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PREFACIO 

La tesis doctoral, titulada Metodología multisensor y multiescala para la gestión 

de ecosistemas naturales complejos, se ha desarrollado dentro del Programa de 

Doctorado en Oceanografía y Cambio Global, bajo la supervisión del Dr. Javier 

Marcello Ruiz, del Grupo de Procesado de Imágenes y  Teledetección perteneciente 

al Instituto de Oceanografía y Cambio Global (IOCAG) de la Universidad de Las 

Palmas de Gran Canaria (ULPGC), y de la Dra. Consuelo Gonzalo Martín, profesora 

del Departamento de Arquitectura y Tecnología de Sistemas Informáticos, de la 

Universidad Politécnica de Madrid (UPM).  

El trabajo desarrollado se enmarca dentro de los proyectos ARTEMISAT 

(CGL2013-46674-R) y ARTEMISAT-2 (CTM2016 77733-R), del Programa Estatal de 

Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, así como 

de las estancias realizadas en el Laboratorio de Análisis de Datos del  Centro de 

Biotecnología Médica , en la Universidad Politécnica de Madrid (UPM); en Grenoble 

Institute of Engineering, GIPSA-lab de la Universidad Grenoble Alpes CNRS (Francia) 

y en el grupo de investigación THERRAE del Departamento de Ingeniería en la 

Universidad Pública de Navarra (UPNA). La Tesis ha recibido el apoyo financiero de 

los programas de Ayudas a la Formación de Personal Investigador en Formación del 

MINECO (Gobierno de España) (BES-2014-069426), de la Agencia Estatal de 

Investigación (AEI), y del Fondo Europeo de Desarrollo Regional (FEDER).  

La Tesis está compuesta por una recopilación de cinco trabajos originales, 

publicados o en proceso de revisión en revistas indexadas en el Journal Citations 

Reports, y organizada según el Reglamento de Estudios de Doctorado de la ULPGC 

(BOULPGC, Cap. III, Art. 11 y 12, 7 de octubre de 2016) en lengua inglesa, incluyendo 

una introducción general que presenta los objetivos de la Tesis y los trabajos 

publicados, a continuación se detallan las cinco contribuciones científicas siguiendo 

el formato de artículo científico convencional y, por último, se sintetizan las 

principales conclusiones. En cumplimiento de la normativa del Reglamento de 

Estudios de Doctorado de la ULPGC (BOULPGC, Cap. III, Art. 10, 7 de octubre de 

2016), la Tesis también incluye una sección en lengua castellana detallando los 

objetivos desarrollados y las principales conclusiones. 
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PREFACE 

The Doctoral Thesis, entitled A multisensor and multiscale methodological 

framework for the management of complex natural ecosystems, has been developed 

within the Oceanography and Global Change Doctoral Program, under the 

supervision of Ph.D. Javier Marcello Ruiz, of the Image Processing and Remote 

Sensing Group belonging to the Instituto de Oceanografía y Cambio Global (IOCAG) 

of the Universidad de Las Palmas de Gran Canaria (ULPGC), and Ph.D. Consuelo 

Gonzalo Martín, belonging to the Departamento de Arquitectura y Tecnología de 

Sistemas Informáticos, of the Universidad Politécnica de Madrid (UPM).  

This work has been accomplished in the frame of the ARTEMISAT (CGL2013-

46674-R) and ARTEMISAT-2 (CTM2016 77733-R) projects within the Programa 

Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, 

as well as stays at the Data Mining Laboratory at the Center of Biomedical 

Technologies, Universidad Politécnica de Madrid (UPM); Grenoble Institute of 

Engineering, GIPSA-lab in the University Grenoble Alps, CNRS (France) and in the 

THERRAE research group at the Departamento de Ingeniería of the Universidad 

Pública de Navarra (UPNA).The Thesis has received the financial support of the 

programs of Ayudas a la Formación de Personal Investigador en Formación of 

MINECO (Gobierno de España) (BES-2014-069426), and Agencia Estatal de 

Investigación (AEI), and the Fondo Europeo de Desarrollo Regional (FEDER).  

The Thesis is composed of a compilation of five original works, published or 

under revision in indexed journals (Journal Citations Reports) and organized 

according to the Reglamento de Estudios de Doctorado of the ULPGC (BOULPGC, 

Chap. III, Art. 11 and 12, October 7th, 2016) in English language, including a general 

introduction presenting the main objectives of the Thesis and the articles published 

or under revision, then adding the five scientific contributions following the 

conventional scientific article format and, finally, summarizing the main 

conclusions. In compliance with the regulations of the Reglamento de Estudios de 

Doctorado of the ULPGC (BOULPGC, Chap. III, Art. 11 and 12, October 7th, 2016), the 

Thesis also includes a section in Spanish explaining the objectives developed and 

the main conclusions. 
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RESUMEN 

Los ecosistemas naturales proporcionan una amplia variedad de recursos 

naturales que mejoran el bienestar humano. Sin embargo, en las últimas décadas, ha 

habido una disminución en dichos recursos, así como en la biodiversidad en los 

ecosistemas, debido a la intensificación del uso agrícola, el desarrollo turístico, el 

cambio climático y otras actividades. Por ello, el estudio del estado de conservación 

de áreas naturales es esencial para guiar a los gestores ambientales en su toma de 

decisiones. 

Hasta ahora, las observaciones de campo han sido la principal fuente de 

información para la evaluación del estado de conservación de los distintos tipos de 

hábitat. Sin embargo, son costosas y requieren de una mano de obra intensiva, por 

lo tanto, no son adecuadas para ser repetidas con frecuencia, ni para aplicarlas en 

zonas con una gran extensión. En este contexto, los datos de teledetección pueden 

proporcionar información valiosa y complementar dichas observaciones de campo. 

Así, la teledetección ofrece la oportunidad de proporcionar información constante 

en el tiempo y el espacio, al ser una herramienta precisa y repetible, para ayudar en 

el mapeo y vigilancia de los ecosistemas y su estado de conservación. Sin embargo, 

es de gran importancia el desarrollo de técnicas avanzadas de procesado de 

imágenes para obtener metodologías fiables para el análisis, la conservación y la 

gestión de entornos terrestres y marinos, de forma automática, continua, 

económica, y a la resolución espacial, espectral y temporal adecuada. 

De este modo, la teledetección se ha convertido en una tecnología importante 

debido al progreso que los sensores han experimentado en las últimas décadas, 

proporcionando una gran cantidad de imágenes con alta resolución espacial y 

espectral. Como ya se ha indicado, la teledetección ofrece un medio práctico y 

rentable para una buena gestión ambiental, especialmente cuando se deben 

monitorizar grandes áreas o se necesita información periódica. En definitiva, la 

vigilancia de los ecosistemas de forma detallada y fiable, a través de la teledetección, 

sigue siendo un desafío, ya que requiere sensores y métodos que puedan tratar con 

zonas de transición complejas presentes en la vegetación natural. Un factor a 

considerar cuando se cartografían hábitats naturales es la complejidad de la 

estructura del paisaje. Además, el estado de conservación se evalúa por las 

estructuras del hábitat, la presencia de especies características, los factores 

abióticos y las presiones o perturbaciones en el ecosistema de estudio. 

Los nuevos sensores hiperespectrales a bordo de plataformas aéreas, junto con 

los sensores multiespectrales de muy alta resolución espacial, permiten analizar 

ecosistemas complejos, siendo en un tema actual y de elevado interés para la 

comunidad de teledetección y conservación. 

Específicamente, la disponibilidad de nuevos sensores, a bordo de satélites o 

aerotransportados, puede ayudar a generar mapas precisos de vegetación en zonas 
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naturales protegidas, especialmente en áreas insulares que, en general, son más 

pequeñas y, habitualmente, con ecosistemas más complejos y heterogéneos. Por lo 

tanto, estas áreas deben ser estudiadas a través de sensores de última generación 

con las máximas resoluciones espaciales y espectrales. 

El contexto de la Tesis se abarca el análisis de los ecosistemas terrestres 

utilizando imágenes de muy alta resolución, concretamente imágenes 

multiespectrales, pancromaticas e hiperespectrales, para la obtención de productos 

de alta calidad que permitan el análisis exhaustivo de los recursos naturales. La 

Tesis se ha centrado en varios ecosistemas que se encuentran en la región de la 

Macaronesia, en las Islas Canarias (España), ya que se considera un importante foco 

geológico y de biodiversidad debido a su origen volcánico. 

El objetivo general de la Tesis es el análisis y desarrollo de metodologías 

avanzadas de procesado de imágenes multiespectrales e hiperespectrales de muy 

alta resolución, que permita la obtención de información precisa para la 

conservación de ecosistemas terrestres complejos y vulnerables. Por lo tanto, se han 

implementado técnicas avanzadas en cada etapa de procesado para corregir o 

mejorar la calidad de las imágenes y permitir la generación de productos de valor 

añadido de utilidad para los gestores de las zonas protegidas.  

Para lograr el objetivo global, se han abordado los siguientes objetivos a un nivel 

más específico: 

 Selección de los datos de teledetección y auxiliares adecuados para la 

caracterización de los ecosistemas a analizar. 

 Análisis y aplicación de algoritmos avanzados de pre-procesado para 

proporcionar información espacial y espectral de alta calidad. 

 Evaluación y aplicación de técnicas clásicas y avanzadas de desmezclado y 

clasificación para la discriminación de cubiertas vegetales. 

 Desarrollo de la metodología óptima para la generación de productos 

específicos para la gestión de los ecosistemas analizados. 

 Estudio de variabilidad de los recursos naturales en los ecosistemas 

analizados. 

La Tesis se ha escrito como compendio de 5 artículos, 4 de ellos ya publicados en 

revistas científicas internacionales indexadas y 1 artículo en fase de revisión. La 

intención de cada artículo es que se pueda leer de forma independiente; por 

consiguiente, puede haber cierta superposición de contenidos entre los diferentes 

artículos. 

El Capítulo 1 proporciona una introducción general en la que se presentan los 

objetivos de la Tesis, así como la estructura de la misma. El Capítulo 2 describe el 

marco general de la metodología utilizada durante la Tesis. Los siguientes cinco 

capítulos corresponden a los artículos publicados o en revisión. La unidad temática 

de esta Tesis se justifica al comienzo de cada uno de estos cinco capítulos. 
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Específicamente, los Capítulos 3 y 4 tratan sobre el procesado de imágenes 

multiespectrales. Concretamente, el Capítulo 3 presenta una evaluación de las 

diferentes técnicas de pansharpening para las imágenes multiespectrales de muy 

alta resolución, mostrando las técnicas más adecuadas según el tipo de ecosistema. 

El Capítulo 4 evalúa la influencia de las diferentes técnicas de mejora de la calidad 

espacial (pansharpening) al obtener mapas temáticos precisos aplicando 

clasificadores, a nivel de píxel y objeto, en imágenes multiespectrales. Los Capítulos 

5 y 6 se centran en las imágenes hiperespectrales. El Capítulo 5 compara estrategias 

de reducción de la dimensionalidad y evalúa diferentes estrategias de selección de 

componentes en imágenes hiperespectrales, mientras que el Capítulo 6 presenta un 

marco de clasificación hiperespectral a través de mapas de abundancia obtenidos a 

partir de modelos avanzados de unmixing, que consideran la variabilidad espectral 

de las clases. En el Capítulo 7 se propone una metodología para la detección de 

cambios en el ecosistema seleccionado, utilizando los mapas temáticos precisos 

tanto multiespectrales como hiperespectrales, obtenidos durante la Tesis. 

Finalmente, las conclusiones generales derivadas de este trabajo, así como las 

investigaciones futuras, se presentan en el Capítulo 8. 

El área de estudio se ha centrado principalmente en el Parque Nacional del Teide, 

ubicado en la isla de Tenerife. Sin embargo, en el Capítulo 3, se incluyen imágenes 

multiespectrales adicionales en otras áreas protegidas de las Islas Canarias: la 

Reserva Natural de Maspalomas, en el sur de la isla de Gran Canaria, y un área del 

norte de Fuerteventura, que cubre los Parques Naturales de Corralejo e Islote de 

Lobos. Finalmente, en el Capítulo 5 se utiliza una imagen hiperespectral que fue 

adquirida por el INTA (Instituto Nacional de Técnica Aeroespacial) en Reborio 

(Asturias, España). Aunque la Tesis no se ha enfocado en esta área de estudio, se usó 

para evaluar diferentes estrategias para la selección de componentes, antes de que 

las imágenes hiperespectrales finales del Parque Nacional del Teide fueran 

adquiridas por el mismo instrumento CASI (Compact Airborne Spectrographic 

Imager).  

Los datos de teledetección utilizados para la Tesis han sido, en primer lugar,  

imágenes multiespectrales de satélites de muy alta resolución espacial, 

concretamente tanto imágenes Worldview-2, como Quickbird. Ésta última 

solamente se ha utilizado en el estudio de detección de cambios llevado a cabo en el 

Parque Nacional del Teide al requerirse datos con mayor antigüedad. En segundo 

lugar, también se han utilizado imágenes hiperespectrales obtenidas por el Instituto 

Nacional de Técnica Aeroespacial (INTA) mediante el sensor CASI 1550i embarcado 

en la aeronave CASA C-2012-200, que logra la resolución espacial requerida para 

estudiar el complejo ecosistema del Parque Nacional del Teide. 

A lo largo de la Tesis se han llevado a cabo tres campañas de campo, durante las 

cuales se adquirieron datos para validar la corrección atmosférica, a partir de 

medidas de las distintas clases de interés con el espectroradiómetro ASD Field-Spec, 
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así como muestras de vegetación para el entrenamiento y la validación en la 

clasificación supervisada. Todas las campañas de campo se llevaron a cabo en la 

misma fecha que la adquisición de las imágenes multiespectrales e hiperspectrales. 

Normalmente, los proveedores de datos de teledetección realizan un pre-

procesado preliminar; sin embargo, es necesario aplicar técnicas adicionales de pre-

procesado y procesado para corregir y mejorar los datos del sensor y, para la 

generación de los productos finales. En particular, los algoritmos de pre-procesado 

son críticos para mejorar la calidad de la información disponible. 

Durante la Tesis se han abordado distintas técnicas de pre-procesado: 

corrección atmosférica de las imágenes de partida; fusión de imágenes para 

aumentar la calidad de la imagen fusionada en comparación con las imágenes de 

origen; ortorectificación y co-registro de las imágenes; y, finalmente, reducción de 

la dimensionalidad en las imágenes hiperespectrales, necesaria ya que las variables 

dependientes redundantes no proporcionan información adicional sobre las clases, 

afectando negativamente a la eficiencia del clasificador.  

Seguidamente, una vez pre-procesadas las imágenes, se han aplicado distintas 

técnicas de procesado. Concretamente, técnicas de desmezclado espectral (spectral 

unmixing), para descomponer los espectros de los píxeles en una colección de firmas 

espectrales puras, denominadas endmembers, y un conjunto de fracciones 

correspondientes o abundancias, que indican la proporción de cada endmember 

presente en el píxel. Otra técnica de procesado llevada a cabo durante la Tesis es la 

clasificación supervisada. Se presentan dos enfoques para la clasificación y el 

monitoreo de ecosistemas con datos de detección remota: el enfoque tradicional 

basado en píxeles y el enfoque novedoso basado en objetos. Como se mencionó 

anteriormente, el Parque Nacional del Teide es un ecosistema montañoso 

vulnerable y heterogéneo. Se analizaron diferentes algoritmos y, segudiamente, la 

clasificación se llevó a cabo utilizando el clasificador óptimo, agregando diferentes 

características (texturas, abundancias, índices de vegetación, etc.) al modelo de 

clasificación para obtener el mapa temático más preciso. 

Finalmente, se propone una metodología precisa para analizar los cambios 

producidos en el Parque Nacional del Teide, utilizando los productos cartográficos 

obtenidos durante la Tesis. 

En la Figura R.1 se presenta el diagrama de bloques simplificado de los diferentes 

procesos que componen la metodología del procesado. 
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Figura R.1. Diagrama de bloques de la metodología de procesado llevada a cabo 

en la Tesis. 

 

A continuación se resumen brevemente los artículos desarrollados en el marco 

de esta Tesis. 

 1. Fusion of high resolution multispectral imagery in vulnerable coastal and 

land ecosystems (Sensors, 2017. Factor de impacto: 2.475). 

 En este artículo se estudian tres zonas vulnerables, que incluyen ecosistemas de 

matorral, áreas costeras con sistemas de dunas y zonas de aguas poco profundas. El 

objetivo de este análisis consiste en evaluar e identificar las técnicas de 

pansharpening que proporcionan la mejor imagen fusionada para los diferentes 

tipos de ecosistemas. Se utilizaron imágenes de alta resolución Worldview-2 debido 

a sus excelentes características espaciales y espectrales.  Después de una evaluación 

preliminar de doce algoritmos de fusión, se analizaron un total de cuatro algoritmos 

de pansharpening (Fast Intensity Hue Saturation, Hyperspherical Color Sharpening, 

Modulation Transfer Function – Generalized Laplacian Pyramid – High Pass 

Modulation y Weighted Wavelet ‘à trous’ through Fractal Dimension Maps), usando 

seis índices de calidad (Spectral Angle Mapper, Spectral and Spatial Relative 

Dimensionless Global Error o ERGAS, Frequency Comparison, Zhou y Q8). La 

evaluación de la calidad se abordó no solo para todo el conjunto de bandas 

multiespectrales, sino también para el subconjunto de bandas espectrales cubiertas 

por el rango de longitudes de onda de la imagen pancromática y fuera de ella. Se 

observa una mejor calidad en la imagen fusionada utilizando sólo las bandas 

cubiertas por el rango de banda pancromática. Es importante resaltar el uso de estas 
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técnicas no solo en áreas urbanas y de tierra, sino en un análisis novedoso en áreas 

de ecosistemas de aguas poco profundas. Aunque las prestaciones de cada algoritmo 

no muestran una gran diferencia en las áreas terrestres y costeras, los ecosistemas 

costeros requieren algoritmos más simples, como el Fast Intensity Hue Saturation, 

mientras que los ecosistemas más heterogéneos, como los mixtos y de matorral, 

necesitan algoritmos avanzados: Weighted Wavelet ‘à trous’ through Fractal 

Dimension Maps. Además del estudio de calidad global, se realizó un análisis basado 

en mapas de calidad para estudiar el resultado de la fusión en cada banda a nivel 

local. Por último, para demostrar el rendimiento de estas técnicas de pansharpening, 

se llevó a cabo una clasificación basada en objetos,  usando el clasificador Support 

Vector Machine. El resultado fue un mapa temático para el ecosistema de matorrales, 

que corrobora al algoritmo Weighted Wavelet ‘à trous’ through Fractal Dimension 

Maps como el mejor método de fusión para este ecosistema. 

 2. Influence of pansharpening in obtaining accurate vegetation maps 

(Canadian Journal of Remote Sensing, 2017. Factor de impacto: 2.000). 

El objetivo principal de este artículo consistió en evaluar la influencia de las 

técnicas de pansharpening en la obtención de mapas de vegetación precisos. Para 

ello, se implementaron y compararon diferentes técnicas de clasificación basadas en 

píxeles y objetos (Maximum Likelihood, Mahalanobis Distance, Support Vetor 

Machine, Bayes, Nearest Neighbor y K-Nearest Neightbor) y se aplicaron a las 

imágenes fusionadas obtenidas a partir del estudio anterior. El Parque Nacional del 

Teide, en las Islas Canarias (España), fue elegido como área de estudio debido a que 

es un ecosistema heterogéneo vulnerable y que no dispone de cartografía detallada 

a nivel de especias vegetales. Las clases de vegetación de interés consideradas 

fueron establecidas por los gestores de conservación del Parque Nacional, 

previamente a la clasificación de las imágenes. Se aplicaron los diferentes pre-

procesados (fusión, corrección atmosférica y ortorectificación). El algoritmo 

Weighted Wavelet ‘à trous’ through Fractal Dimension Maps demostró un 

rendimiento superior en la etapa de fusión de imágenes. El clasificador más 

adecuado para generar mapas temáticos de vegetación precisos en ecosistemas 

heterogéneos y mixtos fue el método Bayes, tras realizar la segmentación necesaria 

(Multiresolution Segmentation) para la clasificación a través de objeto, aunque 

Support Vector Machine logró una precisión general ligeramente más alta, el tiempo 

de cómputo era mucho mayor. 

 3. Assessment of component selection strategies in hyperspectral imagery 

(Entropy, 2017. Factor de impacto: 2.305). 

Las imágenes hiperespectrales integran muchas bandas continuas y estrechas 

que cubren diferentes regiones del espectro electromagnético. Sin embargo, el 

principal desafío es su alta dimensionalidad debido al fenómeno Hughes. Por lo 

tanto, la reducción de la dimensionalidad es necesaria antes de aplicar algoritmos 

de clasificación para obtener mapas temáticos precisos. El estudio se basó en datos 
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del sensor hiperespectral CASI y se centró en los siguientes algoritmos de extracción 

de características: análisis de componentes principales (PCA), fracción de ruido 

mínimo (MNF) y análisis de componentes independientes (ICA). Tras una revisión 

del estado del arte, se observó la carencia de un estudio comparativo sobre estas 

técnicas, así como de estrategias precisas para determinar el número de 

componentes adecuado. Por lo tanto, el primer objetivo fue comparar las técnicas 

tradicionales de reducción de dimensionalidad (PCA, MNF e ICA) para el sensor CASI 

y evaluar diferentes estrategias para seleccionar el número óptimo de componentes 

en el espacio transformado. El segundo objetivo fue analizar un nuevo enfoque de 

reducción de dimensionalidad dividiendo la imagen hiperespectral con respecto a 

las regiones espectrales que cubren el espectro electromagnético. Se apilaron las 

componentes seleccionadas del espacio transformado de las diferentes regiones 

espectrales de forma independiente. Este nuevo espacio transformado apilado se 

evaluó observando que enfoque propuesto mejoraba la clasificación final. 

 4. Hyperspectral classification through unmixing abundance maps 

addressing spectral variability (IEEE Transactions on Geoscience and Remote 

Sensing, 2018. Factor de impacto: 4.662). 

Como ya se ha mencionado, la teledetección y, en concreto, las imágenes 

hiperespectrales pueden contribuir a la generación de mapas de vegetación para la 

vigilancia de los ecosistemas. Para obtener correctamente dicha información y 

solucionar el inconveniente de los píxeles mixtos con contribuciones procedentes 

de diferentes materiales, la riqueza de los datos hiperespectrales permite la 

aplicación de técnicas de desmezclado. En este sentido, un problema encontrado 

tanto en el modelo de mezcla lineal tradicional (LMM), como en el algoritmo Fully 

Constrained Least Squared Unmixing (FCLSU), es la falta de capacidad para afrontar 

la variabilidad espectral de las clases. Este estudio se centra en evaluar el 

rendimiento de diferentes modelos de mezcla espectral en función de la calidad y la 

cantidad de los endmembers. Se seleccionó el Parque Nacional del Teide, al ser un 

complejo ecosistema montañoso con alta variabilidad espectral para una misma 

clase, principalmente causada por la topografía y las diferencias radiométricas en 

cada pasada del sensor aeroportado. Concretamente, para la imagen CASI, se 

comparó el algoritmo FCLSU con respecto a otros tres que sí consideran la 

variabilidad espectral: Scaled Constrained Least Squares Unmixing (SCLSU), 

Extended LMM (ELMM) y Robust ELMM (RELMM). El análisis incluye dos casos de 

estudio: (i) endmembers robustos y (ii) endmembers no robustos. Las prestaciones 

de cada algoritmo se calcularon utilizando el error cuadrático medio (RMSE) y los 

mapas tras la clasificación, los cuales se obtuvieron usando los mapas de abundancia 

como datos de entrada al clasificador. Se demostró que se necesitan técnicas 

avanzadas de desmezclado para abordar la variabilidad espectral y así obtener 

estimaciones de abundancia precisas. RELMM obtuvo excelentes valores de RMSE y 

mapas de clasificación más precisos, incluso en escenarios con poco conocimiento 
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del área de estudio y un esfuerzo mínimo en la selección de endmembers, evitando 

el problema de la dimensionalidad que se encuentra en las imágenes 

hiperespectrales. 

 5. Temporal dynamic analysis of a mountain ecosystem based on multi-

source and multi-scale remote sensing data (Ecosphere, en revisión. Factor 

de impacto: 2.671). 

Durante las últimas décadas, el Parque Nacional del Teide ha sufrido 

importantes variaciones en los recursos naturales debido al cambio climático y a la 

presión antropogénica y de los herbívoros. Específicamente, el conejo europeo 

introducido por los humanos, así como los episodios de sequía, han llevado a un 

cambio en la estructura de dicho ecosistema. Los gestores del Teide estudiaron, con 

métodos tradicionales de campo y en pequeñas parcelas del Parque, cómo están 

cambiando su dinámica las dos especies de vegetación más importantes en este 

ecosistema vulnerable y heterogéneo, la retama del Teide (Spartocytisus 

supranubius) y el rosalillo de cumbre (Pterocephalus lasiospermus). Este artículo 

propone un marco metodológico para analizar los cambios producidos en este 

ecosistema y su problemática mediante el uso de imágenes de teledetección. Los 

resultados obtenidos fortalecen y amplían el análisis realizado por los gestores del 

Teide, lo que demuestra que la retama del Teide ha disminuido su población, 

mientras que la cobertura del rosalillo ha aumentado. Además, este estudio 

proporciona mapas temáticos de las especies de interés, así como su cobertura 

específica en diferentes fechas, proporcionando datos cuantitativos en zonas 

extensas que no son posibles de obtener con los enfoques tradicionales. 

Finalmente, a continuación, se presentan las principales conclusiones obtenidas 

durante la Tesis: 

- Se puede concluir la importancia de la elección de las imágenes adecuadas, 

en base a sus características espaciales, espectrales, radiométricas y 

temporales, dependiendo del propósito final del estudio. Además, las 

medidas in situ y los datos auxiliares han sido esenciales durante el 

procesado de los datos. Específicamente, los datos reales obtenidos en las 

campañas de campo para la clasificación supervisada, los DEM (Digital 

Elevation Models) para la ortorectificación precisa, las ortofotos para la 

fusión hiperespectral, etc. 

 

- Se ha demostrado la importancia de las técnicas de pre-procesado, siendo 

necesaria la aplicación de métodos adecuados para mejorar la calidad 

espectral y espacial en las imágenes (corrección atmosférica, fusión de 

imágenes, ortorectificación, etc.). Específicamente, los métodos avanzados de 

fusión en las imágenes multiespectrales son importantes para obtener 

imágenes con mejor calidad espacial. Además, tras realizar diversos estudios 

exhaustivos de algoritmos de pansharpening, se demostró que es una etapa 
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esencial para obtener imágenes de alta resolución espacial que son 

imprescindibles dado el pequeño tamaño de la vegetación estudiada, y 

permitir la generación de mapas precisos a nivel de especies. Por otro lado, 

la reducción de la dimensionalidad en las imágenes hiperespectrales es 

esencial para obtener mapas temáticos precisos, excepto cuando se utilizan 

técnicas avanzadas de desmezclado espectral. En definitiva, se han utilizado 

los algoritmos más adecuados para cada una de las etapas de la cadena de 

procesado. 

