lowing consideration. In our model the temporal mem- 
ory of turbulence is related to the inverse buoyancy fre- 
quency. This poses a lower limit to the time required 
for changes in the vertical density flux, independent of 
faster changes in the diapycnal shear. For geostroph- 
ically balanced flows, however, this limit should actu- 
ally be much larger. The reason is that rapid changes 
in the isopycnal slopes, such as those caused by local- 
ized mixing, are not immediately followed by a change 
in the geostrophic diapycnal shear. This delay is re- 
lated to the relatively large characteristic timescale of 
geostrophic flows, much larger than the inverse buoy- 
ancy frequency, and it should be indicative of the actual 
time required for substantial changes in the diapycnal 
shear to take place. 

We have argued that shear-induced, Kelvin-Helm- 
holtz type, instabilities are the likely physical mech- 
anism responsible for mixing in the reported numeri- 
cal calculations. This conclusion is based on the fact 

that the eddy density flux is parameterized in terms of 
the gradient Richardson number, as expected for these 
instabilities, and that there is experimental and field 

data that corroborates their presence in the develop- 
ment of mixed layers. It is possible, however, that our 
numerical simulations may also represent the genera- 
tion of mixed layers by other physical mechanisms. De 
Silva and Fernando [1992], for example, have reported 
laboratory experiments in which a grid oscillating in 
an initial linearly stratified fluid produces a well-mixed 
turbulent patch. In their experiments, with no mean 
shear, the source of turbulence is clearly not related to 
Kelvin-Helmholtz instabilities. The main difficulty with 
this and other possible sources of instability is to iden- 
tify how the physical mechanism operates and how the 
vertical density flux should be parameterized. This is 
clearly related to De Silva and Fernando's [1992] warn- 
ing that "in the oceanic context the exact nature and 
strength of turbulent sources are not known and the 
extrapolation of the laboratory results to oceanic cases 
should be done with caution." For this reason, we be- 
lieve that it is particularly important not to separate 
numerical solutions from physical reasoning. 

7. Conclusions 

We have presented a simple process-oriented model 
that studies the formation of mixed layers in stratified 
geophysical flows. The model is based on the idea that 
well-stratified regions with high diapycnal shear are dy- 
namically unstable and Kelvin-Helmholtz type insta- 
bilities develop. These instabilities cause the stratified 
region to mix and adjacent interfaces to be formed. For 
this mechanism to operate the vertical density diffu- 
sivity must fulfill two conditions. First, the diffusivity 
must monotonically increase with decreasing gradient 
Richardson numbers, and second, it must have a tem- 
poral memory of turbulence. 
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Our numerical calculations show that an initially 
highly stratified but unstable region is merely diffusive 
if turbulence has no memory, If we allow a finite tem- 
poral adjustment for turbulence, however, the strati- 
fied region becomes well mixed and sharp interfaces are 
generated above and below. If we further take into ac- 
count the minimum vertical scale for Kelvin-Helmholtz 
instabilities, then the staircase becomes clearer, with 
the adjacent stratified regions showing some breaking 
into new mixed layers. 

The numerical results shown correspond to constant 
diapycnal shear, but several tests indicate that the re- 
sults are rather robust and depend little on temporal 
changes of the diapycnal shear. Further studies are re- 

quired to incorporate more realistic dynamics, includ- 
ing vertical mixing of momentum and the evolution of 
geostrophic shear flow in frontogenetical systems. Addi- 
tional efforts are also required to obtain both laboratory 
and field data in order to properly validate the proposed 
mechanism. 

The mechanism we have presented clearly differs from 
Phillips' in two main respects. First, the dynamics of 
the instability process is different: shear-induced mixing 
rather than mixing generated through oscillating rods. 
A consequence is that for Phillips, the vertical density 
diffusivity has a maximum as a function of some prop- 
erly defined local Richardson number, which is not the 
local gradient Richardson number Ri. However, the 
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Figure 10. Case with r - N -1 and a running filter applied to Ri, showing the temporal 
evolution of (a) actual density diffusivity, (b) instantaneous forcing density diffusivity, and (c) 
local gradient Richardson number. 

vertical density diffusivity in the proposed mechanism 
monotonically increases with decreasing Ri. Second, 
the kinematics of mixing is totally opposite: a highly 
stratified region splitting into a mixed region and two 
adjacent interfaces rather than a growing perturbation 
in the depth-density profile. 
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