 

- Se ha comprobado la dificultad de obtener un mapa de especies vegetales 

preciso en el Parque Nacional del Teide, al ser un ecosistema complejo y 

heterogéneo. Como se menciona en los objetivos, la dificultad de la 

investigación radica en la generación de una metodología robusta, semi-

automática y eficiente para el mapeado sistemático de ecosistemas 

heterogéneos. En este contexto, como se ha indicado, la primera observación 

es que los ecosistemas heterogéneos y mixtos necesitan datos de elevada 

riqueza espacial y espectral, así como la aplicación de técnicas de procesado 

avanzadas. Por ejemplo, la clasificación basada en objetos proporciona 

mejores resultados en ecosistemas heterogéneos utilizando imágenes de alta 

resolución espacial. Por otro lado, en imágenes hiperespectrales, se necesitan 

técnicas avanzadas de desmezclado para abordar la variabilidad espectral de 

ecosistemas heterogéneos y mixtos. Se ha demostrado la viabilidad de 

obtener estimaciones de abundancia adecuadas y mapas temáticos precisos 

sin aplicar técnicas de reducción de la dimensionalidad. En cuanto a las 

técnicas de clasificación, no sólo se han utilizado para obtener los mapas de 

vegetación a nivel de especie, sino también como un método indirecto para 

evaluar la importancia de los algoritmos de pansharpening para evaluar el 

número adecuado de componentes en los datos hiperespectrales y para 

analizar el rendimiento de las técnicas de desmezclado espectral 

 

- Se puede concluir que la teledetección es una herramienta fundamental para 

detectar cambios en áreas extensas de manera semi-automática, continua y 

económica. Tras un estudio combinando datos de teledetección multi-

plataforma, se obtuvieron resultados cuantitativos de la cobertura de cada 

especie y su variabilidad durante el período temporal analizado. 

Se puede afirmar que esta Tesis ha logrado desarrollar un marco general de 

procesado que podría utilizarse como referencia para la generación de productos 

terrestres, usando imágenes multiespectrales e hiperespectrales de alta resolución, 

en cualquier tipo de ecosistema complejo. Se ha demostrado que los mapas 

temáticos a nivel de especie vegetal, obtenidos aplicando diferentes metodologías, 

son lo suficientemente precisos. Este hecho ha conllevado la posibilidad de su 

utilización por los responsables de conservación del Parque Nacional del Teide. 
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En definitiva, la consecución de los objetivos de la Tesis permite a la comunidad 

científica contar con una serie de técnicas de procesado de imágenes para permitir 

el desarrollo de estudios con una resolución muy elevada y aumentando el potencial 

de investigación para la gestión ambiental, especialmente en ecosistemas complejos 

vulnerables. 

Finalmente,  la investigación futura podría orientarse hacia: 

- La obtención de productos terrestres precisos utilizando imágenes de drones 

hiperespectrales de muy alta resolución espacial (aprox. 10 cm). 

 

- La modificación de la metodología para la inclusión de datos auxiliares, como 

ortofotos, datos LiDAR o SAR. 

 

- Estudiar  en mayor detalle el Parque Nacional del Teide y otros ecosistemas. 

Especialmente su dinámica usando un mayor número de imágenes de alta 

resolución y analizando su posible relación con diversos factores naturales o 

antropogénicos. 
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ABSTRACT 

Biodiversity conservation on ecosystems is an essential task to protect them 

from the anthropogenic pressure and climate change, among others. In the last 

decades, remote sensing has become an important tool to complement field 

observations in the study of ecosystems and offers different types of sensors to carry 

out these tasks. Specially, very high spatial resolution sensors are trending for 

performing conservation studies and monitoring ecosystems.  

In this context, the general objective of the Thesis is to analyze complex and 

vulnerable ecosystems, using advanced multi-sensor remote sensing imagery, 

specifically, very high spatial resolution multispectral and hyperspectral data, to 

obtain high quality products which allow the comprehensive analysis of natural 

resources. Thus, advanced processing methodologies are analyzed and applied in 

ecosystems of Canary Islands (Spain), mainly in the Teide National Park. 

In particular, pre-processing techniques, specially adapted for this specific type 

of imagery and study area, were investigated and assessed. Specifically, apart from 

the radiometric calibration and the removal of the atmospheric effects, image fusion 

techniques were applied to the multispectral and hyperspectral imagery to improve 

its spatial quality. In addition orthorectification, co-registration and hyperspectral 

dimensionality reduction methods were also considered in the methodology. 

Regarding the processing steps, advanced spectral unmixing and classification 

algorithms were reviewed, applied and tested. The final objective of the 

comprehensive study carried out was to obtain a robust, automatic, and effective 

methodology for the accurate and systematic mapping of endemic and colonizing 

plants species, to obtain specific products for the management of complex and 

heterogeneous land ecosystems. Finally, a change detection study was performed to 

monitor and analyze the changes of Teide National Park.  

The Thesis offers a methodological framework ecological relevant, effective, 

flexible and transferable to other systems that could be used as a reference for the 

generation of land products, important not only at ecological level, but also at social 

and economic level. 
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Ecosystems provide a wide variety of useful services that enhance the human 

welfare. However, in last decades, there has been a decline in these ecosystems 

services, as well as in the biodiversity, due to intensification of agricultural land use, 

tourism development and other activities (Bock 2003, Pagiola et al. 2004, Mücher et 

al. 2013, Khare and Ghosh 2016). Thus, knowledge on the conservation status of 

natural areas is essential to guide site managers in their decisions (Delalieux et al. 

2012). Up till now, field observations have been the main source of information for 

the assessment of the conservation status of habitat types, being time-consuming, 

labor-intensive, and hence, not suitable to be repeated frequently. In this context, 

remote sensing data can provide valuable information and complement field 

observations. Remote sensing offers a synoptic view and the opportunity to provide 

consistent information in time and space, being an accurate and repeatable tool to 

aid in the mapping and monitoring of habitat types and their conservation status 

(Turner et al. 2003, Rocchini et al. 2010, Delalieux et al. 2012, Mücher et al. 2013, 

Förster et al. 2014, Corbane et al. 2015). However, it is of great importance the 

development of advanced image processing techniques to obtain reliable 

methodologies for the analysis, conservation and management of terrestrial and 

marine environments, in an automatic, continuous and effective way, and at the 

suitable spatial, spectral and temporal resolution. 

At this point, remote sensing has become an important technology due to the 

considerable progress that remote sensed sensors have experience in recent 

decades, providing a huge amount of images with high spatial and spectral 

resolution. As indicated, it offers a practical and cost-effective means for a good 

environmental management, especially when large areas have to be monitored 

(Reinke and Jones 2006, Xie et al. 2008, Spanhove et al. 2012) or periodic 

information is needed.  

The reliable and detailed monitoring of habitats, using remote sensing data, 

remains a challenging application, as it requires sensors and methods which can 

deal with complex transitional zones present in natural vegetation. A factor to 

consider when mapping habitats, is the complexity of the landscape structure, which 

becomes more challenging when ecosystems are more heterogeneous. Moreover, 

the conservation status is assessed by habitat structures, presence of typical species 

in the habitat, abiotic factors and pressures on, or disturbances (Corbane et al. 

2013). 

Mücher et al. 2013 stated that new spaceborne hyperspectral (HS) sensors, in 

parallel to the existing very high spatial resolution (VHSR) multispectral (MS) 

sensors, can be used for habitat and vegetation monitoring, becoming a hot topic for 

the remote sensing and conservation community in the coming years. Mapping of 

broad habitat types, using remote sensing, is a common practice from the 

perspective of land cover mapping, and is generally done at different analysis of 

coarse scale. For instance, global mapping using MODIS (250 m, 500 m or 1000 m of 
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The general Thesis objective was the analysis of advanced processing 

methodologies which, when applied to very high resolution remote sensing imagery, 

serve to obtain accurate information for the conservation of natural resources. Thus, 

advanced techniques were implemented in each processing stage to correct or 

enhance the quality of the imagery and to extract useful value-added products. 

Techniques for image fusion, dimensionality reduction, segmentation, spectral 

unmixing and classification of MS, PAN and HS imagery were studied and 

implemented, as well as algorithms for topographic corrections and co-registration. 

Figure 1.2 shows a general flowchart of the processing steps involved in the Thesis.  

 

Figure 1.2. General flowchart followed in the Thesis. 

To achieve the global objective, the following objectives at more specific level have 

been addressed: 

1. Selection of the appropriate data for the characterization of the ecosystems to 

be analyzed. 

A fundamental task before addressing any remote sensing study is to select and 

acquire the appropriate remote sensing imagery, in-situ and ancillary data, 

suitable for characterizing the ecosystems under study, as well as for setting and 

evaluating the algorithms. This objective is addressed through the following 

tasks: 

 Selection of remote sensing imagery with high spatial and spectral 

resolution. 

 Selection of in-situ measurements and ancillary data. Specifically, the 

ground field measurements and auxiliary data (Digital Elevation Models, 

orthophotos, etc.) were obtained or collected in specific campaigns 

performed during the Thesis. 
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2. Analysis and application of advanced pre-processing algorithms to provide 

spatial and spectral information of high quality. 

Appropriate algorithms have to be applied and evaluated for the correction and 

enhancement of the MS and HS imagery recorded from the sensors to eliminate 

the radiometric, atmospheric and geometric disturbances to the signal and to 

increase the spatial detail of the imagery. The most important techniques 

studied and applied during the Thesis for the generation of the final products 

were: 

 Atmospheric correction algorithms to remove the effects of the atmosphere 

in different spectral bands. 

 Image sharpening to improve the spatial quality of the MS and HS imagery. 

 Orthorectification, in order to remove the effects of the relief on the signal 

received by the sensor. 

 Co-registration of multi-sensor data to guarantee data superposition for the 

fusion of each type of information or for a change detection analysis. 

 Dimensionality reduction for HS imagery, in order to reduce the high 

number of spectral bands and thus, reduce the redundant information of 

the data.   

 

3. Development and validation of specific products for the management of land 

resources. 

Once the previous pre-processing steps were performed, land products were 

generated. In the Thesis, the challenging detection, classification and analysis of 

plant species by remote sensing was addressed. The research difficulty was the 

generation of a robust, automatic, and effective methodology for the systematic 

mapping of endemic and colonizing plants species, using remote sensing in 

complex and heterogeneous ecosystems. In order to accomplish this objective, 

the following tasks were carried out: 

 Detection of plant coverage. The cartography of vegetation covers 

(vegetation and no-vegetation maps) were generated and evaluated using 

specialized indexes based on MS and HS data. The goal was to obtain high 

resolution maps of vegetation distribution in the ecosystems studied. 

 Classification of plant species. Precise thematic maps of species were 

generated and evaluated using advanced classification techniques on 

multisensor data. Hence, in order to obtain reliable high-resolution 

cartography of the distribution and abundance of each plant species, it was 

necessary to apply classification algorithms that process the available MS 

and HS information, both at pixel and object level to obtain a robust 

framework for the different zones.  

 Apply advanced unmixing models which consider the spectral variability of 

the classes in the HS imagery. Then, accurate classification maps were 
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obtained from the abundance maps, which were used as the input data in 

the classification model. 

 

4. Studies of the variability of natural resources in the ecosystems analyzed. 

As indicated, the intense changes in land use, the pressure on ecosystems due 

to the development of tourism, and the repeated introduction of exotic species, 

are important threats that make certain land ecosystems, especially insular 

ones, more sensitive to climate change. In this context, techniques for detecting 

changes were applied, performing a quantitative analysis of the temporal and 

spatial variability of each species of interest, on multi-temporal and multi-

sensor products. The main task to undertake this objective was: 

 Development of a framework for the detection of changes in land 

ecosystems based on the products generated for the analyzed ecosystem.  

An approach that allows characterizing the changes occurred in the study 

area, as well as their quantification, was developed in this Thesis. 

 

1.2. PUBLICATIONS 

In accordance with the modality offered in University of Las Palmas de Gran 

Canaria (ULPGC) in the Doctorate Program in Oceanography and Climate Change, 

this Thesis is presented as a compendium of publications. The PhD candidate, 

Edurne Ibarrola Ulzurrun, is the first author and responsible for each and every one 

of the articles. The complete list of articles published in indexed scientific journals 

that make up the body of the Thesis are: 

 E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello-Ruiz, García-Pedrero, A., 

Rodríguez-Esparragón, D. Fusion of high resolution multispectral images in 

vulnerable coastal and land ecosystems. Sensors 2017, 17(2), pp. 228. 

Impact Factor: 2.475. 

 

 E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello. Influence of pansharpening 

in obtaining accurate vegetation maps. Canadian Journal of Remote Sensing, 

2017, pp. 1-17. 

Impact Factor: 2.000. 

 

 E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín. Assessment of component 

selection strategies in hyperspectral imagery. Entropy, 2017, 19(2).  

Impact Factor: 2.305. 

 

 E. Ibarrola-Ulzurrun, L. Drumetz, J. Marcello, C. Gonzalo-Martín, J. Chanussot. 

Hyperspectral classification through unmixing abundances maps addressing the 
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spectral variability. IEEE Transactions on Geoscience and Remote Sensing. 

Accepted. 

Impact Factor: 4.662. 

 

 E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín, J. Martín-Esquivel. 

Temporal dynamic analysis of a mountain ecosystem based on multi-source and 

multi-scale remote sensing data. Ecosphere. Under review. 

Impact Factor: 2.671. 

 

1.3. THESIS STRUCTURE 

As it was mentioned above, this Thesis has been written as a compendium of 

articles published or submitted to indexed international scientific journals. Each 

article was intended to be read independently, therefore, some overlap may occur 

between the different papers, especially in the “Introduction” and the “Materials and 

Methods” sections.  

This Chapter 1 provides a general introduction in which the objectives of the 

Thesis are presented, as well as the structure. Chapter 2 describes a general 

framework of the methodology used in this Thesis. The next five chapters 

correspond to the articles published or under revision. The thematic unit of this 

Thesis is justified at the beginning of each of these five chapters. Chapters 3 and 4 

deal about the processing of MS imagery. Specifically, Chapter 3 presents an 

assessment of the different pansharpening techniques for the VHSR MS imagery, 

showing the most suitable ones, depending on the ecosystem type. Chapter 4 

evaluates the influence of the different pansharpening techniques when obtaining 

accurate thematic maps applying classifiers, at pixel and object-based level, in MS 

imagery. The fifth and the sixth chapters are focused in HS imagery. Chapter 5 

compares and assesses different component selection strategies in HS imagery, 

while Chapter 6 presents a framework of HS classification through abundance maps 

obtained from advanced spectral mixing models, which consider the spectral 

variability of the classes. Chapter 7 studies the ecosystem changes using the MS and 

HS accurate thematic maps obtained during the Thesis. Finally, the general 

conclusions derived throughout this Thesis, as well as future research, are 

presented in Chapter 8. 

Chapters 3 to 6 do not follow the same page numbering as the original published 

article is included in this document. Moreover, references appear in each chapter, as 

the articles have their own references and, this way, the same format is used 

throughout the manuscript. 

Table 1.1 links the steps followed in the Thesis related with the chapters while 

Figure 1.3 shows a detailed flowchart with all the steps followed in the Thesis.  
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Table 1.1. Steps followed in the Thesis related with the chapters. 

 
CHAPTER 

2 
CHAPTER 

3 
CHAPTER 

4 
CHAPTER 

5 
CHAPTER 

6 
CHAPTER 

7 

Atmospheric 
Correction 

      

Pansharpening       

Orthorectification       

Co-registration       

Dimensionality 
Reduction 

      

Spectral Unmixing       

Classification       

Change Detection       

Figure 1.3. Detailed flowchart followed in the Thesis. 
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Figure 2.2. (a) Teide National Park, (b) Maspalomas Natural Reserve, (c) Islote 

de Lobos Natural Park and (d) Corralejo Natural Park. 

2.1.1. Teide National Park 

Teide National Park, located in Tenerife Island, is one of the most important 

natural areas of Canary Islands, in particular, and Spain, in general. It must be 

protected due to the high anthropogenic pressure which suffers, mainly caused by 

the tourism. It covers 18,990 ha and was declared National Park on 22th January 

1954. It is made of a giant crater known as Las Cañadas del Teide, located in the 

center of the island, in one of the highest points of Tenerife Island (2000 m over the 

sea level), with an extension of 13,000 ha. The Teide peak, formed by several 

overlapping volcanoes, is the highest mountain in Spain (3718 m) (Wildpret de la 

Torre 2001, González-Lemus et al. 2009). The climate is mainly determined by the 

elevation and orientation respect to the Sun and Trade winds that, generally, blow 

from the NE direction. The annual mean temperature and precipitation are around 

11.4 ± 0.93˚C and 383.2 ± 63.3 mm from 2000 to 3000 m, and around 10.8 ± 0.9˚C 

and about 409 ± 59.6 mm above this elevation to the Teide peak.  

The ecosystem vegetation is a characteristic shrubland of the high 

Mediterranean mountain, but it incorporates elements of great physiognomic 

originality. The flora is vulnerable to environmental changes, thus, plants respond 

to thermic and hydric stress with a shrub physiognomy (Arozena-Concepción and 

Beltrán-Yanes 2006). The most characteristics species are Pinus canariensis 

(canarian pine), Spartocytisus supranubius (retama), Descurainia bourgaeana 

(hierba pajonera), Pterocephalus lasiospermus (rosalillo de cumbre), Aenocarpus 

viscosus (codeso), and  Echium wildpretii and Echium auberianum (tajinaste) 

(Arozena-Concepción and Beltrán-Yanes 2006) (Fig 2.3). 

(a) (b) 

(c) (d) 
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Figure 2.3. (a) General view of the plant species of Teide National Park, (b) P. 

lasiospermus, (c) S. supranubius and (d) D. bourgaeana. 

During last decades, the Teide National Park has suffered a decline in natural 

resources. Specifically, the European rabbit introduced by humans, as well as 

drought episodes, have led to a change in the vegetation structure. Teide managers 

have studied, with field-based traditional methods and in specific locations, how the 

two keystone vegetation species, S. supranubius and P. lasiospermus, changed their 

dynamics in this vulnerable and heterogenic ecosystem. While rabbits limited the 

expansion of S. supranubius by feeding on their seedlings and preventing their 

regeneration, they favored the expansion of P. lasiospermus because this plant is able to 

take advantage of the extra nutrients contribution from the latrines of the herbivore and it 

was less palatable than the brooms. 

2.1.2. Maspalomas Special Natural Reserve 

Maspalomas Special Natural Reserve is a dune field situated south of Gran 

Canaria with a total extension of 403.9 ha (Quevedo-Medina and Hernández-

Calvento 2014). It was declared protected area in 1982 (Hernández-Calvento 2002, 

Gobierno de Canarias 2004). The northern limit is defined by an intense touristic 

resort occupation and the western limit is occupied by the Maspalomas lagoon. At 

the east limit appears ‘El Inglés’ beach. This beach is the main source of sand to the 

dune field, while Maspalomas beach is considered the sinking area (Alcántara-

Carrió and Fontán 2009). The Natural Reserve presents interest at ecological, social 

and economic level. It has a great variety of natural systems (marine, eolic, lake and 

fluvial) giving high complexity to the Reserve. Moreover, the tourism and 

(a) 

(b) (c) (d) 
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urbanization development has conditioned the natural evolution of the system, 

interfering with the sand dynamics. Thus, the sedimentary deposition has a deficit 

since the 60’s (Hernández et al. 2007, Pérez-Chacón-Espino et al. 2007). 

The goal of the protection in this area is the maintenance of the essential 

ecological processes linked, both to the dune system and to the Maspalomas lagoon. 

It is important to protect this ecosystem due to the representative environment of 

the area, the presence of threaten habitats, the high ornithological interest, threaten 

flora, fauna endemic species, and to preserve the geomorphological structures 

(Gobierno de Canarias 2004).  

2.1.3. Corralejo and Islote de Lobos Natural Parks 

Corralejo and Islote de Lobos Natural Parks were declared protected areas in 

Canary Islands in 1982 and Natural Parks in 1994. 

Corralejo covers 2,668.7 ha. The dune system limits with urban edifications at 

north, with the coast in the east and, finally, the west and south are bordered by 

‘malpaís’ landscape and volcanic structures. It is a mobile dune system that registers 

an important sediment deficit produced by a strong anthropic pressure since 

decades (Fernández-Cabrera et al. 2010). The dominant land vegetation and its 

abundance are determined by the sand mobility, the sea closeness and the weather 

conditions. Halophilic vegetation is located closer to the sea exposed to the tides 

action (Fernández Cabrera et al. 2012). One of the most important problems that 

appears in Corralejo is the sedimentary dynamic alteration by a consequence, in 

part, of the urban development in the northern area of the system, which affect as a 

wall to the sediment natural entrance from the sea. The multiple sand extractions 

are an adding problem to the sedimentary dynamic alteration (Fernández Cabrera 

et al. 2012).  

Islote de Lobos, is a small island which covers 470 ha, situated north of 

Fuerteventura, northeast to Corralejo. It is one of the protected areas where the man 

has not settled down (Iglesias 2003). It has a high environmental value and it was 

declared ZEPA (Birds Special Protection Area), IBA (Birds Importance Area) and LIC 

(Community Interested Area). The volcanic structures, as well as its high 

biodiversity (more than 130 plant species) give to the island a high environmental 

importance. In Islote de Lobos, the dominant vegetation species are adapted to the 

high salinity of the area (Hernández-Calvento 2002).  

Maspalomas Special Natural Reserve, as well as Corralejo and Islote de Lobos 

Natural Parks were only used to evaluate the different pansharpening algorithms in 

three different ecosystem types: land ecosystem as Teide National Park, coastal 

ecosystem as Corralejo and Islote de Lobos Natural Parks, and a mixed ecosystem 

corresponding to Maspalomas Special Natural Reserve.  
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2.2. DATASETS 

2.2.1. Remote sensing data 

The recent increase in Earth observing sensors has led to the availability of high 

resolution images of various types with different spatial, spectral and temporal 

resolutions (Alimuddin et al. 2012). They measure the electromagnetic waves 

reflected or emitted by distant objects present on the Earth surface. According to the 

source of illumination, two types of sensors can be considered: active and passive. 

Passive sensors, generally, use the Sun as an energy source. They record the 

radiation emitted by the Sun and reflected by the Earth’s surface. For instance, MS 

which have 4-10 spectral bands, PAN has a single band covering a wider range of the 

spectrum with higher spatial resolution than the MS, and HS imagery, formed by 

hundreds of contiguous bands. Active sensors have their own energy source, 

emitting a signal that travels through the atmosphere, reflects on the Earth’s surface 

and returns to the sensor, which measures the signal’s travel time and strength, i.e. 

Radar and LiDAR (Khare and Ghosh 2016) (Fig. 2.4). Regarding medium and high 

spatial resolution passive sensors, some widely used are shown in Table 2.1. 

  

Figure 2.4. The frequency bands of the passive and active sensors (adapted from 

Lefeuvre and Tanzi, 2014). 

Table 2.1. Common medium and high resolution passive sensors. 

SATELLITES/ 

SENSORS 

Spectral 

Resolution 
Spatial Resolution Comments 

Landsat 

TM/ETM+/OLI 
4 to 11 bands 

Medium (30 m) to coarse 

resolution (60 m or 100 m in 

thermal bands) 

Longest history and 

most used for land 

monitoring 

Sentinel-2 13 bands Medium resolution: 10 to 60 m  

ASTER 14 bands Medium resolution: 15 - 90 m  

SPOT-HRV 3 and 4 bands 
Medium spatial resolution (20 m 

to 2.5 m in PAN) 

SPOT VGT with coarse 

resolution of 1 km 

IKONOS 4 bands VHSR: 1 m (PAN) - 4 m (MS)  

Quickbird 4 bands VHSR: 0.6 m (PAN) - 2.4 m (MS)  

Worldview-2 8 bands VHSR: 0.46 m (PAN) - 1.8 m (MS)  

Hyperion 220 bands Medium resolution: 30 m On board EO-1 satellite 

AVIRIS 224 bands Medium/coarse resolution: 20 m Airborne HS sensor 
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In this context, regarding the different sensors, they all offer useful information 

for mapping habitats and their status. For instance, Corbane et al. 2015 reveal how 

MS imagery alone is often not enough for detailed forest type and grassland 

differentiation; however, more detailed analyses might be necessary when using 

high spatial resolution sensors. Moreover, the article adds that HS imagery enables 

the distinction of tree species based on the reflectance response.  

This Thesis was focused in the use of VHSR MS imagery and HS imagery, which 

are explained in more detail in the next sub-sections. 

2.2.2. Field data 

Field data acquisition is essential for remote sensing processing techniques. It is 

needed to have knowledge of the study area and, therefore, field campaign 

observations are useful to acquire that information. Firstly, it is important to know 

the purpose of the study, and then, compile information of the study area regarding 

that purpose. That information acquired during the field camping is used during the 

pre-processing and processing steps, as well as to validate all the techniques. 

For instance, to perform an accurate atmospheric correction in the imagery, it is 

necessary to know the atmospheric conditions the day that the imagery is acquired 

in order to validate the correction model. For georeferencing and orthorectification, 

a reference image can be used, but also some reference points obtained via global 

position system (GPS) during the field campaign are useful too. Besides, field data 

or samples are used to train supervised classifiers or unmixing models, in order to 

obtain accurate thematic maps. Finally, those samples are essential to validate all 

the results obtained. 

During the Thesis, three field campaigns were carried out. Table 2.2 shows each 

field campaign, the area, the date and the data collected. All the field campaigns were 

carried out at the same date than the satellite and airborne imagery acquisition. 

Table 2.2. Field campaigns carried out during the Thesis. 

Field 

campaign 
Area Date Data collected 

Field 

campaign 1 

Teide National Park 

Maspalomas 

Natural Reserve 

June 

2015 

Atmospheric parameters and reflectance 

measurement using Spectroradiometry data 

(ASD-Field Spec) 

Field 

campaign 2 

Teide National Park 

Maspalomas 

Natural Reserve 

May 

2016 
Training and testing samples 

Field 

campaign 3 

Teide National Park 

Maspalomas 

Natural Reserve 

June 

2017 

Training and testing samples 

Spectroradiometry data (ASD-Field Spec) 
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2.2.3. Multispectral and panchromatic imagery 

The level of details present in the images and the information associated with 

each object on the Earth’s surface vary as the spatial resolution of sensors changes 

(Khare and Ghosh 2016). Normally, in remote sensing, high spatial resolution is also 

called fine spatial resolution, and it ranges from 0.5 to 10 m in the commercial 

domain for environmental studies. For instance, Worldview sensors (WV-2, WV-3 

and WV-4), Pleiades, Quickbird, IKONOS and SPOT-5, are commonly high spatial 

resolution sensors (Baraldi et al. 2010, Mutanga et al. 2012). Specifically, WV-2 

imagery was used in this Thesis as a VHSR data. The specific features of the sensor, 

spectral and spatial characteristics, as well as the acquisition time, is explained in 

Chapters 3 and 4. Moreover, Quickbird was used in Chapter 7 (Table 2.3). 

Table 2.3. Specifications of the different imageries used in the Thesis. 

SENSORS 
TYPE OF 

IMAGERY 
AREA OF COVERAGE 

ADQUISITION 

DATE 
CHAPTER 

Quickbird MS Teide National Park 26th May 2002 Chapter 7 

Worldview-

2 
MS 

Teide National Park 11th May 2016 Chapters 3-7 

Maspalomas Natural Reserve 17th January 2013 Chapter 3 

Corralejo and Islote de Lobos 

Natural Parks 
20th October 2010 Chapter 3 

CASI HS 
Teide National Park 1st June 2017 Chapters 6-7 

Reborio (Asturias) 22nd May 2009 Chapter 5 

 

2.2.4. Hyperspectral imagery 

High resolution optical remote sensing has increased the number of acquired 

spectral bands, going from MS to HS imagery. HS sensors capture image data in 

hundreds of narrow and contiguous spectral bands covering a broad spectrum of 

wavelength range (typically, 0.4-2.5 µm), increasing the ability to classify and 

recognize different materials (Villa et al. 2009). This higher spectral accuracy is 

delivering more information, leading to a growing interest in HS remote sensing 

research and applications in a variety of fields, including geology, agriculture, 

forestry, coastal and inland water researching, environmental management or 

urban studies (Thenkabail et al. 1999, Dell'Acqua et al. 2004, Lawrence et al. 2006, 

Govender et al. 2007, Gao et al. 2009, Goodenough et al. 2012, Gupta 2017).  

Compared to the MS remote sensing data, HS imagery not only has an extremely 

high spectral resolution that improves the detection capabilities of Earth 

observation, but also specific processing methods (Li et al. 2014). Besides, HS data 

can also be applied to record information of important plant properties (i.e. water 

content, leaf pigment and chemical composition), making possible to discriminate 

different vegetation species, as well as to assess of habitat degradation and stress, 

change detection in nitrogen, phosphorus and other foliage compounds level, which 
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are linked with several environmental factors (Khare and Ghosh 2016). So far, there 

are no high spatial resolution HS satellites; thus, sensors on board aerial platforms 

have been used in the research carried out in this Thesis. 

In particular, the CASI 1550i (http://www.itres.com/casi-1500/) sensor was 

used to carry out the HS studies, which achieves the required spatial resolution to 

study the complex ecosystem of the Teide National Park (Table 2.3). More detailed 

information about the sensor and the type of imagery can be found in Chapters 5, 6 

and 7. 

2.3. PRE-PROCESSING TECHNIQUES 

Satellite data providers perform some preliminary pre-processing to the raw data 

received; however, it is necessary to apply additional processing techniques to 

correct and enhance the sensor data, to generate the final products. In particular, 

pre-processing algorithms are critical to improve the quality of the available 

information. Chapter 1, Section 1.3 shows every transformation and correction 

methods that were used in the original imagery. Moreover, Chapters from 3 to 7 

explain this pre-processing in more detail. 

In this section, every pre-processing step addressed in this Thesis (Fig. 1.4) is 

described. Since this document is produced as a compendium of articles, the detailed 

explanation of every technique is included in each article, which are individual 

chapters in the manuscript.  

2.3.1. Radiometric calibration and atmospheric correction 

The identification of surface materials through remote sensing imagery is best 

achieved by deriving the reflectance of the materials. For studying surface 

properties using remote sensing data, accurate removal of atmospheric absorption 

and dispersion effects is required.  

The atmosphere affects the radiance received at the sensor causing scattering, 

absorption, and refraction of the energy. Corrections for these effects, sensor gains 

and offsets, solar irradiance, and solar zenith angle, must be included in the 

radiometric calibration and atmospheric correction procedures that are used to 

convert sensor-recorded digital counts to ground reflectances (Fig. 2.5) (Martin et 

al. 2012, Pons et al. 2014, Marcello et al. 2016). In other words, the derivation of 

surface reflectance from image data requires radiometric calibration and 

atmospheric corrections of the measured top-of-atmosphere (TOA) radiance 

(Manakos et al. 2011). After the radiometric calibration to convert digital values 

recorded by the sensor to radiance values, atmospheric corrections are essential to 

convert radiance measured by the sensor to reflectances of the surface materials 

(Gao et al. 2009, Pons et al. 2014). 
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In land areas, atmospheric correction is essential for obtaining the real 

reflectance from the soil and vegetation in order to study the biophysical 

parameters or to achieve precise land use/land cover or vegetation maps (Martin et 

al. 2012, Marcello et al. 2016).  

  

Figure 2.5. The radiance detected by the sensor includes the reflected radiation 

from the Earth's surface as well as radiation that is scattered in the atmosphere 

(adapted from: Humboldt State University, 2017). 

The solar radiation on the sun-surface-sensor path is affected by dispersion and 

absorption. Accurate modeling of these effects is required in order to derive surface 

reflectance. The short wavelength region between 0.4-0.7 nm is strongly affected by 

molecular scattering (Rayleigh scattering). The radiances measured by a sensor 

from a satellite include atmospheric path radiance (due to Rayleigh and aerosol 

scattering) and surface-reflected solar radiance. These radiances are often 

converted to “apparent reflectances”, a measure of the reflectivity for the 

atmosphere and surface system. In real atmosphere, the scattering and absorption 

processes occur simultaneously and this coupling effects are small in regions where 

the atmospheric gaseous absorptions are weak and in regions where the scattering 

effects are small (Gao et al. 2009).  

Since the mid-1980s, atmospheric correction algorithms have evolved from the 

earlier empirical line and flat field methods to more recent methods based on 

rigorous radiative transfer modeling approaches. Hence, approaches include, 

basically (Gao et al. 2009): 

(i) Scene-derived adjustments in which in-scene statistics are used. For example, 

Darkest Pixel Methods (Chavez Jr 1988, Wu et al. 2005, Hadjimitsis et al. 2010) 

or purely empirical methods in which ground-truth spectral data are required, 

i.e. the Empirical Line calibration (Staben et al. 2012). 

(ii) More complex and sophisticated atmospheric correction techniques that 

involve radiative transfer algorithms. For instance, the 6S (Second Simulation of 
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the Satellite Signal in the Solar Spectrum) code (Vermote et al. 1997) and the 

MODTRAN (MODerate spectral resolution atmospheric TRANsmittance) (Berk 

et al. 1998, Berk et al. 2005). These robust and high-spectral resolution methods 

retrieve the atmospheric properties by modeling the radiative transfer of the 

sunlight: the physical interaction with the gases and particles in the 

atmosphere; the interaction with the surface; and the transmission along a 

different path upward through the atmosphere to the sensor (Manakos et al. 

2011). These models applied to remote sensing imagery often retrieve target 

reflectance with a relatively high accuracy. However, they require information 

about the atmosphere at the time of the sensor overflight, such as the optical 

thickness and the various atmospheric components. This information is 

sometimes difficult to get (Manakos et al. 2011, Martin et al. 2012).  

Nowadays, there are several atmospheric corrections algorithms for retrieving 

surface reflectance. For instance, the Atmosphere CORrection Now (ACORN) (Kruse 

2004), the Fast one-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

(Berk et al. 1998), a series of Atmospheric and Topographic Correction (ATCOR) 

codes (Richter 1996, 1998, Richter and Schläpfer 2002), 6S (Vermote et al. 1997) or 

Quick Atmospheric Correction (QUAC) (Bernstein et al. 2012).  

In case of inhomogeneous horizontal surfaces, the radiances outside of the pixel 

can spill into the pixel being viewed by the sensor due to scattering of solar radiation 

by atmospheric molecules and aerosols. This effect is called the “atmospheric 

adjacency effect” (Tanré et al. 1979). Operational modelling and correction of the 

atmospheric adjacency effect are very difficult because of the requirement of 

accurate knowledge on aerosol optical properties and vertical distributions. 

Moreover, all models are based on a series of hypotheses to simplify them and, in 

this way, make their application suitable.  

The performance of different atmospheric corrections methods are studied for 

many sensors like Landsat TM (Thematic Mapper) (Janzen et al. 2006, Hadjimitsis 

and Clayton 2008, Watmough et al. 2011), Quickbird (Wu et al. 2005, Richter 2008), 

Ikonos (Neubert and Meinel 2005), SPOT (Vaudour et al. 2008), Worldview-2 

(Marcello et al. 2016), etc. 

A previous study to the Thesis comparing 5 atmospheric correction algorithms 

(FLAASH, ATCOR, 6S, DOS and QUAC) was carried out, which revealed that 6S was 

the most suitable for the scenes regarding different settings (Marcello et al. 2016). 

2.3.2. Sharpening 

Image fusion is the process of combining images from different sources to 

increase quality of the fused image as compared to the source images (Alimuddin et 

al. 2012). The extensive research on image fusion techniques in remote sensing 
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started in the 1980s (Schowengerdt 1980, Hallanda and Cox 1983). Generally, image 

fusion can be categorized intro three levels: pixel level, feature level and knowledge 

or decision level (Ehlers et al. 2010, Zhang et al. 2011, Pohl 2014, Nikolakopoulos 

and Oikonomidis 2015). At pixel level, pansharpening data fusion techniques could 

be defined as the process of merging MS and PAN imagery to create a new MS image 

with higher spatial resolution than the original MS (Li et al. 2013b, Kpalma et al. 

2014) (Fig. 2.6). It aims to obtain information of greater quality, integrating the 

spatial details of the PAN image and the spectral characteristics of the MS image into 

a single image.  

Figure 2.6. (a) Panchromatic (PAN) image, Color composite RGB (Red – Green – 

Blue) of the (b) Multispectral (MS) image and (c) of the Fused (FUS) image. 

Many pansharpening techniques have appeared in the last decades, as a 

consequence of the launch of VHSR satellite sensors (Laben and Brower 2000, Tu et 

al. 2001, Amro et al. 2011, Fonseca et al. 2011, Palubinskas and Reinartz 2011, Li et 

al. 2012, Vivone et al. 2015). However, spatial and spectral resolutions are highly 

correlated factors with an inverse relation between them. Constraints on the signal 

to noise ratio impose that the spatial resolution must be lower if the requested 

spectral resolution is higher (González-Audícana et al. 2004, Lillo‐Saavedra and 

Gonzalo 2006, Alimuddin et al. 2012, Li 2013, Li and Qi 2015).  

Multispectral pansharpening 

Usually, VHSR satellite optical sensors provide a MS image with high spectral 

resolution and a PAN with high spatial resolution. In general, pansharpening 

algorithms disrupt the spectral information of the original MS image leading to a 

necessity of selecting the appropriate method for the considered application. 

Pansharpening algorithms 

It is difficult to find a universal classification for all the pansharpening methods 

and different authors have tried to categorize them in different ways (Alparone et 

al. 2007, Zhang 2010, Li et al. 2012, Li et al. 2013b, Palubinskas 2013, Pohl and van 

Genderen 2015, Vivone et al. 2015). A common classification is as follows: 

   

(a) (b) (c) 
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1. Component Substitution methods: they are based on a linear transformation and 

the subsequent substitution for some components in the transformed domain. 

The MS image is transformed into another space, assuming that this 

transformation separates the spatial structure from the spectral information in 

different components. The transformed MS image can be enhanced by replacing 

its component containing most of the spatial detail with the spatial information 

of the PAN image. These methods are based on transformations as, Intensity-Hue-

Saturation (IHS) (Carper 1990), Principal Component Analysis (PCA) (Hotelling 

1933), Gram-Schmidt (GS) (Laben and Brower 2000) and Hyperspherical Color 

Sharpening (HCS) (Padwick et al. 2010). 

2. Relative Spectral Contribution methods: they can be considered as a variant of the 

Component Substitution methods, when a linear combination instead of a 

substitution is applied. They include the Brovey Transform (BT) (Gillespie et al. 

1987) and the Intensity Modulation (IM) methods (Cliche et al. 1985). 

3. High-Frequency Injection methods: this methods extract the spatial details from 

the PAN image applying spatial filtering techniques, which are injected in the MS 

image or a filtered version on it. They include fusion techniques based on the 

application of filters in the Fourier Domain (Chavez et al. 1991, Lillo‐Saavedra et 

al. 2005) as well as, High-Pass-Filtering (HPF) (Gillespie et al. 1987) and High-

Pass-Modulation (HPM) (Schowengerdt 1980), which inject high frequency detail 

extracted by subtracting a low pass filtering PAN image from the original one. 

4. Statistics-based methods: they include a set of methods that exploits the statistical 

characteristics of the MS and PAN imagery in the pansharpening process. They 

basically include Price’s algorithm (Price 1987), Spatially Adaptive methods 

(Park and Kang 2004), Bayesian-based models and Super Resolution methods 

(Mascarenhas et al. 1996). 

5. Multiresolution methods: these techniques are used to decompose MS and PAN 

imagery in different scales in order to extract the spatial details which are 

imported into finer scales of the MS images. They highlight the relationship 

between PAN and MS imagery in coarser scales and enhance spatial details. They 

mainly include Laplacian pyramids (Burt and Adelson 1983), Wavelet (Mallat 

1989) and Contourlet methods (Da Cunha et al. 2006), as well as any combination 

of multiresolution analysis with methods of other categories (Aiazzi et al. 2002, 

Aiazzi et al. 2006, Alparone et al. 2007, Gonzalo-Martín and Lillo-Saavedra 2007, 

Lillo‐Saavedra and Gonzalo 2007, Zhang 2010, Palubinskas and Reinartz 2011). 

After a detailed review of the state-of-the-art in MS pansharpening techniques in 

the Thesis, a comprehensive assessment was performed selecting the following 

classic and new algorithms that could achieve good performance with WV-2 

imagery: 

 Gram-Schmidt (GS) (Laben and Brower 2000). 

 Fast Intensity Hue Saturation (FIHS) (Tu et al. 2001). 
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 Hyperspherical Color Sharpening (HCS). 

 Modulation Transfer Function (MTF) (Aiazzi et al. 2006, Vivone et al. 2015). 

 Wavelet ‘à trous’ (WAVE_ATROUS) (Dutilleux et al. 1987). 

 Weighted Wavelet ‘à trous’ through Fractal Dimension Maps (WAT⊗FRAC) 

(Lillo‐Saavedra and Gonzalo 2006). 

All of them are explained in more detail in Chapters 3 and 4. 

Hyperspectral sharpening 

Regarding the HS sharpening, the spatial and spectral compromise is more 

critical due to the necessity to capture energy in a greater number of narrow bands. 

Moreover, airborne sensors can achieve higher spatial resolution but there is still a 

trade-off between the number of bands and the spatial resolution to achieve an 

acceptable signal-to-noise ratio, especially when dealing with HS sensors. In order 

to solve this trade-off between both resolutions, HS sharpening is needed, using 

higher spatial resolution imagery obtained through other sensors, orthophotos, etc. 

(Loncan et al. 2015, Pohl and van Genderen 2015, Yokoya et al. 2017). 

A preliminary study was carried out by a visual and quantitative comparison of 

fused images obtained through several HS sharpening algorithms to assess the HS 

fusion performance using 2 different approaches. First, semi-synthetic imagery was 

generated using CASI imagery. These datasets were used to carry out controlled 

experiments to check the robustness of each algorithm to different spatial resolution 

ratios and registration errors. Second, three real cases were assessed to analyze the 

algorithms on various fusion scenarios, with the aim to improve the spatial detail of 

the HS imagery (Table 2.4 and Figure 2.7). 

Table 2.4. High spectral and spatial resolution images used in the three real cases’ 

studies. 

 Study Area 
High Spectral 

Resolution Image 

High Spatial 

Resolution Image 

Real Case 1 Teide National Park CASI (75 cm) Drone (7.5 cm) 

Real Case 2 Maspalomas Natural Reserve CASI (50 cm) Orthophoto (2.5cm) 

Real Case 3 Maspalomas Natural Reserve Hyperion (30 m) Sentinel-2 (10 m) 

 

The HS sharpening algorithms used in the analysis are different that the ones 

used in the MS study, due to the imagery features. They are named below (for more 

information see Loncan et al. 2015): 

 Smoothing Filter-based Intensity Modulation (SFIM) (Liu 2000) 

 Modulation Transfer Function (MTF) (Aiazzi et al. 2006, Vivone et al. 2015). 
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 Gram-Schmidt (GS) (Laben and Brower 2000). 

 Gram-Schmidt Adaptive (GSA) (Aiazzi et al. 2007). 

 Principal Component Analysis (PCA) ) (Hotelling 1933). 

 Guided Filter PCA (GFPCA) (He et al. 2013). 

 Coupled Nonnegative Matrix Factorization (CNMF) (Yokoya et al. 2012). 

 Bayes Naïve (Hardie et al. 2004). 

 Bayes Sparse (Wei et al. 2015). 

 HySure (Bresson and Chan 2008). 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Figure 2.7. Datasets used in the HS sharpening assessment. Semi-synthetic data: 

(a) CASI HS, (b) CASI HS intensity image, (c) MTF_GLP fused image. Real case 1: (d) 

CASI HS image, (e) Drone intensity image, (f) MTF_GLP fused image. Real case 2: 

(g) CASI HS image, (h) orthophoto image, (i) MTF_GLP fused image. Real case 3: (j) 

Hyperion-EO1 image, (k) ALI-(PAN)-EO1 intensity image, (l) MTF_GLP fused 

image. 
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Quality evaluation 

Quality evaluation is a fundamental issue to assess the performance of different 

sharpening algorithms (Medina et al. 2012, Rodríguez-Esparragón 2015) and 

specifically, to assess the spectral and spatial quality of the fused images. There are 

two types of evaluation approaches commonly used: (1) qualitative analysis (visual 

analysis) and (2) quantitative analysis (quality indices).  

Visual analysis is a powerful tool to capture the geometrical aspects and the main 

color disturbances (Alparone et al. 2007). According to Amro et al. 2011, some visual 

parameters are needed for testing the properties of the imagery, such as spectral 

preservation of features and the injection of the spatial information from the high 

spatial resolution imagery. On the other hand, quality indices measure the spectral 

and the spatial distortion due to the pansharpening process. Each fused image is 

compared to the high spectral or spatial image using one or more quality indices.  

Quality Indices:  As it was mentioned before, there are several types of Quality 

Indices. All of them are explained in Chapters 3 and 4. Alparone et al. 2008 

categorized them in three main groups, (i) spectral quality indices, (ii) spatial 

quality indices and, finally, (iii) global quality indices. On the other hand, there exist 

some evaluation techniques with no reference requirement such as the Quality with 

No Reference (QNR) approach (Vivone et al. 2015). 

 Spectral quality assessment: The spectral quality assessment measures the 

spectral distortion due to the pansharpening process. Each fused image was 

compared to the reference MS image. The metrics considered in the Thesis are: 

o Correlation coefficient (CC) (Wald et al. 1997)  

o Spectral Angle Mapper (SAM) (Kruse et al. 1993) 

o ERGAS (Spectral Relative Dimensionless Global Error) (Wald 2000). 

 

 Spatial quality assessment: The spatial detail information of each fused band is 

compared with the spatial information of the reference PAN image. The metrics 

considered in the analysis are as follows: 

o Spatial ERGAS (Lillo‐Saavedra et al. 2005).  

o Frequency Comparison (FC) (Rodríguez-Esparragón et al. 2014).  

o Zhou (Zhou et al. 1998).  

 

 Global quality assessment: 

o Q index, which has been characterized to sensors with 5 bands (Q4) and 8 

bands (Q8) (Wang and Bovik 2002).  

Figure 2.8 shows the specific workflow of the MS pansharpening process carried 

out in the Thesis, and Figure 2.9 shows the workflow followed for the HS sharpening, 

which is not included as a chapter in the Thesis, but as future research.  
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Figure 2.8. Multispectral pansharpening analysis workflow. 

 

 

Figure 2.9. Hyperspectral sharpening analysis workflow. 

2.3.3. Orthorectification 

Orthorectification of remote sensing data is an important pre-processing step for 

mapping applications (i.e. image classification, adding georeferenced image data 

into Geographic Information Systems (GIS), etc.) and change detection studies. 

Specifically, multi-source data integration for these applications requires geometric 

processing adapted to the terrain and to the characteristics of the data, in order to 

keep the most suitable information from each image in the composite orthorectified 

products (Toutin 2004, Aguilar et al. 2013).  
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Each imagery acquisition system produces unique geometric distortions in the 

raw image leading to an incorrect geometry between the image and the terrain or 

the reference map projection. These distortions depend on different factors i.e. the 

platform (satellite, airborne, drone, etc.), the sensor, and the total field of view. In 

particular, some error sources could be the variation of the movement in the 

platform, variation in the sensor mechanics, the angle of view of the sensor, the time 

variations of the measuring instruments, Earth curvature and rotation, topographic 

effects, etc. Therefore, all these geometric distortions require models to perform the 

geometric corrections of the imagery, which cover the next steps (Toutin 2004): 

- Acquisition of images and pre-processing of the metadata. 

- Acquisition of the Ground Control Points (GCPs) with image coordinates and 

map coordinates. 

- Computation of the unknown parameters of the geometric correction model. 

- Image rectification with or without the Digital Elevation Model (DEM). 

Thus, orthoready images from VHRS satellite sensors (Quickbird, IKONOS, 

Worldview, Pleiades, etc.) are provided with nominal georeferencing computed 

from the satellite orbital positions and imaging geometry. In this context, highly 

accurate orthorectified images can be obtained using ancillary data such as DEMs 

and GCPs in very high resolution imagery (Schowengerdt 1980). The first step is the 

triangulation of the sensor orientation, whereas the final product is generated by 

removing the distorting effects of the terrain relief using a proper DEM (Grodecki 

and Dial 2003, McGlone 2004, Aguilar et al. 2013). 

During last year several orthorectification studies have been carried out. For 

instance some authors have studied how to improve orthorectification models 

based on orthophotos as Habib et al. 2017 or based on improved algorithms as Geng 

et al. 2018. Moreover, improved or new orthorectification models in very high 

resolution imagery has been on trend lately (Marsetič et al. 2015, Zhang et al. 2016a, 

El Sagheer et al. 2017, Sidiropoulos et al. 2018). 

In the Thesis, orthorectification has been performed using a RPC (Rational 

Polymodal Coefficients) model which replaces the rigorous sensor model with an 

approximation of the ground-to-image relationship using a DEM as ancillary data 

(ENVI 2004). More details about Orthorectification is given in Chapter 7. 

2.3.4. Co-registration 

An important application of remote sensing is the study of ecosystem changes 

occurring during a period of time. This topic will be explained in detail in Section 

2.6. In this context, Earth surface changes can be determined by comparing pairs of 

remote sensing imagery acquired on different dates. Thus, precise image co-

registration is essential. Difficulties in accurately co-registering imagery arise from 
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the non-ideal characteristics of the sensors, the changing attitude of the spacecraft 

during the image acquisition, DEM errors, and inaccurate resampling. Moreover, the 

accuracy of the measurements of the ground displacement depends on the 

performance of the correlation technique (Leprince et al. 2007).  

Co-registration studies are usually carried out using data from only one imaging 

system and under restrictive conditions, i.e. similar viewing angles and satellite 

tracks (Van Puymbroeck et al. 2000, Michel and Avouac 2002, Avouac et al. 2006), 

or using external information from GPS measurements (Dominguez et al. 2003). 

Thus, remote sensed imagery needs to be projected and resampled into a common 

reference system, in order to be co-registered. Co-registering two images means to 

perform a spatial alignment between them, so they can be superimposable. One 

method consists in assuming one image as a reference image and the other as the 

image to be co-registered, which means to be projected and resampled into the 

reference image system. Another method is to project and resample each image into 

a common reference system that is independent of the sensor viewing geometry 

(Leprince et al. 2007). Nowadays, new image registration models have been 

developed. For instance, Ma et al. 2015 propose a flexible and general algorithm, 

called Locally Linear Transforming (LLT), for feature matching of remote sensing 

images. On the other hand, Wu et al. 2015 proposed a novel point-matching 

algorithm, which is an improved Random Sample Consensus (RANSAC) algorithm 

called Fast Sample Consensus (FSC).  

In the Thesis, the geometric relationship between a warp image and a base image 

was obtained using a representative number of GCPs, in both image, and then, 

applying a geometrical transformation. This processing is more explained in 

Chapter 7. 

2.3.5. Dimensionality reduction of hyperspectral imagery 

As it was explained, HS imagery is made by hundreds of spectral bands and, 

therefore, the following issues are found when using this type of imagery (De Backer 

et al. 2005): 

- Neighboring bands in HS data are, generally, strongly correlated. Thus, it is 

possible that no information is added by increasing the spectral resolution. 

- The high number of spectral bands increments the processing requirements and 

the computational times. 

- When the ratio between the spectral bands and the number of training data 

samples used in a supervised classification is vastly different, high dimensional 

data suffers from the curse of dimensionality phenomenon or “Hughes” effect 

(Hughes 1968). 
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In this context, a reduction of the dimensionality is necessary in HS imagery, since 

the dependent variables provide no extra information about the classes, being noise 

for the predictor. This means that the total information content can be obtained 

from fewer unique features which contain maximum discrimination information 

about the classes of interest, which will be used for a future classification. Thus, by 

eliminating the dependent variables, the amount of data can be reduced which can 

lead to improvement in the classification performance (Chandrashekar and Sahin 

2014). Reduction of dimensionality can be achieved by making a selection of few 

existing bands, using “feature selection” techniques, or generating new features by 

taking combinations of the original bands, using “feature extraction” techniques. A 

special case of feature extraction, where groups of consecutive bands are merged, 

can be referred as “band selection” (Du et al. 2003, De Backer et al. 2005, Fassnacht 

et al. 2014). 

These assumptions do not mean that MS imagery is enough for most applications, 

as the required spectral bands should be specifically adapted to the applications (De 

Backer et al. 2005). Actually, significantly improved classification results with HS 

imagery over MS have been reported (Ustin et al. 2004, Buddenbaum et al. 2005, 

Gómez-Chova et al. 2015, Ballanti et al. 2016). Traditional dimensionality reduction 

techniques have been studied, compared and improved during last years. Chang et 

al. 1999 presented a new band selection method comprising a band prioritization 

and a band decorrelation technique. Lennon et al. 2001, Du et al. 2003, Wang and 

Chang 2006, Villa et al. 2009 and Li et al. 2014, show the Independent Component 

Analysis (ICA) algorithm as a technique for reducing the dimensionality. On the 

other hand, Cheriyadat and Bruce 2003 doubt about PCA as a good method for 

feature extraction.  Fassnacht et al. 2014 compare feature reduction techniques for 

classifying tree species, while Ren et al. 2014 show a review of both, feature 

extraction and data reduction methods. Moreover, Luo et al. 2016 compare 

Minimum Noise Fraction (MNF) and PCA techniques.  

In summary, feature selection and extraction techniques help in understanding 

data, reducing computation requirement, reducing the effect of the curse of 

dimensionality and improving the classifier performance (Chandrashekar and Sahin 

2014). 

Feature selection algorithms  

This type of algorithms identify the subset of the original spectral bands that 

contains most of the information (Jia et al. 2012). They can be grouped into (Ladha 

and Deepa 2011, Fassnacht et al. 2014): 

 Wrapper methods: they are search algorithms that continuously add (via 

forward selection) or drop (via backward selection) features based on a 

decision criteria, such as an accuracy measure of the applied statistical model. 
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However, they are computational expensive and they have tendency to produce 

over-fitted models. 

 Filter methods: they asses the importance of individual features outside of the 

modeling process itself. They are usually less computationally demanding than 

wrapper methods, but not directly targeting on the optimization of the 

classification or regression model, therefore, they might not deliver the desired 

accuracy. 

 Embedded methods: they integrate the feature selection process within the 

training phase of the model, being directly embedded in the classification or 

regression method. They are computationally more demanding than filter 

methods, but less than wrapper methods. 

Feature extraction algorithms 

They transform the original data onto a destination feature space through 

projections (Jia et al. 2012). Typical algorithms included would be PCA and its 

variations, as the Maximum-Variance PCA (MVPCA) (Chang et al. 1999), Kernel PCA 

(KPCA),  Data Slicing PCA (SPCA) (Yang et al. 2004), MNF (Green et al. 1988) or ICA 

(Lennon et al. 2001). 

Figure 2.10 shows the specific steps followed in the Thesis for carrying out the 

dimensionality reduction study in HSI imagery. PCA, MNF and ICA techniques were 

compared in HS imagery. Moreover, different component selection strategies were 

evaluated for selecting the suitable number of components in the transformed 

space, such as transformation statistics, texture measurements, transformed 

signatures and ROIs separability in the transformed space. SVM classification was 

used to evaluate the different features extraction techniques as well as the 

component selection strategies, taking different number of components. 

 

Figure 2.10. Dimensionality reduction pre-processing step workflow. 
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More information and details about Dimensionality Reduction methodology 

followed during the Thesis appear in Chapters 5 and 6.  

2.4. SPECTRAL UNMIXING 

Following the scheme of Figure 1.2, next, the different spectral unmixing 

techniques are described. 

An approach for vegetation mapping is the use of spectral mixture analysis 

techniques (Mücher et al. 2013). Collecting data in hundreds of spectral bands, HS 

sensor have demonstrated the capability of performing spectral unmixing. In HS 

imagery, mixed pixels are a mixture of more than one distinct cover. This is due to 

many factors: (i) the spatial resolution of a sensor is low enough that different 

materials can jointly occupy a single pixel, thus, the resulting spectral measurement 

will be some composite of the individual spectra and/or (ii) mixed pixels can result 

when distinct materials are combined into a homogeneous mixture. This 

circumstance can occur independent of the spatial resolution of the sensor (Keshava 

and Mustard 2002). 

HS unmixing refers to a process that decomposes the pixel spectra into a 

collection of constituent spectra, or spectral signatures, called “endmembers”, and a 

set of corresponding fractions or “abundances”, that indicate the proportion of each 

endmember present in the pixel. Endmembers are generally assumed to represent 

the pure materials present in the image and the set of abundances at each pixel to 

represent the percentage of each endmember in the pixel. However, the notion of a 

pure material can be subjective and problem dependent. Thus, the definition of the 

endmembers can depend upon the application (Keshava and Mustard 2002, 

Bioucas-Dias et al. 2012).  

2.4.1. Linear and Non-linear mixing models 

Most researches assume that abundance represents the percentage of material 

associated with an endmember present in the part of the scene imaged by a 

particular pixel. Hapke 2012 states that the abundances in a linear mixture 

represent the relative area of the corresponding endmember in an imaged region. 

However, in the non-linear case, the situation is not as straightforward. The 

reflectance is usually not a linear function of the mass of the material nor it is a linear 

function of the cross-sectional area of the material (Bioucas-Dias et al. 2012). As 

indicated, mixing models can be characterized as either linear or non-linear 

(Keshava and Mustard 2002).  

Linear mixing  

Linear mixing holds when the mixing scale is macroscopic and the incident light 

interacts with just one material. The mixing occurs within the instrument itself, 
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because the resolution of the instrument is not fine enough. The light from the 

materials, although almost completely separated, is mixed within the measuring 

instrument. Fig. 2.11 shows that the light scattered by three materials (m1, m2, m3) 

in a scene is incident on a detector that measures radiance in the sensor’s bands. The 

measured spectrum, y, is a weighted average of the material spectra (mi). The 

relative amount of each material is represented by the associated weight (αi) 

(Bioucas-Dias et al. 2012). If the total surface area is considered to be divided 

proportionally according to the fractional abundances of the endmembers, then the 

reflected radiation will convey the characteristics of the associated media with the 

same proportions (Keshava and Mustard 2002). 

Linear mixing models have been improved during years, for instance Van der 

Meer and De Jong 2000 enhance the orthogonality of endmembers in order to 

improve the spectral unmixing results in Landsat imagery. Moreover, several 

authors have focused on including the spectral variability of endmembers in the 

spectral unmixing algorithms such as Bateson et al. 2000, García‐Haro et al. 2005, 

Song 2005, Somers et al. 2011, Veganzones et al. 2014, Zare and Ho 2014, Drumetz 

et al. 2016, Thouvenin et al. 2016 or Drumetz et al. 2018. 

 

Figure 2.11. Linear mixing. The measured radiance at a pixel is a weighted 

average of the radiances of the materials present at the pixel in a linear model 

(Bioucas-Dias et al. 2012). 

Non-Linear mixing  

Non-linear mixing is usually due to physical interactions between the light 

scattered by multiple materials in the scene. Light typically interacts with more than 

one component as it is multiply scattered and the mixing systematics between these 

different components are non-linear (Keshava and Mustard 2002). These 

interactions can be at “classical”, or “multilayered”, level or at “microscopic”, or 

“intimate”, level. Fig. 2.12 shows the two non-linear mixing scenarios (Bioucas-Dias 

et al. 2012).  
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 Classical level mixing occurs when light is scattered from one or more objects 

and is reflected off additional objects and, eventually, is measured by the HS 

imager. Generally, the first order terms are enough and this leads to the bilinear 

model. 

 Microscopic mixing occurs when two materials are homogeneously mixed. In 

this case, the interactions consist of photons emitted from molecules of one 

material that are absorbed by molecules of another material, which may in turn 

emit more photons. The mixing is modeled by Hapke 2012 as occurring at the 

“albedo” level and not at the reflectance level. The apparent albedo of the 

mixture is a linear average of the albedos of the individual substances, but the 

reflectance is a non-linear function of albedo, leading to a different type of non-

linear model. 

 

Figure 2.12. Two non-linear mixing scenarios. (a) intimate mixture: the materials 

are in close proximity; (b) multilayered scene: there are multiple interactions 

among the scatters at the different layers (Bioucas-Dias et al. 2012). 

As it is explained in Keshava and Mustard 2002, the issue of whether linear or 

non-linear processes dominate the spectral signatures of mixed pixels is still 

unresolved (Heylen et al. 2014, Yu et al. 2017). It likely depends on a number of 

factors and conditions of the scene. The linear approach has been demonstrated in 

numerous applications to be a useful technique for interpreting the variability in 

remote sensing data and a powerful means for covering spectral information data 

products that can be related to the physical abundance of materials on the surface 

(Song 2005, Delalieux et al. 2012, Mücher et al. 2013). However, it is only strictly 

valid for the situation where the endmembers are arranged in discrete, segregated 

patches on the surface. This condition is almost never met in nature, and many 

constituents of interest for Earth sciences exist in soils, or at smaller scales, in 

intimate association with one another (Borel and Gerstl 1994). However, non-linear 

methods are complex and still under study. 

Figure 2.13 shows the diagram of the spectral unmixing processing steps 

followed in the Thesis. A linear mixing model was used but the spectral variability 

(a) (b) 
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of the endmembers produced by topographic changes and radiometric bands 

changes in each airborne pass, are considered. Thus, specific spectral unmixing 

algorithms which consider this spectral variability were analyzed, i.e. Scaled 

Constrained Least Squares Unmixing (SCLSU), Extended Linear Mixing Model 

(ELMM) and Robust ELMM (RELMM). Classification maps taking the abundances 

maps as inputs were obtained. More detailed information about the linear mixing 

models used in the Thesis is given in Chapter 6. 

 

Figure 2.13. Specific workflow of the spectral unmixing processing. 

2.5. CLASSIFICATION TECHNIQUES 

Remote sensing research focusing on image classification has long attracted the 

attention of the remote sensing community because classification results are the 

basis for many environmental and socioeconomic applications. In this context, 

classification involves the association of features within the remotely sensed 

imagery with specific land cover classes and results in the production of land cover 

maps (Aplin 2004). However, classifying remotely sensed data into a thematic map 

remains a challenge because many factors. For instance, mapping in less complex 

habitats is relatively straightforward, but becomes more challenging when 

landscapes are more heterogeneous and when the variations between habitats are 

more continuous (Corbane et al. 2015). Another challenge is the selection of training 

and testing data, in which the quality and quantity of training sample data are crucial 

to produce accurate classification results. Moreover, the image pre-processing, as 

well as the classification approaches considered, may affect the success of a 

classification (Lu and Weng 2007). Additionally, the user’s need, scale of the study 

area, economic condition, and analyst’s skills are important factors that influence 

the selection of remotely sensed data, the design of the classification procedure, and 

the quality of the classification results (Lu and Weng 2007).  
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Classification techniques can be grouped between unsupervised and supervised 

classification methods. Another division is regarding the approach followed, where 

pixel-based or object-based approaches can be distinguished. 

2.5.1. Unsupervised and Supervised classification 

Unsupervised classification methods are purely relying on spectral pixel-based 

statistic and incorporate no priori knowledge of the characteristics of the covers 

being studied. The benefit of applying unsupervised classification methods is to 

automatically convert raw image data into useful information (Xie et al. 2008). Duda 

and Canty 2002 investigated and compared unsupervised classification algorithms 

with regard their abilities to reproduce ground data in a complex area. A 

disadvantage is that classes have to be assigned to real covers and the classification 

process must be repeated if new data (samples) are added. Typical unsupervised 

classification algorithms are K-Means and ISODATA (Congalton 1991, Richards 

1999). 

Supervised classification methods establish classification by learning from a 

training dataset, which contains the predictor variables measured in each sampling 

unit and assigns prior classes of interest to the sampling’s units. Hence, supervised 

classification consists on assigning new sampling units to the priori classes (Xie et 

al. 2008). Maximum Likelihood classification, Minimum Distance, Support Vector 

Machine (SVM) are the most common supervised classifiers (Tuia et al. 2011, Huang 

and Zhang 2013). Other classifiers have been studied as well, such as Artificial 

Neural Networks (ANN) (Civco 1993) and Fuzzy Logic approaches (Filippi and 

Jensen 2006). Belgiu and Drăguţ 2016 give a review of Random Forest classification 

in remote sensing. Shao and Lunetta 2012 show the good performance of SVM 

versus ANN and Classification and Regression Trees (CART) algorithms in land-

cover classification (Benediktsson and Ghamisi 2015). 

On the other hand, deep learning algorithms learn the representative and 

discriminative features in a hierarchical manner from the data. They have become a 

hotspot in the machine-learning area and being introduced into the geoscience and 

remote sensing community for remote sensing big data analysis. Deep learning 

provides an alternative way to automatically learn features from the training 

samples or unsupervised feature learning from very large raw images. It can 

represent hierarchically the information to express complex relationships between 

data with very deep neural networks, leading to a more efficient and robust image 

classification. Deep learning methods have proven to be efficient for processing both 

optical (HS and MS imagery) and radar images, in extracting different land cover 

types. However, deep learning cannot be directly used in many remote sensing 

tasks, due to the amount of training data required and the large numbers of bands 

(Chen et al. 2014, Zhao et al. 2015, Zhang et al. 2016b, Kussul et al. 2017). Some basic 

deep learning algorithms such as Deep Belief Networks (DBNs) (Hinton et al. 2006), 



CHAPTER 2 
 

52 
 

Restricted Boltzmann Machines (RBMs) (Freund and Haussler 1992), Autoencoder 

(AE) based algorithms (Bengio et al. 2007, Vincent et al. 2010), Convolutional Neural 

Networks (CNN) (Fukushima and Miyake 1982), allow to learn highly abstract 

feature detectors and to map the input features into representations clearly 

boosting the performance of the subsequent classifiers (Chen et al. 2014, Zhang et 

al. 2016b). Recent studies have been worked in proposing new deep learning 

approaches for classification such as Chen et al. 2014,  Zhao et al. 2015, Zou et al., 

2015, Garcia-Pedrero et al., 2017 and Kussul et al. 2017. However, as indicated, they 

are complex and difficult to apply in remote sensing scenarios.  

On the other hand, authors include vegetation indices and texture to improve the 

results of these classifiers. For instance, Wang and Tenhunen 2004 use NDVI 

(Normalized Difference Vegetation Index) to offer valuable information of the 

dynamic changes of specific vegetation species using multi-temporal images. 

Ozdemir and Karnieli 2011 predicts forest structural parameters using Gray Level 

Co-occurrence Matrix (GLCM) in WV-2 imagery.  

Regarding HS classification, several techniques have been successfully used, 

particularly supervised techniques as kernel methods, which can deal effectively 

with the “Hughes” phenomenon, already explained in Section 2.3.5. SVM shows 

accurate results in several HS remote sensing applications, as it is shown in Pal and 

Mather 2004, Camps-Valls and Bruzzone 2009, Li et al. 2013a, Ballanti et al. 2016. 

Several authors have combined HS data with ancillary data, such as LiDAR, in 

order to obtain accurate classification results (Ghamisi et al. 2015), combining with 

MS imagery, such as Goodenough et al. 2003 for forest classification and Belluco et 

al. 2006 that used K-Means classifier as well as Spectral Angle Mapper (SAM) and 

Maximum Likelihood as supervised methods. Fauvel et al. 2013 made a review of 

the spectral-spatial classification of HS imagery and Ghamisi et al. 2017 updated it, 

focusing only in advanced spectral classifiers. 

Besides, the training data are generally difficult and expensive to obtain. Thus, 

semi-supervised techniques are able to exploit unlabeled training samples that can 

be obtained from a limited set of labeled samples without significant effort/cost. For 

instance, a semi-supervised method when HS imagery is available, consist on 

performing spectral unmixing and then, obtaining classification maps from the 

abundances maps (Delalieux et al. 2012, García-Dópido 2013).  

2.5.2. Pixel and Object-based classification approaches 

As it was mentioned, two approaches are presented for the classification and 

monitoring of ecosystems with remote sensing data: pixel-based approach and 

object-based approach. 
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In the conventional pixel-based methodology, pixels are individually classified 

according to their digital values, but spatial concepts or contextual information are 

not, generally, incorporated (Peña-Barragán et al. 2011). The processing on very 

high resolution imagery represents a restraint for traditional pixel-based 

approaches due to: (1) the high spectral variability within natural and semi-natural 

covers that produces a low classification accuracy, and (2) the pixel is only a 

consequence of the discrete representation of an image and, therefore, it lacks of 

semantic meaning in the real world being pointless for end users (Garcia-Pedrero et 

al. 2015).  

Burnett and Blaschke 2003 states that natural complexity can be best explored 

using spatial analysis tools based on concepts of ecosystems or landscapes that can 

be partially decomposed into objects or patches.  

Object-based image analysis (OBIA) has been proposed as a strong approach to 

identify, delineate, describe and label the required patches in a consistent way (Bock 

2003, Mücher et al. 2013).  The preliminary step of OBIA is the segmentation of the 

image and the construction of a hierarchical network of homogeneous objects. 

Segmentation is the process in which the image is subdivided into homogeneous 

regions, segments, according to several parameters. Hence, segments are groups of 

pixels representing patches, entities or their elements (primitives) which, 

subsequently can be classified into categories. Then, after segmentation, in the 

classification process, all pixels in the entire object are assigned to the same class 

and therefore, removing the problem of spectral variability and mixed pixels 

(Blaschke 2010, Peña-Barragán et al. 2011). 

 Langanke et al. 2007 assesed the mire conservation status of a raised bog site 

using object-based monitoring and structural analysis, and Strasser et al. 2014 

developed multiscale object feature library for habitat quality monitoring in 

riparian forest using WV-2 and SPOT-5 imagery. Object-based analysis allows 

incorporating textural, geometric and contextual features defined at the level of 

object unit. Peña-Barragán et al. 2011 implemented this methodology for crop 

identification, while Dronova 2015 reviewed the OBIA analysis in wetlands. During 

the last two decades, many object-oriented approaches in remote sensing image 

analysis have been presented to overcome the traditional pixel-based problems, e.g. 

mixed pixels and object spectral variability. For instance, Oruc et al. 2014 and 

Agarwal et al. 2013 compared pixel-based and object-based approaches in 

classification processes. 

Figure 2.14 shows the classification workflow followed in the Thesis. As it was 

mentioned before, the Teide National Park is a vulnerable and heterogeneous 

mountain ecosystem with small and mixed vegetation species. This fact leads to use 

VHSR MS and HS imagery. A thorough analysis was conducted and, finally, the 

classification was carried out using the optimal classifier adding different features 
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(textures, abundances, vegetation indices, etc.) to the classification model in order 

to obtain the most accurate thematic map. 

 

Figure 2.14. Classification workflow followed in the Thesis. 

More information about the classification models carried out in the Thesis is 

given in Chapters 4, 6 and 7.  

2.6. APPLICATIONS OF REMOTE SENSING 

Remote sensing has been successfully used for many ecological applications, such 

as detecting land changes, monitoring deforestation, estimating carbon 

sequestration, vegetation stress, etc. Specifically, land-use and land-cover mapping 

and monitoring, biodiversity characterization and assessment, as well as forest 

degradation and species invasion, are important applications of remote sensing in 

biodiversity monitoring (Kerr and Ostrovsky 2003, Aplin 2005, Xie et al. 2008, 

Horning et al. 2010, Wang et al. 2010, Khare and Ghosh 2016). For instance, remote 

sensing may have a major role to play in helping to prioritize candidate locations for 

new reserves. Methods to identify priority areas for conservation have generally 

focused on habitat structures, presence of typical species in the habitat, abiotic 

factors and pressures on or disturbances of the habitat type. Frequently, quick and 

rigorous methods are required in conservation assessments to identify where 

human-induced threats and high biodiversity areas coincide. Remote sensing offers 

a repeatable, systematic, and spatially exhaustive source of information on key 

variables such as productivity, disturbance, and land-cover than impact 
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biodiversity. Besides, the spatial coverage provided by remote sensing offers the 

potential to monitor the effectiveness of protected areas, allowing comparisons of 

changes inside and outside of reserves to be evaluated (Gillespie et al. 2008, Corbane 

et al. 2015).  

Regarding very high resolution imagery, the identification of certain species and 

species assemblages is feasible. Remote sensing of phenological change is possible 

as well as a method for the detection of vegetation types down to the species level 

(Hufkens et al. 2012, Schmidt et al. 2015). In case of HS data, it can be measured the 

leaf-surface attributes during different season, leading to a useful information about 

ecosystem functioning, evolution and change (Garcia and Ustin 2001, Zarco-Tejada 

et al. 2016). Moreover, indirect detection of species diversity through remote 

sensing on environmental parameters can be used for discerning patterns of species 

diversity. Although not single factor drives biodiversity patters (e.g. latitudinal 

gradient in species richness) (Turner et al. 2003), researchers have considered 

primary productivity, climate and habitat structure as important in determining 

species richness and distribution patters (Lee et al. 2015, Frohn and Lopez 2017). 

In this Thesis, we focused in change detection application. 

Generally, classification maps provide a snapshot of the distribution of land cover 

at a given time. However, ecosystems are dynamics, being useful their temporal 

monitoring (Aplin 2004).  

Change detection is the process of identifying differences in the state of an object 

or phenomenon by observing it at different times (Singh 1989). Timely and accurate 

change detection of Earth’s surface features provides the foundation for better 

understanding relationships and interactions between human and natural 

phenomena to better manage and use resources (Lu et al. 2004).  

The main challenges facing ecosystem change monitoring are: (i) detect 

modification in addition to conversions; (ii) monitor rapid and abrupt changes in 

addition to the progressive and incremental changes; (iii) separate inter-annual 

variability from secular trends; (iv) understand the scale dependence of statistical 

estimates in change derived from remote sensing data at different spatial 

resolutions; and (v) match the temporal sampling rates of observations of processes 

to the intrinsic scales of these processes (Coppin et al. 2004). 

Regarding Lu et al. 2004, change detection methods are divided into the following 

groups: 

 Algebraic methods: they includes different techniques as image differencing, 

image regression, image rationing, vegetation index differencing, Change Vector 

Analysis (CVA) and background subtraction. These algorithms select thresholds 

to determine the changed areas. They are relatively simple from a conceptual 
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point of view, straightforward, and easy to implement and interpret. However, 

it is difficult to set the suitable threshold to provide detailed change information. 

 Based on transformation: this category includes PCA, Kauth-Thomas (KT) or 

Tasseled Cap Transformation, GS and Chi-square transformations. These 

methods reduce the data redundancy between bands and emphasize changes 

on the derived components. A disadvantage is that they are difficult to interpret 

and label the change information on the transformed images. 

 Based on classification: they are based on the classified images on different 

dates. They include post-classification comparison, spectral-temporal 

combined analysis, Expectation-Maximization algorithm (EM) change 

detection, unsupervised change detection, hybrid change detection, and ANN. 

The major advantage is the capability of providing a matrix of change 

information and reducing external impact from atmosphere and environmental 

differences between the multi-temporal images. However, selecting high-

quality and enough training samples is often difficult. 

 GIS approaches: the advantage to use GIS is the ability to incorporate different 

source data into change detection applications. However, different source data 

associated with diverse data accuracies and formats often affect the change 

detection results. Alqurashi and Kumar 2013 reviewed the use of remote 

sensing and GIS techniques to detect land-use and land-cover changes. 

 Visual Analysis: it is a visual interpretation of multi-temporal image composite 

and on-screen digitizing of changed areas. This method can make full use of an 

analyst’s experience and knowledge, but it is time consuming for a large-area 

application and it is hard to update the change detection results. It is difficult to 

provide detailed change trajectories. 

 Advanced models: this group includes the Li-Strahler reflectance model (Wanner 

et al. 1995), spectral mixture models (Wu and Murray 2003), and biophysical 

parameter estimation models (Sexton et al. 2015). The main disadvantage is the 

time-consuming and difficult process of developing suitable models for 

conversion of image reflectance values to biophysical parameters.  

On the other hand, Jianya et al. 2008 characterized, the change detection 

approaches, into two broad groups: (1) bi-temporal change detection, which 

measures changes by comparing two dates; and (2) temporal trajectory that 

analyses the changes based on a ‘continuous’ timescale.  

In this context, Key et al. 2001 compare multi-temporal information on high 

spatial resolution imagery to classify individual tree species, while Lucas et al. 2007 

applied a rule-based classification of multi-temporal Landsat imagery for mapping 

a semi-natural habitats and agricultural land cover. Camps-Valls et al. 2008 used a 

kernel-based method for multi-temporal classification and developed a non-linear 

kernel classifier for the well-known difference and rationing changes detection 

methods. Other studies using multi-source and multi-temporal data are Xu et al. 



Study areas and methodology 
 

57 
 

2009,  Wen 2011, Corcoran et al. 2013 and Zhan et al. 2018. Moreover, Lu et al. 2014 

reviewed the current situation of change detection techniques, indicating the need 

to develop new techniques to solve the mixed pixel problem and Gong et al. 2016 

designed a Coupled Dictionary Learning (CDL) to explore the intrinsic difference of 

multi-source data for change detection. 

In the Thesis a framework was proposed to monitor and analyze the changes 

produced in the Teide National Park, at species level, using vegetation maos derived 

from MS and HS remote sensing imagery from 2002 until 2017. The change 

detection framework followed in the Thesis in explained in Chapter 7. 
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This chapter includes the following published article: E. Ibarrola-Ulzurrun, C. 

Gonzalo-Martín, J. Marcello-Ruiz, García-Pedrero, A., Rodríguez-Esparragón, D. 

Fusion of High Resolution Multispectral images in vulnerable coastal and land 

ecosystems. Sensors 2017, 17(2), pp. 228. 

This work addresses an important pre-processing methodology applied to the 

high resolution WV-2 multispectral imagery. The article analyses and evaluates 

different pansharpening techniques in three different types of ecosystems: land, 

mixed and coastal ecosystems to allow the study be applicable to other ecosystems 

around the Earth. Specifically, the ecosystems belong to three protected areas of 

Canary Islands (Spain): Teide National Park, Maspalomas Natural Reserve and, 

Corralejo and Islote de Lobos Natural Parks, already described in Chapter 2. 

The paper, basically, performs a preliminary evaluation of twelve classic and 

novel pansharpening algorithms applied to an 8-band MS sensor and then, a total of 

four algorithms were used in the final study. The main objective of the paper was to 

select the most suitable pansharpening algorithm which provides a fused image 

with the best trade-off between spatial and spectral quality in different real 

ecosystems. The comprehensive evaluation was implemented, not only for the 

whole set of MS bands, but also in the spectral channels located inside and outside 

the range of the PAN band using six quality indices. In addition, analysis of quality 

maps was performed to evaluate the fusion results in each band at local level. It was 

concluded that coastal ecosystems require simpler algorithms, i.e. FIHS, while more 

complex areas as, Teide National Park and Maspalomas Natural Reserve, need 

advanced algorithms i.e. WAT⊗FRAC. The most suitable pansharpening technique 

for each study area was identified and applied. Therefore it was possible to obtain 

high spatial resolution products. 

The main contributions of this paper are: 

 A novel analysis was applied using VHR imagery in shallow water areas, 

as pansharpening could be useful for the mapping of seabed species, such 

as seagrasses and coral reefs. 

 The best fused image using an eight-band sensor (WorldView-2) was 

obtained in the study, instead of considering a four-band sensor, as 

usually in the literature. 

 A user’s guide is provided to choose the most suitable algorithm in 

accordance with the ecosystem type and the information to be preserved. 

 An analysis of the behavior of each algorithm when applied to the 

complete set of MS bands and on bands covered by and outside of the PAN 

range was performed. 

 A local study was carried out to identify the distortion introduced in each 

single band by the best fused algorithms chosen for each ecosystem type. 
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 The use of heterogenic regions with sparse vegetation mainly made up of 

small and mixed shrubs and with low radiance absorption in complex and 

dynamic coastal ecosystems. Hence, the analysis was not performed in 

urban and homogeneous land areas, as other studies. 
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great importance to develop reliable methodologies, applied to new high resolution satellite imagery. 

Thus, the analysis, conservation and management of these environments could be studied, in a 

continuous, reliable and economic way, and at the suitable spatial, spectral and temporal resolution. 

However, some processing tasks need to be improved; for instance, the weaknesses in the classification 

and analysis of land and coastal ecosystems on the basis of remote sensing data, as well as the lack of 

reliability of the maps; particularly, the extreme difficulty to monitor the coastal ecosystems from 

remote sensing imagery due to the low reflectivity of these areas covered by water. 

The framework in which the study has been developed is the analysis of both coastal and land 

ecosystems through very high resolution (VHR) remote sensing imagery in order to obtain high quality 

products that will allow the comprehensive analysis of natural resources. In this context, remote 

sensing imagery offers practical and cost-effective means for a good environmental management, 

especially when large areas have to be monitored [3] or periodic information is needed. Most VHR 

optical sensors provide a multispectral image (MS) and a panchromatic image (PAN), which require a 

number of corrections and enhancements. Image fusion or pansharpening algorithms are important 

for improving the spatial quality of information available. The pansharpening data fusion technique 

could be defined as the process of merging MS and PAN images to create new multispectral images 

with a high spatial resolution [4,5]. This fusion stage is important in the analysis of such vulnerable 

ecosystems, mainly characterized by heterogeneous and mixed vegetation shrubs, with small shrubs 

in the case of terrestrial ecosystems and the complexity of seagrass meadows or algae distribution in 

shallow water ecosystems. 

Image fusion techniques combine sensor data from different sources with the aim of providing 

more detailed and reliable information. The extensive research into image fusion techniques in remote 

sensing started in the 1980s [6,7]. Generally, image fusion can be categorized into three levels: pixel 

level, feature level and knowledge or decision level [8,9], and pansharpening is performed at the pixel 

level. 

Many pansharpening techniques have appeared in recent decades, as a consequence of the launch 

of very high resolution sensors [10–14]. An ideal pansharpening algorithm should have two main 

attributes: (i) enhancing high spatial resolution; and (ii) reducing spectral distortion [15]. The simplest 

pansharpening methods, at the conceptual and computational level, are intensity-hue-saturation (IHS), 

principal component analysis (PCA) and Brovey transforms (BT). However, these techniques have 

problems because the radiometry on the spectral channels is distorted after fusion. New approaches, 

such as wavelet transformations and high pass filtering (HPF) [4,8,16–18], have been proposed to 

address particular problems with the traditional techniques. 

On the other hand, quality evaluation is a fundamental issue to benchmark and optimize different 

pansharpening algorithms [18,19], as there is the necessity to assess the spectral and spatial quality of 

the fused images. There are two types of evaluation approaches commonly used: (1) qualitative 

analysis (visual assessment); and (2) quantitative analysis (quality indices). Visual analysis is a 

powerful tool for capturing the geometrical aspect [20] and the main color disturbances. According 

to [10], some visual parameters are necessary for testing the properties of the image, such as the 

spectral preservation of features, multispectral synthesis in fused images and the synthesis of images 

close to actual images at high resolution. On the other hand, quality indices measure the spectral and 

the spatial distortion produced due to the pansharpening process by comparing each fused image to 

the reference MS or PAN image. The work in [21] categorized them into three main groups: (i) spectral 

quality indices such as the spectral angle mapper (SAM) [22] and the spectral relative dimensionless 

global error, in French ‘erreur relative globale adimensionnelle de synthése’ (ERGAS) [23]; (ii) spatial quality 

indices, i.e., the spatial ERGAS [24], the frequency comparison index (FC) [25] and the Zhou index [26]; 

and (iii) global quality indices, such as the 8-band image quality index (Q8) [27]. On the other hand, 

there are several evaluation techniques with no reference requirement, such as the quality with no 

reference (QNR) approach [28]. 
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In this study, the main goal is to assess which pansharpening technique, using Worldview-2 VHR 

imagery with eight MS bands, provides a better fused image. Future research will be focused on the 

classification of the vulnerable ecosystems, in order to obtain specific products for the management 

of coastal and land resources, in contrast to several studies assessing and reviewing pansharpening 

techniques [11,16,20,29–34].   Further specific goals in this paper are:  (i) the study of the spatial    and 

spectral quality of pansharpened bands covered by and outside the PAN wavelength range; (ii) 

analysis of pansharpening algorithms’ behavior in vulnerable natural ecosystems, unlike the 

majority of previous studies, which apply the pansharpening techniques in urban areas or on other 

land cover types; and (iii) novel assessment in VHR image fusion in shallow coastal waters, whilst 

being aware of the pansharpening difficulty of these ecosystems. Although other authors apply fusion 

in water areas, such as [35,36], they use Landsat imagery, not VHR imagery. The aim of the last point 

is to identify which techniques were more suitable for shallow water areas and the improvement 

achieved. This information can lead to obtaining more accurate seafloor segmentation or mapping of 

coastal zones [37]; hence, studies on the state of conservation of natural resources could be conducted. 

Finally, in order to strengthen the study, a final thematic map of the shrubland area was carried 

out. Thus, it will analyze the influence of the fusion on the classification results which serve to obtain 

accurate information for the conservation of natural resources. This study can be found in more detail 

in [38]. 

The paper is structured as follows: Section 2 includes the description of the study area, datasets, 

the image fusion methods used in the analysis and the evaluation methodology. The visual and 

quantitative evaluation of the different algorithms, as well as map analysis are presented in Section 3. 

Finally, Section 4 summarizes the main outcomes and contributions. 

2. Materials and Methods 
 

2.1. Study Area 

This study focuses on three types of vulnerable ecosystems found in different islands of the 

Macaronesia region. Macaronesia is considered a geological and a biodiversity hotspot due to the 

volcanic origin and due to the high degree of vulnerability that insular ecosystems are subjected to, 

mainly as a consequence of climate change and anthropogenic pressure. The ecosystems selected from 

the Canary Islands were: the shrubland ecosystem, the coastal ecosystem and, finally, a mixed 

ecosystem surrounded by a touristic area and a lagoon, as a transitional system within the coastal and 

land ecosystems.   The Canary Islands are one of the most remarkable biodiversity areas on    the 

planet [39], and they are chosen as a representative sample of these ecosystems because of the 

availability of VHR remote sensing imagery and simultaneous field data. Figure 1 displays the 3 

protected areas considered in the analysis. 

As regards shrubland ecosystems, it is important to highlight the large concentration of vascular 

plants, which are highly vulnerable to environmental changes. In coastal areas, an intensive natural 

fragility also appears due to the interaction of a great variety of environmental factors. Moreover, the 

coastal occupation of urban areas and the development of tourism increase this fragility and 

vulnerability. In particular, dune systems are affected by this urban-touristic expansion [40–43]. 

Furthermore, many coastal ecosystems contain seagrass meadows [44]. The importance of these 

particular meadows is related to the ocean productivity as they are one of the most valuable 

ecosystems in the world. In addition, these meadows are part of the solution to climate change, not 

only producing oxygen, but storing up to twice as much carbon per unit area as the world’s temperate 

and tropical forests [45]. As indicated, three sensible and heterogenic protected areas of the Canary 

Islands have been selected (Figure 1) as representative examples of more general ecosystems: the 

Teide National Park (Tenerife Island), as an example of shrubland ecosystems, the Corralejo Natural 

Park and Islote de Lobos (Fuerteventura), representing coastal ecosystems, and the Maspalomas 

Natural Reserve (Gran Canaria Island), an important coastal-dune ecosystem with significant tourism 

pressure, called the mixed ecosystem in this paper, not only because it is the transitional region within 

the coastal and land ecosystem, but also due to the inner water ecosystem, known as the Maspalomas 

lagoon. 
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2.2. Datasets 

The WorldView-2 (WV-2) satellite, launched by Digital Globe on 8 October 2009, was the first 

commercial satellite to provide a VHR sensor with one PAN and eight MS bands (Table 1). WV-2 ortho-

ready imagery of the three representative ecosystems were used in the study. Images of the Canary 

Islands and the central locations of the corresponding three study areas are detailed in Table 2. In order 

to reduce the computation times in the multiple analyses, 512 × 512 MS pixel scenes were used. Figure 

2 displays the PAN band and the corresponding resized MS image (RGB composite). They were 

selected for their spectral and spatial richness and the content of land and coastal areas. In addition, 

the scenes include different coverages, basically predominating coastal areas, shallow waters, 

vegetation and urban regions, and they contain features with different shapes and edges. 

 

(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 2. PAN and MS scenes of WorldView-2 images (512 × 512 pixels for the MS image): (a, d) shrub 
land ecosystem; (b, e) coastal ecosystem; (c, f) mixed ecosystem with urban area and inner water lagoon. 

 
Table 1. WorldView-2 sensor technical specifications. 

 

Imaging Mode Panchromatic Multispectral 

Spatial Resolution 0.46 meter 1.84 meters  

Spectral Range 450-800 nm 

400-450 nm (coastal) 

450-510 nm (blue) 

510-580 nm (green) 

585-625 nm (yellow) 

630-690 nm (red) 

705–745 nm (red edge) 

770–895 nm (near IR-1) 

860-1040 nm (near IR-2) 
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Table 2. Location and acquisition date of the three images selected from the Canary Islands. 

 

Worldview-2 Image Coordinates Acquisition Date 

Teide National Park 28◦ 18'16” N, 16◦ 33'50” W 16 May 2011 

Maspalomas Natural Reserve 27◦ 44'12” N, 15◦ 35'52” W 17 January 2013 
Corralejo and Islote de Lobos Natural Park 28◦ 43'52” N, 13◦ 50'37” W 28 October 2010 

 
2.3. Image Fusion Methodology 

In the flow shown in Figure 3, every step of the methodology for assessing which algorithm gives 

the best fused image for each area is presented. 

 

Figure 3. The flow diagram followed in the study for each scenario. 
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The first four pansharpening techniques were implemented in the three different vulnerable 

ecosystems; afterwards, a visual and quantitative assessment was undertaken in order to evaluate the 

pansharpening results in the different fused images. The quality assessment was carried out for the 

whole set of MS bands, as well as for those MS bands covering the range of the PAN channel (Bands 2–6) 

and those outside this range (Bands 1, 7 and 8). Furthermore, an individual band quality map analysis 

was carried out in the best fused images according to each ecosystem type. Finally, a classification 

map is obtained in the different fused images, to analyze the influence of the pansharpening in the 

classification result. 

2.3.1. Image Fusion Methods 

After a review of the state-of-the-art in pansharpening techniques, at the pixel level, a preliminary 

assessment was carried out selecting classic and new algorithms that could achieve good performance 

with WV-2 imagery. Some algorithms specifically adapted to the WorldView-2 sensor have been 

chosen. An initial visual and quantitative assessment was carried out using a total of 12 different 

pansharpening techniques in these data, but only the best algorithms were selected for this study. The 

final election of these four algorithms was carried out with the same methodology explained in this 

paper. Thus, a visual and quantitative evaluation was performed to assess the spectral and the spatial 

quality of each algorithm, taking into account the compromise between both qualities in each fused 

image, depending on each ecosystem type.  Thus, after obtaining an objective ranking of the 12 

algorithms selected using the Borda count method, explained in Section 2.3.2, the final best four 

pansharpening algorithms were selected, in order to obtain the most suitable fused image for each 

ecosystem. Next, a brief overview of each family of the algorithms selected in the study is presented. 

Any formula or block diagram is omitted (for detailed information, see the references). 

 Fast intensity hue saturation (FIHS) [48]: It uses the spectral bands to estimate the new component 

I. The spatial detail is extracted, computing the difference between the PAN band and the new 

component I. The spatial detail is injected into any number of bands. 

 Hyperspherical color sharpening (HCS): This pansharpening algorithm is designed specifically for 

WV-2 by [49] based on the transformation between any native color space and the hyperspherical 

color space. Once transformed into HCS, the intensity can be scaled without changing the color, 

essential for the HCS pansharpening algorithm [15,50]. The transformation to HCS can be made 

from any native color space. 

 Based on modulation transfer function:  The modulation transfer function (MTF) is a function of 

the sensor spatial frequency response, describing the resolution of an imaging system [28]. 

Generalized Laplacian Pyramid (GLP) is an extension of the Laplacian pyramid where a scale 

factor different from two is used [10]. Finally, in high pass modulation (HPM), the PAN image is 

multiplied by each band of the original MS image and normalized by a low pass filtered version 

of the PAN image in order to estimate the enhanced MS image bands. 

 Weighted wavelet ‘à trous’ method through fractal dimension maps (WAT⨂FRAC) [14]: This 

method is based on the wavelet ‘à trous’ algorithm. A mechanism that controls the trade-off 

between the spatial and spectral quality by introducing a weighting factor (αi) for the PAN 

wavelet coefficients is established. However, this factor only discriminates between different 

spectral bands, but not between different land covers; therefore, the authors proposed a new 

approach [51], defining a different weight factor αi (x, y) for each point of each band. αi (x, y) was 

defined as a fractal dimension map (FDM) with the same size as the original image. A preliminary 

analysis was carried out using three different window sizes for the windowing process: 7, 15 and 

27. 
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2.3.2. Quality Evaluation Methodology 

 
(a) Visual quality: 

A visual analysis was the first step in the quality assessment. Through this approach, the main 

errors on an overall scale were observed, and then, local artefacts where analyzed closely. For the 

visual spectral assessment, fused true color images were compared to their original MS image, used as 

the reference, and its spectral features compared with the original MS image. Firstly, several aspects 

of the image features were taken into account in the spectral assessment, such as the tone, contrast, 

saturation, sharpness and texture. Furthermore, we paid attention to color disturbances. False color 

composites were produced in order to evaluate the fused NIR bands, where we focused on the same 

aspects as mentioned above. Finally, we concentrated on linear features, specific objects, surfaces or 

edges of buildings in order to observe spatial disturbances using the PAN as a reference. 

(b) Quality indices 

There is no current consensus in the literature on the best quality index for pansharpening 

images [52]. The quantitative quality evaluation of fused images is a debated issue since no reference 

image exists at the pansharpened resolution [4,20]. A number of statistical evaluation indices were 

used to measure the quality of the fused images.  Each fused image is compared to the reference   MS 

image. 

The spectral quality assessment measures the spectral distortion brought by the pansharpening 

process. The metrics considered in the analysis are as follows: 

 The spectral angle mapper (SAM) was designed to determine the spectral similarity in a 

multidimensional space [22] (Equation (1) in Table 3). 

 The spectral ERGAS (relative dimensionless global error) is an overall quality index sensitive to 

mean shifting and dynamic range change (Table 2, Equation (3)). The rmsei (root mean square 

error) is calculated by its standard definition [23]. 
 

The correlation coefficient was not selected as spectral index due to its low capability in techniques 

with low quality differences. 

On the other hand, the spatial detail information of each fused band is compared with the spatial 

information of the reference PAN image. The metrics considered in the analysis are as follows: 

 The spatial ERGAS was proposed by [24]. It is a new spatial index considering the PAN band as a 

reference (Table 3, Equation (3)). 

 The frequency comparison index (FC) is proposed by [25]. It is based on the discrete cosine 

transform (dct) for the spatial assessment (Table 3, Equation (4)). 

 The Zhou index (Table 3, Equation (5)) measures the spatial quality computing correlation between 

the high pass filtered fused image (𝐹𝑈𝑆𝑖
ℎ𝑖𝑔ℎ_𝑝𝑎𝑠𝑠

 ) and PAN (𝑃𝐴𝑁ℎ𝑖𝑔ℎ_𝑝𝑎𝑠𝑠) 

Finally, as the global quality assessment: 

 The Q8 index is a generalization to eight-band images of the Q index [27]. It is based on the 

different statistical properties of the fused and MS images (Table 3, Equation (6)). 
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Table 3. Indices for the quality assessment of the fused image. 
Quality Indices Equation Reference Eq. 

Spectral Angle Mapper 
𝑐𝑜𝑠−1

∑ 𝐹𝑈𝑆𝑖   𝑀𝑆𝑖   
𝑛𝑏𝑎𝑛𝑑
𝑖=1

√∑ 𝐹𝑈𝑆𝑖
2𝑛𝑏𝑎𝑛𝑑

𝑖=1 √∑ 𝑀𝑆𝑖
2𝑛𝑏𝑎𝑛𝑑

𝑖=1  

 
[22] (1) 

Spectral ERGAS 100 ∗
ℎ

𝑙
 √

1

𝑛𝑏𝑎𝑛𝑑
∑ (

𝑟𝑚𝑠𝑒𝑖(𝑀𝑆)

𝑀𝑆𝑖
)

2𝑛𝑏𝑎𝑛𝑑

𝑖=1

 [23] (2) 

Spatial ERGAS 100 ∗
ℎ

𝑙
 √

1

𝑛𝑏𝑎𝑛𝑑
∑ (

𝑟𝑚𝑠𝑒𝑖(𝑃𝐴𝑁)

𝑃𝐴𝑁𝑖
)

2𝑛𝑏𝑎𝑛𝑑

𝑖=1

 [24] (3) 

Frequency Comparison 
1

𝑛𝑏𝑎𝑛𝑑
 ∑ 𝑐𝑜𝑟𝑟𝑖(𝑑𝑐𝑡𝑛𝑥𝑛

𝐴𝐶 (𝑃𝐴𝑁), 𝑑𝑐𝑡𝑛𝑥𝑛
𝐴𝐶 (𝐹𝑈𝑆𝑖))

𝑛𝑏𝑎𝑛𝑑

𝑖=1

 [25] (4) 

Zhou 
1

𝑛𝑏𝑎𝑛𝑑
∑ 𝑐𝑜𝑟𝑟𝑖  (𝑃𝐴𝑁ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠 , 𝐹𝑈𝑆

𝑖

ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠)

𝑛𝑏𝑎𝑛𝑑

𝑖=1

 [26] (5) 

Q8 ∑
8𝜎𝑀𝑆,𝐹𝑈𝑆 𝑚𝑒𝑎𝑛𝑀𝑆 𝑚𝑒𝑎𝑛𝐹𝑈𝑆

(𝜎𝑀𝑆
2 + 𝜎𝐹𝑈𝑆

2 ) + [(𝑚𝑒𝑎𝑛𝑀𝑆)2 + (𝑚𝑒𝑎𝑛𝐹𝑈𝑆)2]

8

𝑖=1

 [27] (6) 

Note: nband is the number of bands; FUSi represents the fused image; MSi is the ith band of the MS image; PANi is the PAN 
image; h and l represent the spatial resolution of the PAN and MS images respectively; 𝑑𝑐𝑡𝑛𝑥𝑛

𝐴𝐶  is the discrete cosine transform 

computed in blocks of nxn pixels and 𝑐𝑜𝑟𝑟𝑖  defines the cross-correlation of ith band; 𝐹𝑈𝑆𝑖
ℎ𝑖𝑔ℎ_𝑝𝑎𝑠𝑠 is high pass filtered fused 

image and 𝑃𝐴𝑁ℎ𝑖𝑔ℎ_𝑝𝑎𝑠𝑠 is the high pass filtered of the PAN image; σ is the variance of the MS and FUS image. 

In order to identify, in an objective way, the best fused image for each ecosystem, the best 

algorithms at the spectral, spatial and global level for each scene have been established by the Borda 

count rank aggregation method (Equation (7)) [53]. Consider U a set of items i, called the universe, and 

R a set of the rank list, where 𝜏 is an item of the rank list. The method is equivalent to: for each i ∈ U, a 

rank list 𝜏 ∈ 𝑅, and considering Borda normalized weight 𝜔𝜏(𝑖), the fused rank list �̂� is ordered with 

respect to the Borda score 𝑠 �̂� , where the Borda score of an item item i ∈ U in �̂� is defined as:

 

𝑠 �̂�(𝑖) =  ∑ 𝜔𝜏

 

𝜏 ∈𝑅

(𝑖) 

2.4. Classification Maps 

A supervised classification technique was applied only in the shrubland ecosystem scene in order 

to analyze the influence of the different pansharpening techniques in the generation of thematic maps 

[38]. The first step was to determine the classes appearing in the image and obtain a sufficient number 

of training samples. The classes chosen for this ecosystem were selected by experts of the Teide 

National Park, the vegetation classes being: Spartocytisus supranubius (Teide broom), Pterocephalus 

lasiospermus (rosalillo de cumbre), Descurainia bourgaeana (hierba pajonera) and Pinus canariensis 

(Canarian pine). Urban, road and bare soil classes were also included. In the second step, the OBIA 

process starts with a segmentation of the input images into local groups of pixels, i.e., objects that 

become spatial units in the later analysis, classifications and accuracy assessment.  Object shape, size 

and spectral properties depend on both the segmentation approach and the research goals. The image 

was segmented using the multiresolution segmentation followed by the spectral difference 

segmentation, in order to preserve the small objects of interest to classify. Once the objects are obtained 

from the segmentation techniques, classification algorithms can be applied. The last step was to 

determine the classification algorithm; in our case, we applied the novel object-based or OBIA 

classification approach [54], using support vector machine (SVM) as the supervised classifier [55]. 

SVM is a related supervised learning method that analyzes data and recognizes patterns, used for 

classification and regression analysis. The standard SVM takes a set of input data and predicts, for 

each given input, which of the different possible classes the input is a member. Given a set of training 

examples, each marked as belonging to the categories, an SVM training algorithm builds a model that 

assigns new examples into one category [56]. Thematic maps were obtained after implementing the 

SVM classifier in each fused image. Afterwards, the accuracy of the classification must be measured;

 (7) 
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in this case, testing samples were collected. The statistical accuracy assessment technique used was the 

overall accuracy and the kappa coefficient. 

3. Results 

This section is divided into three main blocks: (i) the visual assessment; (ii) the quantitative 

evaluation based on the quality indices; and (iii) the thematic maps resulting from the OBIA 

classification in the shrubland ecosystem. 

3.1. Visual Evaluation 

For the visual analysis, both color and edge preservation are the most important criteria to 

evaluate the performance of image fusion techniques in order to identify the fusion technique that 

provides the fused image with the highest spectral and spatial quality. To facilitate the visual inspection 

and for a more detailed spatial analysis, a zoom of the previous scenes is shown in Figures 4–6. It is 

important to highlight that, after the preliminary assessment, robust pansharpening algorithms have 

been selected, so all fusion results are satisfactory, and the spectral differences are difficult to appreciate 

visually, except in some specific areas. We want to underline that, to the best of our knowledge, this is 

the first time pansharpening algorithms have been assessed in coastal ecosystems using VHR imagery. 

This improvement in the spatial quality due to the application of fusion techniques could be useful to 

improve seafloor or benthic classification of shallow waters (i.e., coral reefs or seagrass meadows). 

The visual interpretation at the spectral level in the shrubland region (Figure 4) indicates that 

every algorithm, except for WAT⊗FRAC, produces a slight color distortion over the entire fused image. 

On the other hand, in the preliminary analysis, WAT⊗FRAC with a window size of seven pixels 

provides the best fused image from among the WAT⊗FRAC algorithms, although the differences are 
minimal. 

 

(a) (b) (c) 

  
(d) (e) 

 

Figure 4.   True color fused images of the shrubland region:  (a) original MS; (b) FIHS; (c) HCS; 

(d) MTF_GLP_HPM; (e) WAT⨂FRAC with a window size of seven. 

Observing the coastal region (Figure 5), differences among the techniques are basically 

undetectable at the spectral level. The WAT⨂FRAC window size, which gives a slightly better result 

in this image, is 27. 
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(a) (b) (c) 

  
(d) (e) 

 

Figure  5.    True  color  fused  images  of  the  coastal  region:   (a)  original  MS;  (b)  FIHS;  (c)   HCS; 

(d) MTF_GLP_HPM; (e) WAT⨂FRAC with a window size of 27. 

Visual results similar to those of the shrubland region appear in the mixed ecosystem (Figure 6), 

where the FIHS, HCS and MTF algorithms show a more perceptible color distortion in the sea than in 

buildings. The WAT⨂FRAC window size chosen for this scene is 15. 
 

(a) (b) (c) 

  
(d) (e) 

 

Figure 6.  True color fused images of the mixed ecosystem with an urban region:  (a) original MS; 

(b) FIHS; (c) HCS; (d) MTF_GLP_HPM; (e) WAT⨂FRAC with a window size of 15. 

Spatially, the differences are clearer than spectrally. In the case of the HCS and MTF_GLP_HPM 

techniques, although they maintain the spectral information well, the spatial details are not 

satisfactorily injected, thus not achieving a good spatial enhancement. Furthermore, the blurred 

aspect found in the WAT⨂FRAC algorithm is because the algorithm makes uniform the homogenous 

areas found in the multispectral image, which appear as heterogeneous areas in the panchromatic 

image. Thus, the ‘salt and pepper’ effect is avoided with it, obtaining a better classification and more 

accurate thematic maps, as demonstrated in Section 3.3. 

Finally, Figure 7 shows an example of the false color composite using bands outside the PAN 

range (Bands (B) 8, 7 and 1). 
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(a) (b) (c) 

  
(d) (e) 

 

Figure 7. False color fused images using Bands 8, 7 and 1 color composition (bands outside the PAN 

range): (a) original MS; (b) FIHS; (c) HCS; (d) MTF_GLP_HPM; (e) WAT⨂FRAC. 

In this case, a region with soil, vegetation and water is chosen in order to analyze the behavior of 

the different techniques. Spectrally, algorithms show a more significant color distortion in the water 

area. At the spatial level, pansharpening algorithms demonstrate the same behavior as in the true 

color composite, with WAT⨂FRAC achieving an optimum result. 

3.2. Quantitative Evaluation of Pansharpened Images 

As was mentioned in Section 2.4, in order to perform an objective evaluation of the pansharpening 

techniques, six spectral and spatial quality indices have been computed on the complete scenes of 

Figure 2. First, quantitative indices were calculated for all of the bands in the MS image in the three 

ecosystems. Second, the pansharpening performance for bands covered by and outside of the PAN 

range was assessed. Finally, an individual band quality map analysis was carried out (Figure 3). 

3.2.1. Shrubland Ecosystems 

The quality analysis of all multispectral bands can be appreciated in Table 4. SAM, spectral ERGAS 

and Q8 confirm that the MTF method and the HCS algorithm provide better spectral performance, 

while FIHS and WAT⨂FRAC get the lowest result, even though there is not a large difference between 

the highest and the lowest value. As regards the spatial performance, WAT⨂FRAC is confirmed as the 

best spatial quality method, while HCS shows the worst values. Furthermore, these results confirm 

the compromise between the spectral and spatial quality, in which the best fused image considered in 

this study would be the one that provides the best compromise between them. Hence, the Borda count 

method is used a posteriori to observe this compromise. 

The Borda count method has allowed analyzing the balance between the spectral and spatial 

quality in the pansharpening algorithms to be distinguished to avoid any bias in the global result 

(Table 4). The results obtained by the Borda count method including the respective spectral and spatial 

quality indices appear in the ‘spectral’ and ‘spatial’ columns. On the other hand, the ‘global’ column 

shows the results using the Borda count method in every algorithm considering all of the quality 

indices. 

Analyzing Table 4, WAT⨂FRAC generates the best fused image, not only in the overall evaluation, 

but also at the spatial level. 
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the values obtained in the quality maps could be comparable to the values obtained for the overall Q8. 

In each quality map, a blue scale has been used with white indicating a higher similarity (Q8 metric) 

between the original and the fused MS band. 

 
Table 7. Quality results for Bands 1–8 using the best algorithms for each scene. Best results are in bold. 

 
 

 
 
 
 
 
 
 
 

As indicated, the WAT⨂FRAC algorithm was selected as the best compromise to fuse images in a 

shrubland ecosystem scenario. Quality maps of WAT⨂FRAC (window size of seven) are presented 

in Figure 11. Better results can be appreciated for Bands 3–8, with Band 4 achieving the best fusion. 

On the other hand, Bands 1 and 2 (coastal blue and blue) do not show good quality in some areas, with 

a greater concentration of dark blue pixels, in accordance with the lowest quality results of Table 7. 
 

 
Figure 11. Fused image with the WAT⨂FRAC of the shrubland ecosystem and its quality maps for 

each band (scale from 0–1, zero being less fusion quality and one the highest fusion quality). 

 Shrubland ecosystem Coastal ecosystem Mixed ecosystem 

Q8, BlockSize: 64 Q8 value for WAT⨂FRAC_w7 Q8 value for FIHS Q8 value for WAT⨂FRAC _15 

B1 (Coastal Blue) 0.696 0.764 0.695 
B2 (Blue) 0.736 0.889 0.842 

B3 (Green) 0.878 0.936 0.905 

B4 (Yellow) 0.904 0.647 0.890 

B5 (Red) 0.872 0.410 0.851 
B6 (Red Edge) 0.897 0.395 0.857 

B7 (NIR 1) 0.841 0.318 0.845 

B8 (NIR 2) 0.881 0.239 0.832 
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As regards the coastal ecosystem, in the individual band quality maps of FIHS (Table 7 and 

Figure 12), the higher quality is achieved in Bands 2 and 3, with values over 0.88. For Band 1 (0.764), 

a light blue aspect (medium quality) in the sea area is clear, whereas, in the land area, both bands get 

dark blue pixels in the quality maps with this algorithm. From Bands 4–8, the quality increases in land 

areas, showing mostly dark blue pixels; however, the quality in sea areas decreases considerably. Band 

8 gets a quality value of 0.239, while Bands 5–7 show values around 0.3–0.4. Regardless of the fact that 

the FIHS algorithm gets the best fusion for this scenario, the quality maps are not very satisfactory for 

longer wavelengths, but this portion of the spectrum is of minimum interest in seafloor mapping 

applications due to the low capability of light to penetrate the water. 

 

Figure 12. Fused image with FIHS of the coastal ecosystem and its quality maps for each band (scale 

from 0–1, zero being less fusion quality and one the higher fusion quality). 

 
Concerning the quality maps of the WAT⨂FRAC algorithm in mixed ecosystems (Figure 13), they 

present a similar behavior to that of shrubland areas. Specifically, Bands 3 and 4 have the highest 

quality values (0.905 and 0.890, respectively, as presented in Table 7), while Bands 1 and 2 show lower 

quality (0.695 for Band 1 and 0.842 for Band 2). On the other hand, water areas have, in general, worse 

quality as the band number increases. 
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Figure 13. Fused image with WAT⊗FRAC of the mixed ecosystem and its quality maps for each band. 

Scale from 0–1, zero being less fusion quality and one the higher fusion quality. 

 
3.3. Thematic Maps of Shrubland Ecosystems 

Table 8 shows the overall accuracy and the kappa coefficient for the SVM object-based classification 

applied to each fused image. The best result is obtained in the WAT⨂FRAC fused image, corroborating 

the results achieved in the Quantitative Evaluation section, where WAT⨂FRAC shows the best fusion 

result. 

Table 8. Segmentation parameters used for the images and classification accuracy. 
 

Classification Techniques Support Vector Machine 

Pansharpening Algorithms Overall Accuracy Kappa 

MS 80.61% 0.72 
FIHS 83.72% 0.76 
HCS 82.72% 0.75 

MTF_GLP_HPM 83.18% 0.75 
WAT⨂FRAC 89.39% 0.85 
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of study (Ikonos, GeoEye, QuickBird, etc.); however, we have tried to find the best fused image using 

an eight-band sensor (WorldView-2). 

Both the visual evaluation and the quantitative analysis were achieved using six quality indices 

at the overall, spectral and spatial level. The best algorithms at the spectral and spatial levels were 

obtained for each type of ecosystem. Finally, the best fused technique with a compromise between 

the spectral and spatial quality was identified following the Borda count method. Thus, we provide 

guidance to users in order to choose the best algorithm that would be more suitable in accordance 

with the type of ecosystem and the information to be preserved. 

It is interesting to observe that, for land regions, the MTF algorithm performs better at preserving 

the spectral quality, while the weighted wavelet ‘à trous’ method through the fractal dimension maps 

algorithm demonstrates better results considering the spatial detail of the fused imagery. Balancing 

the spectral and spatial quality, the most appropriate pansharpening algorithm for shrubland and 

mixed ecosystems is the WAT⊗FRAC technique, while FIHS is selected for the coastal ecosystems. 

Note that to date, the WAT⊗FRAC algorithm has only been used in agricultural areas; however, we 

have applied this algorithm in natural vulnerable ecosystems, where a successful result has been 

obtained. Moreover, we can conclude that the more heterogenic the area to be fused, the smaller the 

window size in WAT⊗FRAC. FIHS provides the best overall fused image in the simplest scenario. 

Thus, even though there is no remarkable difference in the way the algorithms perform with respect 

to land and water areas, we have concluded that images with low variability, such as a coastal 

scenario, covered mostly by water, require simpler algorithms, rather than more complex and 

heterogeneous images (i.e., shrubland and mixed ecosystems), which need more advanced 

algorithms in order to obtain good fused imagery. 

Moreover, we have studied the behavior of each algorithm when applied to the complete set of 

MS bands and on bands covered by and outside of the PAN range. In general, Bands 2–6 mainly have 

better spatial and spectral quality, but the quality of the remaining bands is acceptable. Analyzing the 

results, there is a difference in how the same algorithm works on land and coastal areas. The fusion 

might have higher quality on land, while a lower quality appears in bodies of water. 

Additionally, a local study was carried out to identify the distortion introduced in each single 

band by the best fused algorithms chosen for each scenario. In general, Bands 3–8 attained higher 

quality for land areas, while in water areas, red and near-infrared bands (5, 7 and 8) experience high 

spectral distortion. However, these bands are not usually used in seabed mapping applications due to 

their low penetration capability in water. 

Finally, it is important to recall the need to obtain the best fused image in the analyzed 

ecosystems, as they are heterogenic regions with sparse vegetation mainly made up of small and 

mixed shrubs with reduced leaf area in the case of shrubland ecosystems and with low radiance 

absorption in complex and dynamic coastal ecosystems. In this context, thematic maps were obtained 

using the SVM classifier in the original MS image and in the WAT⊗FRAC fused image. This 

corroborates  the best performance of the WAT⊗FRAC algorithm to generate accurate thematic maps 

in the shrubland ecosystem. The excellent results provided by these studies are being applied to the 

generation of challenging thematic maps of coastal and land protected areas, and studies of the state 

of conservation of natural resources will be performed. 
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This chapter includes the following published article: E. Ibarrola-Ulzurrun, C. 

Gonzalo-Martín, J. Marcello. Influence of pansharpening in obtaining accurate 

vegetation maps. Canadian Journal of Remote Sensing, 2017, pp. 1-17. 

The work addresses the important process used in many remote sensing 

applications: classification. The main objective was to study the pansharpening 

influence in obtaining accurate classification maps. The fused images obtained from 

the Chapter 3, which is the first pre-processing improvement needed in the data 

received to generate higher quality information, were used in order to obtain 

reliable thematic maps. Next, several supervised classification models were applied 

in the seven different fused multispectral images, using two different classification 

approaches: pixel and object-based classification techniques.  

The overall accuracies obtained from the different classification maps, 

corroborate the results obtained in Chapter 3, in which the most suitable 

pansharpening technique was the WAT⊗FRAC technique for a land ecosystem, the 

Teide National Park, at pixel and object-based level. Finally, after an extensive 

pansharpening and classification assessment, the paper demonstrated the good 

performance of the final methodology selected in a heterogeneous ecosystem with 

small and mixed vegetation, obtaining challenging thematic maps in land-protected 

areas. 

In summary, the main conclusions and contributions are: 

 The importance of the pansharpening step in ecosystems with small and 

mixed vegetation, where the spatial information is critical and should be 

well incorporated in order to generate accurate thematic maps. 

 Both classification approaches have their own limitations. The main 

drwback of the pixel-based approach is the presence of mixed pixels 

located in boundaries between classes, as well as the quantity of data to 

be processed, higher than in the OBIA approach, in which objects are 

processed instead of pixels. Regarding OBIA, there is a high dependency 

on the segmentation parameters. 

 Bayes classifier is the most suitable after the segmentation stage, however, 

SVM obtained the highest overall accuracy, despite the high computation 

time. 

 A methodology was presented that achieves good performance in these 

heterogeneous regions with small and mixed shrubs, obtaining 

challenging vegetation maps to study the state of conservation of natural 

resources. 
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This chapter includes the following published article: E. Ibarrola-Ulzurrun, J. 

Marcello, C. Gonzalo-Martín. Assessment of component selection strategies in 

hyperspectral imagery. Entropy, 2017, 19(2). 

This work is the first one in which HS the Thesis considering HS data. Specifically, 

the HS image provided by INTA, in Reborio (Asturias, Spain), is used. As it was 

mentioned in Chapter 2, HS dimensionality reduction is usually necessary before 

performing a classification to obtain accurate thematic maps. 

In this context, the first objective of the paper was to perform a comparative 

assessment of classic dimensionality reduction techniques, Moreover, different 

strategies were proposed to determine the suitable number of components in the 

transformed spaces obtained from the dimensionality reduction techniques. The 

strategies studied for selecting the suitable number of components for a later 

classification, were: eigenvalues analysis, texture measurements, transformed 

signatures of the classes, and classes separability in the transformed space. The 

study showed that entropy measurement, transformed signatures of the classes, and 

ROIs separability strategies are more appropriate for the components selection. 

The second objective of the paper referred to a new dimensionality reduction 

approach by splitting the HS image into different spectral regions (Visible, Red Edge, 

NIR 1 and NIR 2). After applying a dimensionality reduction technique in each 

spectral region, components for the different regions were selected. The selected 

components in the transformed space were next stacked and analyzed in order to 

asses if dimensionality reduction techniques, applied independently for each 

spectral region, improves the final classification. It was observed that this approach 

slightly improve the components selection. 

The main contributions and conclusions of the study were: 

 Comparative evaluation of classical dimensionality reduction techniques 

(PCA, MNF, and ICA). 

 Analysis of different strategies for selecting the most suitable number of 

component, in which, entropy measurement, transformed signatures of 

the classes, and ROIs separability strategies are more appropriate for the 

components selection. 

 When a supervised classification is carried out, the transformed 

signatures of each class, and the ROIs separability values, in the 

transformed space, are the most suitable strategies. 

 A dimensionality reduction approach of the HSI considering a spectral 

division in different regions was proposed, in order to analyze if the 

number of components selected were more suitable to generate a final 

thematic map. 
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Several techniques have been proposed in the last several years to overcome the ’Hughes’ 

phenomenon. Feature-selection and feature-extraction are traditional approaches for reducing the 

dimensionality of HSI [9,11,12]. This study is focused on the traditional feature-extraction techniques 

for HSI dimensionality reduction, Principal Component Analysis (PCA), Minimum Noise Factor (MNF), 

and Independent Component Analysis (ICA). These techniques significantly reduce the number of 

extracted features compared to the original dimension [1]. However, the selection of the adequate 

number of components remains an open issue. Besides that, a lack of a comparative study on traditional 

techniques used in HSI dimensionality reduction has been observed as well as an accurate approach 

for component selection in the transformed space. There exist studies comparing PCA, MNF, and ICA 

with new methodologies [9,13–15], as well as other studies that analyze their behavior or improve these 

techniques [1,2,5,11,16–18], without making a comparison with the existing methods. Additionally, 

previous studies [8,19,20] have used a small number of components to obtain adequate classification 

maps. However, in such studies, the most common approach used to select components is to determine 

them through eigenvalues, which are the measure of the variance explained by the components 

obtained from the dimensionality reduction techniques. 

In this context, our first objective was to carry out a comparative assessment of the classical 

dimensionality reduction techniques (PCA, MNF, and ICA) and to assess different strategies for selecting 

the  most  suitable  number  of  components  in  order  to  study  their  performance  in  the  classification 

of high spatial  resolution  imagery  of  the  Compact  Airborne  Spectrographic  Imager  (CASI)  sensor.  

To evaluate the dimensionality reduction techniques, a robust classification approach, known as the 

Support Vector Machine (SVM) [21,22] algorithm, was used as a reference, which is an efficient technique 

for HSI classification [6,23,24]. For this objective, the classic eigenvalues analysis, texture measurements, 

the transformed signatures of the classes, and ROIs separability in the transformed space, were analyzed 

to identify the best approach for the selection of an adequate number of components that contain sufficient 

information for a later classification stage. The second objective was to propose a new dimensionality 

reduction approach by dividing CASI HSI into different spectral regions. The selected components from 

each spectral region were stacked. This new stacked transformed space was evaluated in order to see if the 

best dimensionality reduction technique, applied independently for each region of the electromagnetic 

spectrum, improves the final classification. 

The paper is structured as follows: Section 2 includes the study area description, datasets, and the 

dimensionality reduction methodology followed in the analysis. Section 3 presents the classification 

results of each dimensionality reduction technique, as well as the component selection results and 

the spectral division assessment. Finally, a critical analysis of the results and a summary of the main 

outcomes and contributions are included in Section 4. 

2. Materials and Methods 
 

2.1. Study Area and Data Set 

The study area is situated in a coastal area of northern Spain, specifically in Reborio (Asturias). 

The image was acquired and processed in 2011 through the CASI sensor by the Instituto Nacional de 

Técnica Aeroespacial (INTA). The image was radiometrically corrected and georeferenced, and it has 

144 spectral bands and a spatial resolution of 1 m. The classes selected for the classification were forest, 

meadow, road, shadows, sand, bare soil, urban, water, and waves. 

2.2. Dimensionality Reduction Methodology 

A preliminary analysis based on three different dimensionality reduction methods—PCA, 

MNF, and ICA—was performed to determine the number of valuable components containing most of 

the statistical information. Next, a brief description of them is included. 
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2.2.1. Dimensionality Reduction Techniques 

PCA is often used for the dimensionality reduction of HSI [3,25–30]. It is a mathematical 

orthogonal transformation that changes a set of observations of possibly correlated variables into a 

set of uncorrelated variables called principal components [31]. PCA retains most of the information 

of the original data in a low-dimensional space [13]. Conventional PCA faces three main challenges: 

(1) obtaining a covariance matrix in an extremely large spatial dimension; (2) dealing with the high 

computational cost required for the analysis of a large dataset; and (3) retaining locally structured 

elements that appear in a small number of bands for improved discriminant ability when feature bands 

are globally extracted as principal components [1]. Besides this, PCA equates variance with information 

and is based on the assumption that the data structure can be described by a multidimensional normal 

distribution. The performance of PCA depends on the noise characteristics. When noise variance is 

larger than the signal variance in one band or when the noise is not uniformly distributed between 

each band, PCA does not guarantee that the amount of information decreases for principal components 

with a lower ranking [32]. 

MNF is a noise-adjusted principal component transform that equalizes and estimates the amount 

of noise in each image band to ensure that the output components are ordered by their information 

amount [33]. The MNF transform, like PCA, is an eigenvector procedure based on the covariance 

structure of the noise in the image dataset. MNF is a linear transform consisting of two different steps: 

(1) computation of the covariance matrix to decorrelate and rescale the noise in the data; and (2) the 

performance of a standard PCA transform of the decorrelated and rescaled noise data. The goal of 

the MNF transform is to select components such they maximize the Signal-to-Noise Ratio (SNR), 

which compares the level of the signal to the level of the background noise rather than the information 

content [13]. The fact of ordering the components according to the amount of information results in a 

more reliable identification and elimination of noisy components, and allows for the preservation of 

components that contain useful information [9,13]. 

ICA has a wide range of potential applications [32]. Its goal is to decompose a multivariate 

random measured signal into a linear combination of independent source signals [2]. In contrast 

with PCA, ICA not only decorrelates second-order statistics but also reduces higher-order statistical 

dependencies, attempting to make the signals as independent as possible. It is an alternative approach 

to PCA for dimensionality reduction because it is designed to search for more independent factors 

that can linearly generate the returns instead of searching for principal components, which allow us to 

represent the maximum of the return dispersion [5]. 

2.2.2. Component Selection Strategies 

Different strategies were evaluated to select the suitable number of components which contained 

the most statistical information for each dimensionality reduction method (Figure 1): 

• Transformation statistics: it is the most common method used in the bibliography to select the 

suitable number of components. The eigenvalues of the obtained components were analyzed [34]. 

Components with large eigenvalues contain a higher amount of data variance, while components 

with lower eigenvalues contain less data information and more noise [31]. 

• Texture measurements: texture parameters, as entropy, are simple mathematical representations 

of image features. These features represent high-level information that can be used to describe 

the objects in and structure of images [10,35], and in consequence can be applied to select the 

components providing important information. An entropy first-order texture filter is applied 

based on a co-occurrence matrix [31]. The Equation (1) from Anys et al. [36] was used to compute 

the entropy using the pixel values in a kernel centered at the current pixel. Entropy is calculated 

based on the distribution of the pixel values in the kernel. It measures the disorder of the kernel 
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values, where Ng is the number of distinct grey levels in the image, and P(i) is the probability of 

each pixel value. 

Entropy =  − ∑ P(i) ∗ ln P(i)

Ng

i=0

 (1) 

• Signatures of the classes in the transformed space (transformed signatures): the classes considered in 

the study will have values in the components with information, but they will not be distinguished 

within each other if the component is mainly noise. Moreover, spatially, in components without noise, 

objects’ shapes are recognizable, while in noisy components, only a “salt and pepper” effect appears. 

A visual assessment is used in order to determine from which components the classes cannot be 

distinguished within each other, being that those components are mainly noise. However, transformed 

signatures are dependent on the classes determined by each user as well as the type of image. 

• ROIs separability in the transformed space: during the supervised classification procedure, training 

and testing regions were selected for each class of interest. The evaluation of the separability in different 

numbers of components could benefit the selection procedure.  This strategy is class-dependent.     

An ROI’s separability was determined through the Transformed Divergence (TD) measure (2). This 

separability index exponentially takes into account the mean and the covariance, and its value 

ranges from 0 to 2 to indicate how well the selected ROI pairs are statistically separable. Values greater 

than 1.8 indicate that an ROI pair has good separability [31]. 

TD =  2 (1 − e−
D

8 )     (2) 

Finally, the evaluation was performed using as a reference the accuracy of the classifications 

carried out for different numbers of components. The method used for the classifications’ validation 

is known as cross-validation, in which the input data is divided into randomly selected training and 

testing (ROIs) samples. The testing samples were evaluated against the classified pixels to check if 

the classifier can properly reproduce the output. The Overall Accuracy (OA), given as a percentage, 

is obtained from the standardized confusion Error Matrix that compares the thematic map and the rest 

of the samples selected. 

Figure 1. Flow diagram of the methodology proposed for evaluation of component selection strategies. 

CASI: Compact Airborne Spectrographic Imager; PCA: Principal Component Analysis; MNF: Minimum 

Noise Factor; ICA: Independent Component Analysis; ROI: region of interest; SVM: Support Vector Machine. 

 
A Support Vector Machine (SVM) algorithm was used in order to evaluate a dimensionality 

reduction method’s performance. It has been widely used for HSI classification and relies on training 

data for model optimization [1,3,26].   SVM is one of the most used kernel learning algorithms, 
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which carries out a robust non-linear classification of the image’ pixels using the kernel trick. The idea 

is to find a separating hyperplane in a higher dimensionality feature space induced by the kernel 

function while all the computations are done in the original space [3,22]. In other words, it aims to 

find a hyperplane that makes the average classification error of the training data reach its minimum. 

As was mentioned, the kernel function is the key factor of the SVM classifier. Typical kernels are the 

linear, the polymodal, the sigmoid and the radial basis function (RBF) kernel functions [2]. The RBF 

kernel function, a type of feed-forward Neural Network [26], is selected in the study because it is 

considered a robust kernel function for remote sensing imagery [37–39]. 

2.2.3. Spectral Division Analysis 

Apart from the previous analysis, another study was conducted in order to assess if applying   

a dimensionality reduction technique independently to different regions of the spectrum (Figure 2) 

could improve the classification performance in the final transformed space obtained 
 

 

Figure 2. Representative spectral reflectance curves for several common Earth surface materials over 

the visible light to the reflected infrared spectral range (VISIBLE: Visible region; RE: Red Edge region; 

NIR 1: Near Infrared 1 Region; NIR 2: Near Infrared 2 Region). 

 
We call “spectral division” a division where the CASI spectral bands are separated into four 

groups. The four groups are (1) the Visible region: bands 1 to 70 (368.3–698.7 nm), (2) the Red Edge 

region:  bands 71 to 80 (705.5–751.5 nm), (3) the NIR1 (Near Infrared 1) region:  bands 81 to 111 

(751.5–895.6 nm), and (4) the NIR2 (Near Infrared 2) region: bands 112 to 144 (899.9–1052.7 nm). 

Figure 3 shows the flow diagram of the spectral division analysis as part of the dimensionality 

reduction process. After the preliminary assessment, the best reduction technique was selected for this 

analysis (the MNF technique, as will be discussed in Section 3). Once the different spectral regions 

were selected, a dimensionality reduction transformation was performed independently on each of 

them. Then, different numbers of components were selected using the component selection strategies 

described in Section 2.2.2. After selecting the different numbers of components, a layer stacking was 

carried out for obtaining a transformed space with the selected number of components of each spectral 

region. Moreover, SVM classifications were performed on the components selected in each region 

group and in the transformed space obtained from the selected component stacks. 

VISIBLE RE NIR 1 NIR 2 
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Figure 3. Diagram flow of the spectral division analysis. 

 
3. Results and Discussion 

 

3.1. Dimensionality Reduction Techniques 

This section includes the results obtained from the methodology shown in Figure 1. Section 3.1.1 

shows the results obtained from the SVM classification, while Section 3.1.2 shows the results of the 

different component selection strategies. 

3.1.1. Classification Results for Each Technique 

The samples chosen for the classification were taken randomly. 70% of the samples were used for 

training and 30% for testing. The classes chosen were forest (4797 pixels), meadow (6501 pixels), road 

(1226 pixels), shadows (2428 pixels), sand (1574 pixels), bare soil (760 pixels), urban (1090 pixels), water 

(6886 pixels), and waves (141 pixels). The SVM classifier, using the RBF kernel and the appropriate 

parameters (gamma = 0.1; penalty = 100), was trained with a different number of components from the 

three dimensionality reduction methods considered.   The evaluation was carried out by choosing    the 2, 

5, 10, 15, and 20 first components after performing the three dimensionality reduction methods (PCA, 

MNF, and ICA). Due to the noise of the last components chosen, it is expected that the accuracy results 

should decrease when adding more components. 

Figure 4 shows the OA for each method and for a given number of components. It can be observed 

that MNF achieves the highest accuracy. The OA in the PCA transformed space and the OA in the MNF 

transformed space are stabilized using 10 components, whereas ICA needs at least 15 components to 

stabilize the OA, but with a lower OA than the PCA transformed space and the MNF transformed 

space. Figure 5 shows the thematic map obtained from the best SVM classification, which is uses the 

MNF transformed space with 10 components (OA: 96.68%). 

This information about the minimum number of components required to achieve the best 

performance will be the reference information to assess the different component selection methods. 
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Figure 14. ROIs separability of the MNF transformed space of the initial transformation (spectral 

division not applied) using 10 and 15 components and from the stacked transformed space (13 comp.). 

 

 

Figure 15. Transformed signatures of the classes in the stacked MNF transformed space: 13 comp. 

 

 

Figure 16. Overall Accuracy (%) of SVM classification of MNF transformed space for: (a) the components 

selected in each spectral region; and (b) MNF initial transformation (spectral division not applied) using 

10 and 15 components and from the stacked transformed space (13 comp.). 

(a) (b) 
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Figure 14 shows the ROIs separability results from the MNF initial transformation using 10 and 

15 components and in the stacked transformed space with 13 components. The minimum value for 

every transformed space is above 1.9. However, the minimum value in the stacked transformed space 

is a bit lower than in the original MNF transformations. 

The transformed signatures of the classes in the stacked MNF transformed space (Figure 15) 

reveal, as well, how the visible region discriminates them slightly better, as is the case with the ROIs 

separability (Figure 11a). 

It is again observed, in Figure 16a, how the Visible region obtains a better OA. Regarding the 

classification accuracy in the MNF transformed spaces, Figure 16b also shows the OA of the SVM 

classification applied in the MNF initial transformation using 10 and 15 components (see Figure 4), 

in order to compare with this second approach. SVM classification applied in the stacked MNF 

transformed space with 13 components obtains the highest accuracy (96.7%), being a bit higher than 

the original MNF transformation with 10 components (96.69%). 

4. Conclusions 

The objectives of this study were to carry out a comparative evaluation of classical dimensionality 

reduction techniques (PCA, MNF, and ICA) in HSI and to assess different strategies for selecting the 

most suitable number of components. At the same time, we proposed to carry out a dimensionality 

reduction approach considering a spectral division of the HSI in order to analyze if the number of 

components selected was more suitable for generating a final thematic map. 

In the first part of the study,  according  to  the  SVM  classification  results,  MNF  was  the  

most suitable dimensionality reduction technique. Regarding the component selection strategies, 

entropy measurement, transformed signatures of the classes, and ROIs separability strategies are 

more appropriate for the components’ selection. However, the transformed signatures of the classes 

and ROIs separability strategies need a manual ROIs selection for each class. In contrast, it was 

demonstrated that eigenvalues are not the most appropriated method to select a suitable number of 

components containing most of the statistical information. 

On the other hand, the second part of the study proposed a spectral division of the HSI, and then 

performed an MNF transformation independently on the different regions of the electromagnetic 

spectrum. Once this MNF transformation was carried out, the components with more information were 

selected according to the different strategies. It can be observed that using this spectral division approach, 

when comparing it with the traditional MNF transformation, only slightly improves the components’ 

selection. 

Therefore, after the evaluation, the standard deviation values of the entropy are proposed to 

determine the appropriate number of components. However, if a supervised classification is carried 

out, in which the classes and the corresponding ROIs are determined, the transformed signatures of 

each class as well as the ROIs separability values, in the transformed space, are a good choice. In this 

way, the selection of components would be adjusted to each user and each classification problem. 

A more comprehensive study should be carried out to evaluate if this method would be recommended 

as a component selection strategy. In consequence, this study is currently being performed using different 

types of HSI, since these results could be influenced by the imagery considered. 
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This chapter includes the following published article: E. Ibarrola-Ulzurrun, L. 

Drumetz, J. Marcello, C. Gonzalo-Martín, J. Chanussot. Hyperspectral classification 

through unmixing abundance maps addressing the spectral variability. IEEE 

Transactions on Geoscience and Remote Sensing. Accepted. 

As it was explained in Chapter 2, once the HS imagery pre-processing is executed, 

two processing steps can be carried out, spectral unmixing and classification. The 

paper is focused on spectral unmixing models in which the spectral variability was 

considered, as well as the spatial information. Its main objectives of the paper are: 

(i) analysis of the spectral variability of the endmembers; (ii) analysis of the use of 

classification maps, to assess the performance of the unmixing models; and (iii) 

obtaining accurate classification maps using a small training set. 

Usually, the HS image acquired from airbornes or drones cover narrow stripes 

with different radiometric values. Moreover, if a mountainous area is covered by the 

image, the reflectance value of a same material varies depending on the orientation 

with respect the sun and the sensor angles. Thus, to efficiently apply an unmixing 

model, it is necessary to correctly identify the spectral response of each endmember. 

Besides, the hyperdimensionality of this type of imagery, as well as the presence 

mixed pixels, must be taken into account. Thus, it is necessary to develop different 

strategies that consider this spectral variability of the materials. Reasonable 

abundances maps were obtained and used to get accurate thematic maps. 

The main contributions and conclusions of this study are: 

 Assessment of different spectral unmixing methods: linear mixing models 

as FCLSU, and models that consider the spectral variability of the classes, 

as SCLSU, ELMM and RELMM. 

 The importance to use unmixing models which consider the spectral 

variability in areas with topographic changes, radiometric disturbances, 

etc.  

 The good performance of the classification maps obtained from the 

abundance maps, as a tool for evaluating the unmixing models as well as 

for providing accurate classifications results.  

 When applying unmixing models which consider the spectral variability, 

it is not necessary a high number of training samples for obtaining 

accurate classifications using the abundances maps. Thus, the “Hughes” 

phenomenon is avoided. 

 The main outcome of this chapter is the final thematic maps obtained 

from HS imagery of the Teide National Park. 
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Abstract— Climate change and anthropogenic pressure are 

causing an indisputable decline in biodiversity; therefore, the 

need of environmental knowledge is important to develop the 

appropriate management plans. In this context, remote sensing 

and, specifically, hyperspectral imagery (HSI) can contribute 

to the generation of vegetation maps for ecosystem monitoring. 

To properly obtain such information and to address the mixed 

pixels inconvenience, the richness of hyperspectral data allows 

the application of unmixing techniques. In this sense, a 

problem found by the traditional linear mixing model (LMM), 

a Fully Constrained Least Squared Unmixing (FCLSU), is the 

lack of ability to account for spectral variability. This study 

focuses on assessing the performance of different spectral 

unmixing models depending on the quality and quantity of 

endmembers. A complex mountainous ecosystem with high 

spectral changes was selected. Specifically, FCLSU and 3 

approaches, which consider the spectral variability, were 

studied: Scaled Constrained Least Squares Unmixing 

(SCLSU), Extended LMM (ELMM) and Robust ELMM 

(RELMM). The analysis includes two study cases: (i) robust 

endmembers and (ii) non-robust endmembers. Performances 

were computed using the reconstructed Root Mean Square 

Error (RMSE) and classification maps taking the abundances 

maps as inputs. It was demonstrated that advanced unmixing 

techniques are needed to address the spectral variability to get 

accurate abundances estimations. RELMM obtained excellent 

RMSE values and accurate classification maps with very little 

knowledge of the scene and minimum effort in the selection of 

endmembers, avoiding the curse of dimensionality problem 

found in HSI. 

 
Index Terms— CASI, hyperspectral image classification, 

spectral unmixing, Hughes phenomenon, endmembers, spectral 

variability. 

I. INTRODUCTION 

URING the last decades, the increasing loss of 

biodiversity has become a global concern [1]. For 

instance, variations in vegetation lead to an alteration of the 

habitat structure, causing changes in the ecosystem 

biodiversity. Thus, knowledge on the conservation status 

and habitat structure of natural areas becomes essential for 

environmental management. Nowadays, most conservation 

status assessments are based on field observations and/or 

aerial photo interpretations, being a very labor-intensive and 

time-consuming processes. Instead, remote sensing is a 

valuable, accurate and repeatable tool for mapping and 

monitoring ecosystems and to study their conservation status 

[2, 3]. Specifically, hyperspectral image analysis techniques 

have significantly contributed to these tasks. However, it 

remains a challenge, requiring sensors and methods which 

can deal with complex habitats structures present in 

ecosystems [1, 4]. 

Hyperspectral imagery (HSI) are built by hundreds of 

narrow and contiguous spectral bands covering the 

electromagnetic spectrum, typically from the visible to the 

near-infrared, and sometimes also shortwave infrared 

spectral bands (0.3-2.5 µm) [5, 6]. The rich spectral 

information available in HSI increases the capability of 

precisely discriminating  the materials or covers of interest 

[7, 8]. 

Hyperspectral image classification has been a very active 

area of research in the last years [9, 10]. Even though HSI is 

a suitable tool for source separation and classification 

processes, conventional HSI classification methods suffer 

from important limitations for detailed ecosystem mapping 

due to the limited degree of detail that can be mapped. It 

also increases the computational load because of the 

enhancement of spectral resolution, which leads to high 

dimensional data that can degrade the classification process 

[11]. Another limitation of HSI classification is the little 

availability of ground truth data in practice. For instance, 

supervised classification is generally a difficult task due to 

the ratio between the high dimensionality of the data and the 

limited availability of labeled training samples [7]. The rule 

of thumb is that the required number of training samples is 

linearly related to the dimensionality of the data. This 

problem is called the curse of dimensionality, or Hughes 

phenomenon [10, 12], which specifies that the size of 

training samples set required for classification increases 

exponentially with the number of spectral bands [13].  

On the other hand, when more details are required in the 

classification process, the more difficulties arise, such as 

mixed pixels, leading to lower accuracy in classification 

maps [2]. Besides, the spatial resolution of a sensor could be 

too low to distinguish materials, leading to a composite of 

individual spectra in the same pixel. Thus, the recognition of 

pixels is frequently a combination of numerous materials 

which introduces a need to quantitatively decompose, or 

unmix, this mixture [14]. In this context, hyperspectral 

unmixing may be the right tool to move beyond the pixel-

based limitations for ecosystem mapping and monitoring 

[2].  

Spectral unmixing refers to any process that retrieves the 

pure spectral components, called endmembers, and a set of 

fractional abundances, that indicate the proportion of each 

endmember [7, 14]. Endmembers are, generally, assumed to 

represent the pure materials present in the image, whereas 
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the set of abundances at each pixel, represents the 

percentage of each endmember present in the pixel [5, 7]. 

The potential of spectral unmixing to estimate the spatial 

distribution and abundances of invasive species and 

vegetation has been studied [2, 15-17]. Thus, spectral 

unmixing could be a suitable methodology for 

environmental management. However, there are some issues 

found in unmixing techniques: (i) the notion of a pure 

material can be subjective and problem dependent, hence 

leading to a definition of endmembers that depends on the 

application and spatial resolution [5]; (ii) most studies 

assume that a proportion represents the percentage of 

material associated with an endmember present in a pixel. 

However, Hapke [18] states that the abundances in a linear 

mixture represent the relative area of the corresponding 

endmembers in a pixel [5].  

Unmixing models can be, either, linear or nonlinear [5]. 

In most applications, Linear Mixing Model (LMM) is 

assumed considering that contributions of each endmember 

sum up in a linear way [5]. According to the LMM 

definition, data lie into a simplex whose vertices are defined 

by the endmembers [19]. However, LMM is not accurate 

since many real physical processes are inherently nonlinear, 

e.g. multiple scattering and intimate mixing, contribute to 

the measured radiance or reflectance. The most important 

source of error in LMM lies in the lack of ability to account 

for sufficient temporal and spatial spectral variability. This 

can result in significant estimation errors being propagated 

throughout the unmixing process [6, 20-22].  

The paper focuses on spectral unmixing models in which 

the spectral variability is considered, as well as the spatial 

information. The main objectives can be divided into: 

 Analysis of the endmember variability: the endmember 

spectral signature can change depending on the 

geometry and topography of the scene, atmospheric 

effects, noise in the image or variation of a hidden 

parameter (e.g. water content in vegetation). 

Considering endmember variability, a significant 

improvement can be achieved. 

 Analysis of the use of classification maps, to assess the 

performance of the unmixing models. 

 Obtaining accurate classification maps in a 

mountainous ecosystem with high spectral variability 

using few training samples, solving the issues caused 

by the hyperdimensionality of the data. 

In this context, different unmixing models are evaluated: 

(i) Fully Constrained Least Squares Unmixing (FCLSU), a 

traditional LMM; (ii) Scaled Constrained Least Squares 

Unmixing (SCLSU) approach [19, 23]; (iii) Extended Linear 

Mixing Model (ELMM), that extends the LMM by 

considering endmember variability while preserving the 

LMM framework, and allowing the pixelwise variation of 

the endmembers according to scaling factors [19, 24]; and 

finally, (iv) Robust ELMM (RELMM) [25], a refined 

formulation of ELMM. The effects of the endmembers’ 

purity and quantity for each class are also analyzed. 

Accurate classification maps are obtained, taking the 

abundance maps as inputs, to avoid the Hughes 

phenomenon, and using a hard classification method. 

The paper is structured as follows: Section II contains 

the study area and the description of the data sets. Section 

III presents the analyzed unmixing algorithms. Section IV 

describes the applied methodology. Section V includes the 

main results and a critical analysis. Finally, Section VI 

summarizes the main outcomes and contributions. 

II. STUDY AREA 

The study is focused in a volcanic vulnerable and 

heterogenic ecosystem of Tenerife island (Canary Islands, 

Spain), the Teide National Park (28°06′N 15°24′W). The 

climate of the National Park is conditioned by the extreme 

altitude conditions (ranging between 2000 and 3718 m), 

strong insolation and thermal variations. It can be defined as 

a subalpine continental climate, very different from the 

prevailing one in the low and middle areas of the island 

[26]. It is a remarkable biodiversity hotspot with high 

variability of endemic species vulnerable to environmental 

changes [27], making Teide National Park an ecosystem 

with a high interest of study from an ecological point of 

view. The discrimination of the heterogeneous vegetation 

communities found in the study area is a challenging task 

because the different vegetation may have similar spectral 

response and even the same plant species has phenological 

changes depending on its location in the Park. Besides, due 

to climate change and the increment of the European rabbit 

population, Spartocytisus supranubius, a very important 

species in Teide National Park, is showing a negative 

density-damage, leading to an absence of rejuvenation, 

while Pterocephalus lasiospermus has increased its 

distribution and abundance despite the presence of a non-

native generalist herbivore [28]. For these reasons, it is 

important to carry out a detailed study of Teide National 

Park, in order to develop a suitable management plan by the 

managers of the Park. 

The non-herbaceous vegetation species, selected for the 

study due to their abundance and importance at ecological 

level, were:  Pinus canariensis, Spartocytisus supranubius, 
Pterocephalus lasiospermus and Descurainia bourgaeana. 

The period of the year was an important factor in the 

selection of the acquisitions, since the relevant species 

bloom during spring and species are at their greatest point of 

spectral difference. However, plant individuals do not bloom 

at the same time in every part of the study area, due to 

climatic differences through the Park, leading to an 

additional spectral variation within the same plant species. 

In this context, the image used for this study was acquired 

on 1st of June, 2017 through the CASI (Compact Airborne 

Spectrographic Imagery) sensor configured with 68 spectral 

bands, covering a range from 0.3969 to 1.0390 µm and a 

spatial resolution of 0.75 meters. It was radiometrically and 

atmospherically corrected as well as georeferenced (Product 

Level 2c) [29]. Four different subsets (Fig. 1) were selected 

to evaluate the algorithms in an image with spectral 

variability related with the topography changes due to the 

mountainous ecosystem (Areas 3 and 4) and radiometric 

changes between different swaths which appear when 

acquiring the CASI imagery (Areas 2 and 4). Area 1 was 

chosen as a control subset in a zone without either 

topographic or radiometric changes. Finally, the four subsets 

have another intrinsic spectral variability due to the 

blooming of plant individuals. 
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origin and each of the reference endmembers, thus defining 

the simplex orientation in the cone. In [24], a criterion to 

perform spectral unmixing using the ELMM is defined in 

Eq. 3, where 𝜓 is the scaling factor rearranged in a ℝPxN  

matrix and by S = [𝑆𝑛] being 𝑛 = 1,…, 𝑁, the collection of 

pixel-dependent endmember matrices, 𝐴 ∈  Δp means that 

each abundance vector 𝑎𝑛 ∈  ℝ𝑃  in each pixel belongs to the 

unit simplex with 𝑃 vertices, 𝑆0 is a matrix containing 

reference endmembers, ||. ||𝐹 denotes the Frobenius norm. 

The term 𝜆𝑆 ∣∣ 𝑆𝑛 − 𝑆0𝜓𝑛 ∣∣𝐹
2 , forces each endmember to be 

close (but not equal) to scaled versions of the (unit norm) 

representatives of the reference directions depending on the 

value 𝜆𝑆, which is regularization parameter on the ELMM 

tightness. The scaling factors capture illumination induced 

variability, while 𝑆𝑛 can further consider the intrinsic 

variability effects. Spatial regularizations incorporate two 

regularization parameters to tune, 𝑅(𝐴) and 𝑅(𝜓), which 

are applied to the abundances and the scaling factors, 

respectively. 𝑅(𝐴)  is the total variation regularization term 

on the abundances, promoting smooth abundances while 

allowing sharp discontinuities when necessary (at the border 

between objects for instance); 𝑅(𝜓) is a Tikhonov 

regularization on the gradient of the abundances, to promote 

spatial smoothness in the scaling factors. They penalize the 

norm of the spatial gradient of the abundance maps or 
scaling factors, using the total variation regularization 

related for the scaling factors and incorporate the constraints 

on the variables to enforce spatial smoothing: 
 

𝐽(𝐴, 𝑆, 𝜓) =
1

2
∑(||𝑥𝑛 − 𝑆𝑛𝑎𝑛||2

2

𝑁

𝑛=1

+ 𝜆𝑆||𝑆𝑛 − 𝑆0𝜓𝑘||𝐹
2 ) + 𝑅(𝐴)

+ 𝑅(𝜓). 

 

The data lies in a convex cone, whose edges are the 

endmembers and each pixel belong to a simplex (Fig. 2). 

However, this formulation relies on the reference 

endmembers, 𝑆0, and if they are poor representatives of the 

spectra of the materials, they can cause errors in the 

estimation of the unmixing parameters. Hence, a new 

Robust ELMM (RELMM) is proposed [25], which does not 
rely on the reference endmembers. 

 

D. Robust Extended Linear Mixing Model 

RELMM [25] shows endmembers as directions in the 

feature space, as directional data. The added values of 
RELMM are the iterative update of S0 using the volume 

regularized [39], adapted to a conic model via the unit norm 

constraints. It allows to iteratively adjust the position of the 

reference endmember lines in the feature space. Thus, it is 

proposed  a new model [25] (Eq. 4), where tr denotes the 

trace of a matrix, and 𝑉 = 𝑃I𝑃 −  𝟙𝑃𝟙𝑃
Τ (𝟙 P, being a column 

vector of P ones), such that 𝑡𝑟 (𝑆0𝑉𝑆0
𝖳) = 

∑ ∑ ||𝑠0𝑖 − 𝑠0𝑗||2
2𝑃

𝑗=𝑖+1
𝑃−1
𝑖=1 . 𝜆𝑆 and 𝜆𝑆0

 are regularization 

parameters.  

 

𝐽(𝐴, 𝑆, 𝜓, 𝑆0) =
1

2
∑ (||𝑥𝑛 − 𝑆𝑛𝑎𝑛||2

2 +𝑁
𝑛=1

𝜆𝑆||𝑆𝑛 − 𝑆0𝜓𝑛||𝐹
2 ) +  

𝜆𝑆0

2
 𝑡𝑟 (𝑆0𝑉𝑆0

𝖳) +  𝑅(𝐴) +

𝑅(𝜓) 

 

The fact that the reference endmembers are normalized 

has also the advantage of easily allowing to compare the 

magnitude of the scaling factors across different materials 

and images. Moreover, spatial regularizations (𝑅(𝐴) and 

𝑅(𝜓)) can be added as in the ELMM model. 

RELMM has the same geometric interpretation as 

ELMM, however, the reference endmembers in RELMM lie 
on the unit hypersphere leading to be more accurate than 

ELMM even when the initialization is poor [25]. 

IV. METHODOLOGY 

A. Study Cases 

The analysis can be divided in two different study cases. 

First, the different abundances maps were obtained by 

FCLSU, SCLSU, ELMM and RELMM, using robust 

reference endmembers with many representative pixels for 

each class under different conditions and second, using very 

few non-robust endmembers (Fig. 3).  

For the first part of the study, an extensive field campaign 

was carried out and field observation data were acquired to 

provide accurately located and quantitative ground reference 

data. Then, Regions of Interest (ROIs) were manually 

selected in the original HSI to create accurate training and 

testing sample sets. Candidate pixels were selected in areas 

where the vegetation types appeared to be pure and were 

relatively homogeneous. This procedure was difficult to 

implement due to the small scale of species spatial 

distribution and the small size of some vegetation patches. 

Thus, samples from the vegetation species mentioned above 

were identified in the HSI, as well as bare soil and road 

endmembers. The set of ROIs was divided into a training 

set, to obtain the robust reference endmembers (in average 

1400 pixels per class), and the testing set, to provide an 

independent dataset to evaluate the classification 

performances (in average 4500 pixels per class). Robust 

endmembers used in the first study case were calculated 

getting the average value of each class for the whole training 

set of ROIs. Fig. 4 shows the spectral signature of each 

endmember as well as picture of each vegetation class. 

Thus, the robust endmembers used in this part of the study 

consider every type of spectral variability found in the 

different classes. 

(4) 

(3) 

 
Fig. 2. Geometric interpretation of the ELMM in the case of three 

endmembers. Red: two data points; blue: reference endmembers; 

green: the scaled versions for the two considered pixels [33]. 
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abundances obtained from the pixels and the mixing model 

(𝑥𝑙𝑛). N and L are the given pixel and band, respectively [24, 

40] (Eq. 5). 

 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ √

1

𝐿
∑(𝑥𝑙𝑛𝑡𝑟𝑢𝑒

− 𝑥𝑙𝑛)
2

𝐿

𝑙=1

𝑁

𝑛=1

 

 

However, RMSE is an indirect measure which only 

shows how the model fits the data, though it is possible to 

achieve good reconstruction errors with poor abundance 

and/or spectral variability retrieval. In this context, 

classification maps were additionally used to assess the 

methodology. Even though, there exists some studies using 

abundances maps as inputs for classification [41, 42], 

classification maps are used as another evaluation process of 

the different unmixing models as well as to solve the 

hyperdimensionality of the data. 

C. HSI hyperdimensionality solving proposal 

As dimensionality increases in HSI, more training 

samples is demanded to obtain thematic maps with higher 

accuracy. In literature [10, 43-46], to solve this curse of 

dimensionality problem, data reduction through band 

selection or feature extraction, reduces dimensionality 

without the need to increase the number of training samples 

[43, 47, 48]. Usually, feature extraction and feature selection 

methods were used by selecting the optimal bands or the 

optimal subset from the HSI [3]. These techniques 

significantly reduce the number of suitable components 

compared to the original dimension [49]. During the last 

decades, researchers have studied several approaches to 

alleviate the Hughes phenomenon such as Principal 

Component Analysis (PCA), Minimum Noise Fraction 

(MNF) or Independent Component Analysis (ICA). On the 

other hand, Kernel-based methods, such as Support Vector 

Machine (SVM), have demonstrated their performance in 

handling high-dimensional data [50].  

Thus, the study proposed to use spectral unmixing models 

which consider the spectral variability of the different 

classes in order to obtain reasonable abundances maps that 

will be used for obtaining accurate thematic maps.  

In this context, Maximum Abundance Classification 

(MAC) is proposed, which takes in the abundance maps, the 

largest abundance vector into the pixel, to set it as a class. 

Finally, the performance of the classification maps is 

assessed both in terms of visual comparisons with general 

field information on known vegetation structures and using 

the confusion matrix, whose information is summarized by 

the Overall Accuracy, OA, defined as the ratio of the 

number of validation pixels that are correctly classified to 

the total number of validation pixels irrespective of the class 

[51]. In order to obtain the confusion matrices, the testing 

samples obtained in the first study case were used. 

V. RESULTS AND DISCUSSION 

This section presents the results of the different spectral 

unmixing methods in the different scenes. 

The first step was to set the spatial regularization 

parameters for ELMM and RELMM. Specifically, the 

values used were, λS=0.01, λa=0.01 and λpsi=0.02, which 

are part of Sk, ℛ(A) and ℛ(ψ) in Eq. 3 and 4, for ELMM 

and RELMM and λS0
= 10, in the RELMM model. They 

were selected by trial and error, leaving at the beginning λa 

and λpsi at zero, in order to set a suitable λS, which is the 

most crucial parameter to tune. It is observed visually both 

the abundance and scaling factor maps. A high value of λS 
means that local variants of the endmembers will not drift 

too far away from the (scaled) reference, whereas a small 

value means that the local endmembers will get further away 

from the actual lines. In the last case, the data fit will be 

better, and the abundance maps will be sparser as a result, 

since local endmembers will tend to match individual pixels. 

To get an insight of what happens, scatterplot of the data 

and local endmembers should be performed, using the first 

three principal components. Once λS is well set up, it is 

better to choose small λa and λpsi values. If they look very 

similar to the ones without the spatial regularizations, the 

values can be increased. On the other hand, if the abundance 

maps look too smooth (or even completely uniform), they 

are way too large and the user could decrease both λa and 

λpsi.  

Next, the results of the two study cases are presented. 

A. Study case 1: Spectral Unmixing using robust 

endmembers 

As it was explained in Section III, the study is divided in 

two study cases. This subsection shows the results of the 

different spectral unmixing methodologies when robust 
endmembers are used as inputs.  

Table I shows the average reconstructed RMSE obtained 

for the four different methods in the different scenes (in bold 

appears the best RMSE value for each scene) while Fig. 5 

shows the RMSE maps. ELMM and RELMM outperform 

the FCLSU and SCLSU approaches as it was expected. It 

can be clearly appreciated the worst accuracy of FCLSU and 

SCLSU in areas with considerably spectral variation (Areas 

2, 3 and 4) and the good performances of ELMM and 

RELMM even in such complex scenes. The spatial 

regularization on the abundances improves the results for 

ELMM and RELMM, being more robust to noise on the 
measured data, as well as on the spectral signatures. The 

spatial regularization allows to precisely estimate the 

spatially correlated abundances, removing the noise and the 

uncertainty that affects to FCLSU and SCLSU [24].  

 

A visual representation of the extracted abundances for 

Area 2 is shown in Fig. 6. Regarding the abundance maps, 

every model, except for FCLSU, obtain plausible 
estimations at visual level. However, most of endmembers 

are purer for RELMM and ELMM than for SCLSU. The 

scaling factors extracted by SCLSU, ELMM and RELMM 

are displayed in Fig. 7. They show the spectral variation of 

the different classes.  

(5) 

TABLE I 

RMSE VALUES FOR EACH SCENE USING ROBUST ENDMEMBERS 

FOR THE UNMIXING (×10-3). 

 AREA 1 AREA 2 AREA 3 AREA 4 

FCLSU 70.21 79.97 183.48 121.65 

SCLSU 5.44 5.77 11.37 8.61 

ELMM 0.61 0.63 1.09 0.66 

RELMM 0 57 0.61 1.07 0.72 
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As extracting spectral variability is difficult or even 

impossible when the materials have low abundances, pixels 

with abundance below 0.5 are removed from the scaling 
factor maps for a better interpretation. SCLSU scaling factor 

maps are difficult to interpret as only one scaling factor is 

estimated for all the endmembers. ELMM and RELMM 

scaling factor maps show correlation with radiometric and 

topographic changes, being more evident in P. lasiospermus 

and bare soil maps. In case of Area 2, RELMM gets higher 

values regarding the radiometric variability due to the sensor 

pass, being more evident in P. lasiospermus map, leading 

ELMM and RELMM to deal with the induced spectral 

variability. Again, RELMM obtains higher scaling factor 

values than ELMM, due to its ability to better adjust the 
references. Therefore, ELMM and RELMM obtain the best 

results in terms of abundance estimation, as well as spectral 

variability recovery.  

In the case of ELMM and RELMM, the spatial 

coherency of the abundances and the scaling factors allows 

to recover the parameters more precisely. Besides, the 

explicit computation of a different scaling factor for each 

pixel and material allows obtaining sparser variability maps, 

which also makes ELMM and RELMM stronger in terms of 

interpretability. Moreover, the spatial regularization 

parameters of ELMM and RELMM allow to estimate the 

spatially correlated abundances, removing the noise and the 
uncertainty, which affects SCLSU, when two endmember 

variations of two different materials share a common global 

shape, and can look quite similar after appropriate scaling 

[24]. 

Fig.8 shows a scatterplot of the dataset (in blue) and the 

endmembers generated by the model (in red) using the first 

three components of a Principal Component Analysis (PCA) 

for Area 2. It can be observed that the different materials are 

equally affected by the spectral variability, being the shape 

of the variability (red data) or the manifold of the 

endmember variants, complex. All materials are affected by 
spectral variability and the conic model advocated by the 

ELMM and RELMM seems to fit the data. Besides, 

RELMM scatterplot is sparser than ELMM, meaning that 

RELMM can adjust the reference and thus, is able to obtain 

sparser abundances maps. 

Finally, Table II and Fig. 9 show the overall accuracy (OA) 
values and the MAC classifications maps obtained from the 

abundance maps of the unmixing models, respectively. As it 

was expected, ELMM and RELMM obtain the highest OA, 

while FCLSU obtains the lowest OA. Area 1 shows less 

differences within the OA obtained from the different 

unmixing models, as this area lacks spectral variability. The 

difference between the OA values obtained from ELMM 

and RELMM abundances maps is small (less than 2% in 

case of Area 1 and less than 0.36% in Areas 2, 3 and 4). 

Regarding the classification maps, there is no great visual 

differences within SCLSU, ELMM and RELMM, whereas, 
FCLSU classification map clearly shows the radiometric 

change in the scene, showing how the model does not 

consider the spectral variability. Regarding the results 

presented in Fig. 9, some misclassifications can be 

identified. For instance, some pixels classified as urban (red) 

or roads (black) appear in bare soil areas. Moreover, in the 

FCLSU map, S. supranubius is incorrectly assigned to urban 

and road pixels in some areas. Specifically, classes with 

lower classification accuracy in the four areas analyzed 

are S. supranubius and urban (ca. 60% well classified versus 

ca. 80% for the remaining classes). Finally, analyzing the 

overall accuracy (OA%) results, it is obvious how SCLSU, 
ELMM and RELMM are considering the spectral variability 

regarding the blooming of plant individuals. 

 

FCLSU 

    

 

SCLSU 

    

ELMM 

    

RELMM 

    

 (a) (b) (c) (d) 
 

Fig. 5.  RMSE maps for: FCLSU, SCLSU, ELMM and RELMM of (a) Area 1, (b) Area 2, (c) Area 3 and (d) Area 4. 

  

TABLE II 

OA VALUES IN PERCENTAGE (%) RESULTING FROM THE ABUNDANCES 

MAPS OBTAINED WITH ROBUST ENDMEMBERS. 

 AREA 1 AREA 2 AREA 3 AREA 4 

FCLSU + MAC 76.06 78.81 85.63 64.81 

SCLSU + MAC 77.08 86.95 87.43 92.62 

ELMM + MAC 77.09 87.23 87.82 92.84 

RELMM + MAC 78.78 87.00 88.18 92.7 
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Fig. 7.  Scaling factor maps from SCLSU (one scaling factor for all the endmembers), ELMM and RELMM with > 0.5 abundances of Area 2. (a) P. canariensis, (b) S. supranubius, (c) D. bourgaeana, (d) P. 

lasiospermus, (e) Urban, (f) Road and (g) Bare soil.  

  

 

 

(a) (b) 

 
Fig. 8.  PCA scatterplot for (a) ELMM and (b) RELMM of Area 2. In blue the data and in red the extracted endmembers. 
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B. Study case 2: Spectral Unmixing using non-robust 

endmembers.  

As it was observed in Tables I and II, even though ELMM and 

RELMM got better results, there is not too much difference 

between them. Both models consider the spectral variability of 
endmembers, but if this spectral variability is included in the 

model by taking many robust endmembers, the robustness of 

RELMM is not significant. Thus, it seems RELMM will not 

improve the results much, leading to even slightly worse 

performance. 

Besides, as it is explained in [24], if the abundance of one 

material is low in a pixel, a different scaling factor for this 

material will change the orientation of the simplex related to 

this pixel, but the edge of the simplex, linking the other two 

(scaled) endmembers, will not change. Hence, the abundance 

coefficients for the other two materials will not change much 
either. In this context, both ELMM and RELMM do not 

require pure pixels to extract the spectral variability of a 

material efficiently, but only a significant abundance 

contribution of this material in the considered pixel, or in the 

neighboring area. Taking this fact into consideration, in this 

part of the study, non-robust endmembers were acquired 

selecting 1, 3, 5 and 10 pixels per class. In this way, the 

spectral variability is not considered in the endmembers. 

Since, the objective was to observe the robustness of RELMM 

and ELMM, only both models are included in this study case. 

 Table III shows the RMSE values for ELMM and RELMM 

using 1, 3, 5 and 10 pixels to obtain and average endmember 
for each class. The RMSE values are mostly the same for both 

methods, except in some cases (Area 2 and Area 3), where 

RELMM got slightly better RMSE. Moreover, the values 

show a minimum change when more than 1 pixel is taken as 

reference endmember. 

 

 Abundances and scaling factor maps (removing abundances 

<0.5) for ELMM and RELMM using endmembers from 1 and 

10 pixels in Area 4 are shown in Fig. 10 and 11, respectively. 
It can be observed that even considering 1 or 10 pixels to 

obtain the reference endmembers, both methods obtain 

plausible abundances, although abundances values are higher 

in the case of taking 10 pixels for the reference endmember. 

Finally, we can assume the good performance of both methods 

as the radiometric change is solved even taking only 1 pixel 

for each class and using it as a reference endmember. 

Regarding the scaling factor maps, it is observed that the 

values decrease if 10 pixels are considered for the references 

endmembers that is when more spectral variability is taken for 

the reference endmembers. In this case, S. supranubius, P. 
lasiospermus and bare soil get lower scaling factors in the 

center of the ravine, as well as in the bottom of the image 

where sensor swath changes, again, both models have to deal 

with the induce spectral variability. 

The qualitative results of Area 4, using scatterplots of the 

data in the recovered endmembers of ELMM and RELMM 

using endmembers obtained from 1 and 10 pixels, are shown 

in Fig. 12. It is observed how the endmembers in red are close 

to the edge of the cone defined by the data when the number 

 

  

   

 
  (a) (b) (c) 

   

 

 

 

 

 

  
   (d) (e) 

 

 

Fig. 9. (a) Ground Truth Samples and Classification maps obtained by: (b) FCLSU, (c) SCLSU, (d) ELMM and (e) RELMM after applying a MAC 
classification in Area 2. 

TABLE III 

RMSE VALUES FOR EACH SCENE USING NON-ROBUST ENDMEMBERS FOR THE 

UNMIXING (×10-4). 

 
AREA 1 AREA 2 AREA 3 AREA 4 

ELMM_1p 7.96 9.80 14.90 7.87 

RELMM 1p 7.17 7.41 13.52 8.01 

ELMM_3p 6.08 7.39 12.14 7.21 

RELMM_3p 5.60 6.19 10.92 7.45 

ELMM_5p 5.73 6.98 11.42 7.61 

RELMM_5p 5.66 6.29 10.77 7.55 

ELMM_10p 5.83 6.67 11.51 7.26 

RELMM 10p 5.71 6.27 10.68 7.53 
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of averaged endmembers is higher, meaning that they capture 

more spectral variability. Moreover, RELMM scatterplots are 

sparser than ELMM, as it occurs in Fig. 8, leading to a better 

adjustment of the reference endmembers. 

 OA results obtained from MAC classification are shown in 

Table IV. Accurate classification maps with OA over 70% and 

achieving values over 84% for the best case depending on the 

area. Moreover, in most of the cases, RELMM outperforms 

ELMM. Finally, Fig. 13 shows that classification goodness, 
using ELMM and RELMM, does not improve when the 

robustness of the endmembers increases. 3-5 pixels are enough 

to generate the reference endmembers in order to obtain an 

accurate classification map.  

It is observed how in this part of the study, it is not 

necessary to get an accurate set of training samples as in the 

first study case. Only few pixels per class are needed for the 

spectral unmixing and none for the classification, obtaining 

accurate classification maps with few knowledge and 

information of the scene and less effort, avoiding the Hughes 

phenomenon.   

VI. CONCLUSIONS 

The paper analyzes different spectral unmixing models: a 

traditional LMM, the FCLSU, and three models in which the 

spectral variability as well as the spatial information are 

considered, SCLSU, assuming a scaling factor that affects 

equally to all the endmembers present in a pixel, and ELMM 

and RELMM that assume different scaling factors for each 

endmembers. The study has been conducted in an ecosystem 

with high spectral variability within the endmembers due to 

topography changes, sensor’s radiometric change and an 

intrinsic spectral variability due to the blooming of plant 
individuals. In order to evaluate the methods, quantitative 

results using reconstructed RMSE, as well as classification 

maps obtained from the abundances maps, are presented. 

The analysis has been divided in two different study cases. 

In the first one, the four models were analyzed by taking a 

robust set of endmembers that considers the spectral 

variability of the classes. Regarding the challenge that the 

ecosystem represents, ELMM and RELMM have shown good 

performance in terms of abundance estimation and spectral 

variability retrieval, obtaining a significant lower RMSE than 

FCLSU and SCSLU and higher OA in the classification. Thus, 
both models can be successfully applied in images with high 

spectral variability due to topographic changes, but also in 

images with radiometric differences in each track during the 

airborne image sensing and the intrinsic spectral variability of 

plant species blooming, being experimentally confirmed to be 

well modelled by them. 

The second study case proves that ELMM and specifically, 

RELMM, are useful techniques for obtaining accurate 

classification maps with both a minimum knowledge of the 

scene and less effort. Thus, very few pixels were taken to 

obtain an average reference endmember for each class. In 

case, this RMSE does not decrease when increasing the 
endmembers robustness (from endmembers obtained from 1 

pixels to 10 pixels), meaning that increasing the endmembers 

robustness does not increase the precision of the abundance 

maps. Moreover, classification maps resulted by taking the 

abundance maps as inputs, using a hard classification model, 

RELMM obtains higher OA rather than ELMM, 

demonstrating that RELMM is more precise in an image with 

high spectral variability. Thus, the second study case allows 

analyzing the properties of each pixel, including additional 

information about the characterization of mixed pixels in the 

HSI by adding spectral variability. Hence, it proves that 
RELMM is robust to the absence of pure pixels in the scene, 

as well as to noise. Moreover, it is confirmed that 

classification does not improve when the robustness of the 

endmembers increases. Therefore, it is not necessary a high 

number of training samples, avoiding the Hughes phenomenon 

by using the abundances maps. 

Consequently, an analysis of the endmember variability has 

been carried out in both study cases, confirming the 

importance to use unmixing models which consider the 

spectral variability. Moreover, it can be concluded from the 

study, the good performance of the classification maps 
obtained from the abundance maps, as a tool for evaluating the 

unmixing models as well as for providing accurate 

classifications results. Nowadays, obtaining accurate thematic 

maps are very important in order to study climate changes 

concerns, population dynamics, anthropogenic pressure, etc., 

which are essential issues for developing ecosystem 

management plans. 

Finally, it would be interesting to test both ELMM and 

RELMM on other habitats with high heterogeneity and 

spectral variability. Future research would be devoted to study 

the spectral variability not only produced by the topographic 

changes but also by the health status of the species, drought 
effects and vegetation canopy. Besides, both models will be 

analyzed using drone imagery with higher spatial resolution 

(ca. 10 cm) in which the swath width is narrower and 

radiometric changes are more evident, as well as the 

topographic changes and the different structures of plant 

species, i.e. leaves, branches, flowers and shadows. 

TABLE IV 

OA VALUES IN PERCENTAGE (%) RESULTING FROM THE 

ABUNDANCES MAPS OBTAINED WITH NON-ROBUST 

ENDMEMBERS. 

 AREA 1 AREA 2 AREA 3 AREA 4 

ELMM_1p + MAC 72.44 82.89 72.55 90.86 

RELMM_1p + MAC 73.61 83.64 72.14 90.99 

ELMM_3p + MAC 91.25 83.68 84.91 94.21 

RELMM_3p + MAC 91.55 84.34 85.35 94.31 

ELMM_5p + MAC 91.29 82.04 85.26 94.86 

RELMM_5p + MAC 92.37 82.40 85.70 95.17 

ELMM _10p + MAC 88.44 82.36 87.69 95.06 

RELMM_10p + MAC 88.35 82.85 87.93 95.11 
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Fig. 10. Abundance maps estimated in ELMM and RELMM of Area 4 using 1 and 10 pixels for averaging the reference endmembers. (a) S. supranubius, (b) P. canariensis, (c) P. laiospermus, 

(c) Bare soil and (d) D. bourgaeana. 
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Fig. 11.  Scaling Factor Maps estimated by ELMM and RELMM in Area 4 using 1 and 10 pixels for averaging the reference endmembers. (a) S. supranubius, (b) P. canariensis, (c) P. laiospermus, (c) Bare soil and (d) 

D. bourgaeana. 
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This chapter includes the following article: E. Ibarrola-Ulzurrun, J. Marcello, C. 

Gonzalo-Martín, J. Martín-Esquivel. Temporal dynamic analysis of a mountain 

ecosystem based on multi-source and multi-scale remote sensing data. Ecosphere. 

Under review. 

This work is the final stage of the Thesis. After applying different pre-processing 

and classification techniques in the different types of imagery, and once the final 

products are obtained, a change detection analysis can be performed. Those final 

products obtained during the Thesis are not useful if they cannot be applicable in 

real scenarios. In this case, all the work performed during the Thesis has been used 

for the environmental management of a natural protected study area.  

This article proposes a framework to monitor complex ecosystems using remote 

sensing imagery. Firstly, a pre-processing of the data is needed in order to be able 

to compare multi-source imagery (MS and HS). Then, accurate thematic maps were 

obtained after applying advanced classifications algorithms to the multi-temporal 

data. Once the classification maps were generated, they can be compared by a post-

classification analysis, to detect changes in the vegetation during different years, not 

only for a global vegetation coverage, but a species level. 

In summary, an analysis of the ecosystem changes was carried out, with the 

support of J. Martín-Esquivel, the conservation manager from Teide National Park. 

The paper results corroborate and strengthen what it is directly observed in 

nature, analyzed by the Teide Managers. It is demonstrated that P. lasiospermus has 

extended rapidly, while S. supranubius has decrease its population during the last 

decades. Thus, thanks to remote sensing, it has been possible to study these changes 

in a large area, as well as obtaining quantitative results of how the species coverage 

has changed during years. 

The main contribution of this paper were: 

 A complete methodological framework to study changes in ecosystems 

through multi-sensor and multi-temporal remote sensing techniques was 

proposed. 

 This framework make possible to study large areas, and to obtain 

quantitative results of the coverage change of the species during a period 

of time. 

 Moreover, the framework proposed is ecological relevant, statistical 

credibility, effective, flexible and transferable to other systems. 
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ABSTRACT 

During the last decades, ecosystems have suffered a decline in natural resources 

due to climate change and anthropogenic pressure. Specifically, the European rabbit 

introduced by humans, as well as drought episodes, have led to a change in the 

vegetation structure of a mountainous ecosystem: Teide National Park (Spain). 

Teide managers studied, with field-based traditional methods, how the two 

keystone vegetation species, Spartocytisus supranubius and Pterocephalus 

lasiospermus have changed their dynamics in this vulnerable and heterogenic 

ecosystem. However, remote sensing is an important tool for classifying, monitoring 

and managing large areas in a fast and economic way. This work proposes a 

methodological framework to monitor the changes produced in this protected area 

using multi-source remote sensing imagery. The results strengthen and extent the 

analysis followed by the National Park managers, demonstrating that S. supranubius 

has decreased its population while P. lasiospermus has increased. Moreover, this 

study presents thematic maps of the species of interest, as well as its specific 

coverage at different dates, providing quantitative data difficult to get with 

traditional approaches. 

Keywords: remote sensing imagery, change detection, multispectral, hyperspectral, 

Support Vector Machine, invasive species. 
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INTRODUCTION 

Ecosystems are exposed to high pressure due to intensification of agricultural 

land use, tourism, development and climate change, being highly dynamic in space 

and time. Specifically, climate change is producing important variations in entire 

communities in those areas where it manifests most intensely, such as regions at 

greater latitude and areas of higher altitude. Thus, ecosystem deterioration has a 

strong negative impact in the local biodiversity, and might put rare and threatened 

species at a serious extinction risk (Pepin and Lundquist 2008, Spanhove et al. 

2012).  

In this context, to understand ecosystem dynamics and its consequences is vital 

for the success of their conservation and restoration, especially on the services they 

provide (Mueller and Geist 2016). Hence, it is important to implement accurate 

monitoring methodologies of land surface attributes, as it is critical for dealing with 

uncertainty in the management of large-ecosystems (Coppin et al. 2004, Förster et 

al. 2014). Hence, for large-scale monitoring efforts, two general approaches have 

been defined (Manley et al. 2000): retrospective and predictive. Retrospective 

monitoring seeks to detect changes in status or condition, while predictive 

monitoring seeks to detect indications of undesirable effects before they have a 

chance to occur or become serious. Both, retrospective and predictive monitoring 

deal about detecting changes in a large-scale area. In that regard, change detection 

could be defined as the process of identifying differences in the state of a 

phenomenon at different times (Singh 1989). The time and accuracy of change 

detection on the Earth’s surface can provide guidance for resources management by 

using multi-temporal datasets related to state of changes (Lu et al. 2004). 

An ecological monitoring program should ideally consider ecological relevance, 

statistical credibility, cost-effectiveness, flexibility and transferability to other 

systems, as the most important criteria (Mueller and Geist 2016, Mason et al. 2017). 

In this context, remote sensing could be an important tool to monitor ecosystems, at 

community and species level to detect population trends, that guide in the 

establishment of conservation objectives with the purpose of avoiding the transition 

to undesirable situations (Mason et al. 2017).  

Remote sensing can contribute to a better understanding of natural habitats, 

their spatial distribution and their conservation status, being considered an ideal 

data source for land cover classifications in large areas (Corbane et al. 2013). Hence, 

it is a valuable tool for monitoring and managing ecosystems, as it allows the 

acquisition of data in remote and inaccessible areas (Spanhove et al. 2012, Förster 

et al. 2014). Besides, it has been successfully used for many ecological studies, such 

as detecting land-cover changes, monitoring crops, deforestation, forest fires, 

estimating carbon sequestration, detecting vegetation stress and other applications 

(Aplin 2004, Spanhove et al. 2012, Alqurashi and Kumar 2013). This technology is 
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The National Park is formed by a large caldera, inside which the Teide volcano 

rises up to an altitude of 3,718 m, being the highest peak of Spain. According to the 

records in the database of the Teide National Park, a total of 206 vascular plants, 

mostly herbaceous, acclimated to the stressed environmental conditions of high 

altitude, grow up. 7% of these taxons are endemic from Teide National Park, 

whereas the 15% are endemic from Tenerife and 32% are endemic from Canary 

Islands. The adaptations to the altitude of these species are manifested in the shape 

of the leaves (Lausi and Nimis 1986), the canopy and the physiology of the plants 

(Perera-Castro et al. 2017b), which has been well studied in the case of the 

Spartocytisus supranubius (Teide broom) (González-Rodríguez et al. 2017) and the 

pine Pinus canariensis (Canary pine) (Brito et al. 2014). Indeed, S. supranubius is one 

of the most important plant species, as well as P.canariensis, Descurainia bourgaeana 

(Hierba pajonera) and Pterocephalus lasiospermus (Rosalillo de cumbre). The latter 

is particularly surprising, since in the middle of the last century, it was considered a 

very rare species, of which only a few specimens were known (Sventenius 1946). 

However, nowadays, it is the most abundant species in the National Park, possibly 

due to its thermophilic character (Perera-Castro et al. 2017a) and its low palatability 

for herbivores (Cubas et al. 2018). Figure 1 shows the species selected to the study. 

Ecosystem description and problematic 

The Teide National Park has been historically object of several human uses, 

mainly led by the grazing of goats and the extractive activities of soil and wood of S. 

supranubius. Nowadays, goats have been eradicated, while extraction of wood is 

considered a traditional activity of low intensity, being beekeeping the only 

remaining activity. The greatest current challenges for the management of the Park 

are public use, herbivory pressure due to rabbits and droughts episodes and 

temperature increase (climate change). Regarding public use, it is about making 

compatible the enjoyment of nature, by more than four million visitors a year, with 

its conservation. 

The presence of herbivores continues to be a factor of pressure on the flora, 

especially the European rabbit (Oryctolagus cuniculus). The rabbits were introduced 

on Canary Islands during XV-XVI centuries by the Castilian conquerors, but their 

populations have increased in the last decades, reaching densities of up to 3 

rabbits/ha some years, because the climate in the summit is becoming less cold 

(Martín et al. 2012). They play a key role in the functioning of the ecological systems 

(Chapuis et al. 2004). Oryctolagus affects ecosystems by producing changes in the 

structure and composition of the soil, as well as in the richness and diversity of plant 

species. Cubas et al. 2018 studied how rabbits influenced the population dynamics 

of two of the most abundant plants of this habitat, S. supranubius and P. lasiospermus, 

demonstrating an antagonistic effect: while rabbits limited the expansion of S. 

supranubius because when feeding on their seedlings prevented the regeneration of 

the plant, at the same time they favored the expansion of P. lasiospermus because 
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this plant was able to take advantage of the extra nutrients contribution from the 

latrines of the herbivore and it was less palatable than the brooms. This study was 

made in small areas of the Park through traditional field-based assessment methods.  

S. supranubius is the key species of the high mountain ecosystem of Tenerife. Its 

populations were reduced at the beginning of the last century until the declaration 

of the Teide National Park led to the suppression of pastoral activities in the sixties. 

Since then, their populations experienced a considerable recovery, however, this 

positive trend slowed down in the 1980s, when episodes of death began to appear 

matching with a strong increase in temperature, drought episodes and, probably, an 

increase in rabbit populations. Extinction events of S. supranubius affect the entire 

National Park but are most notable in the southern area where extreme drought 

severely reduced the secondary growth of brooms (Olano et al. 2017, Cubas et al. 

2018). The dendrochronological analyses, elaborated by Olano et al. 2017, studied 

the impact of the droughts of 2008 and 2012, underlining that they were one 

important stress factors behind the death of S. supranubius. 

Remote sensing can complement and add relevant information to Cubas et al. 

2018 work, covering a larger area of study and quantifying the surface area of the 

same species considered in this study, as well as other important species of the Teide 

National Park. 

Remote sensing framework 

Remote sensing involves measuring electromagnetic radiation from features 

on the Earth’s surface, providing a basic representation of land cover variation 

(Aplin 2004). In this context, change detection is one of the most important 

applications in remote sensing (Mouat et al. 1993, Petit and Lambin 2001, Volpi et 

al. 2013). It aims to identify the changes occurred by jointly analyzing two or more 

images over the same geographical scene at different times (Gong et al. 2016). 

The ideal situation would be to have data from the same sensor, same dates 

during different years and under same conditions; however this is not always 

possible, so the use of multi-source data is the best approximation. In fact, the 

integration of multi-source and multi-temporal remote sensed imagery is one of the 

most challenging task and an active area in the field of change detection (Lu et al. 

2004, Jianya et al. 2008, Volpi et al. 2013, Gong et al. 2016). Moreover, the use of 

multi-source images for change detection is worth to be considered and researched 

deeply, while multi-temporal imagery has the potential to compensate for possible 

bias in the spectral information caused by the plants being in different phenological 

phases. 

Besides, the type of imagery is a major factor in the classification analysis, 

and hence, in change detection studies. The evolution of spaceborne remote sensing 

has led to the introduction of advanced multispectral (MS) and hyperspectral (HS) 
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imagery from the visible to the near infrared spectrum (400 – 2500 nm). MS satellite 

imagery with three to eight bands is commonly used in land cover classification, 

vegetation studies, texture, land cover changes, forest fires and others (Rodriguez-

Galiano et al. 2012, Feilhauer et al. 2013). The launch, in the last decades, of high 

spatial resolution satellite sensors (i.e. IKONOS, Quickbird, Worldview, etc) have 

been an advance of remote sensing in biodiversity analysis and monitoring. Also, for 

more heterogeneous ecosystems, such as the shrublands or tropical forests, high 

spatial resolution HS images are ideal for habitat monitoring (Jiménez-Michavila 

2011) because the availability of tens to hundreds of spectral bands provides more 

information to discriminate and analyze the status of different species. The lack of 

HS satellite imagery with high spatial resolution has led to the use of airborne HS 

sensors. HS airborne imagery allows the simultaneous acquisition of spectral bands 

with high spatial resolution, increasing the possibility of accurately discriminating 

the land covers of interest (Fauvel et al. 2013, Ballanti et al. 2016). However, HS 

imagery is more expensive and requires higher computational cost. 

In this context, classifying the species of the Teide National Park require a 

spatial resolution less than 1 meter in order to discriminate at species level due to 

the complexity of the ecosystem, with mixed vegetation and small shrubs. Therefore, 

the change detection study, covering 15 years, was carried out using multi-source 

and multi-temporal data. Three different very high resolution images were used in 

the study, two MS provided by the Quickbird (QB) and Worldview-2 (WV-2) sensors, 

and one HS recorded by the CASI 1550i sensor (Compact Airborne Spectrographic 

Imager) (Table 1 and Fig. 2).  

Table 1. Specifications of the multispectral images: Quickbird and Worldview-2; 

and the hyperspectral image: CASI. 

 

 
Spatial 

resolution 

Spectral 

resolution 

Acquisition 

date 
Product References 

QB 
MS: 2.4 m 

PAN: 0.65 m 

4 MS bands 

1 PAN band 
26th May 2002 Orthoready 

(Digital 

Globe) 

WV-2 
MS: 1.85 m 

PAN: 0.48 m 

8 MS bands 

1 PAN band 
16th May 2011 Orthoready 

(Digital 

Globe) 

CASI 0.75 m 68 HS bands 1st June 2017 Level 2c 
(de Miguel 

et al. 2014) 

Level 2c: Radiometrically and atmospherically corrected, and orthorectified. 
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Figure 2. Remote sensing imagery in RGB color composite: (a) Quickbird of 2002 

(R: 3, G: 2, B: 1); (b) Worldview-2 of 2011 (R:5, G: 3, B: 2); (c) CASI of 2017 (R:29, 

G: 20, B: 12). 

The date is an important factor in the selection of the imagery to be analyzed. 

Thus, the Teide images acquisition were done during the end of the spring season as 

the vegetation species have greater spectral separability. 

METHODOLOGY 

When implementing a change detection project, the following major steps are 

involved (Lu et al. 2004): (1) image pre-processing; (2) classification; (3) selection 

of suitable techniques to implement change detection analyses; and (4) accuracy 

assessment. The methodology framework followed in the study is shown in Fig. 3. It 

was implemented using ENVI 5.1 image processing software (Exellis Visual 

Information Solutions) and Matlab software (The MathWorks, Inc.). 

 

Figure 3. Diagram followed in the change detection study. 

Pre-processing 

Prior to a land cover change analysis, some pre-processing steps are necessary 

to standardize the multi-source and multi-temporal images. Remote sensors 

provide raw data images; thus, it is necessary to apply correction techniques and to 

(a) (b) (c) 
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perform image pre-processing in order to obtain high quality imagery (Ibarrola-

Ulzurrun et al. 2018).  

Radiometric and Atmospheric correction. Apart from the radiometric calibration to 

convert digital numbers to radiance values, there are different ways of correcting 

remote sensing data for atmospheric effects: simple image-based methods and more 

complex algorithms based on a radiative transfer model of the atmosphere. In this 

work, complex models were applied. Specifically, the Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) to the satellite data (Marcello et al. 

2016), and the Atmospheric Correction (ATCOR-4) to the airborne imagery (de 

Miguel et al. 2014). 

Pansharpening and Resizing. High resolution MS platforms record data 

simultaneously by using MS and panchromatic (PAN) sensors, providing both types 

of imagery of the same scene with different spatial and spectral resolution. The MS 

image is characterized by having higher spectral resolution, while the PAN image 

obtained from this sensor has a higher spatial resolution. Image fusion, or 

pansharpening, allows to improve the spatial quality of the MS image. Thus, the 

pansharpening data fusion technique is defined by the process of merging MS and 

PAN images to create new MS fused images with higher spatial resolution. This 

process is very important in the analysis of heterogeneous and mixed shrublands 

ecosystems, where the size of the plants to be analyze is small. 

After a detailed review of the state-of-art in pansharpening techniques, 

pansharpening algorithms achieving optimal performance were assessed and 

selected in previous studies performed for the Teide National Park (Ibarrola-

Ulzurrun et al. 2017a, Ibarrola-Ulzurrun et al. 2017b). Thus, it was decided to use 

the Wavelet ‘à trous’ algorithm to perform the pansharpening process in QB and WV-

2 imagery to increase the spatial resolution by a factor of 4 with the minimum 

degradation of the spectral information. 

The CASI imagery does not have a PAN image, however, as it appears in Table 1, 

its spatial resolution is higher than both MS images (QB and WV-2) because CASI 

flies on board an aircraft instead of a satellite at much higher altitude. Thus, a pixel 

resizing was performed in order to obtain the same pixel size (0.5 meters), using 

Nearest Neighbor algorithm (ENVI 2004), to avoid the mixing of information from 

neighboring pixels. 

Orthorectification. Orthorectification schemes were applied in order to minimize the 

distortions manly induced by the topography. Some geometric error sources could 

be the variation of the movement in the platform and in the measuring instruments, 

the viewing angles of the sensor, the atmosphere conditions, Earth curvature and 

rotation, topographic effects, etc. In this context, orthorectification was necessary as 

we are dealing with a mountainous ecosystem. A RPC (Rational Polymodal 
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Orthorectification) model was performed which replaces the rigorous sensor model 

with an approximation of the ground-to-image relationship (ENVI 2004). The 

orthorectification errors in each scene were compared visually with images 

obtained from GRAFCAN (Cartografía de Canarias S.A.) and quantitatively with 

existing geodesic points (http://visor.grafcan.es/visorweb/). The CASI image was 

orthorectified by georeferenced hemispherical-directional reflectance factor (de 

Miguel et al. 2014). 

Co-registration. Image co-registration is the process of geometrically aligning two or 

more images. Precise co-registration of the images is required in change detection 

studies. The importance of accurate spatial co-registration is obvious because large 

spurious results of change detection will be produced if there is misregistration. It 

is difficult to achieve high accuracy in the co-registration between multi-temporal 

and multi-source images due to many factors, i.e. imaging models, imaging angles, 

topography, curvature and rotation of the Earth or sensor type and data acquisition. 

For these reasons, in a mountainous area, an orthorectification is needed first 

(Jianya et al. 2008), as it was performed in this study. The geometric relationship 

between the warp image to register and the base image was obtained through a 

number of representative and well distributed tie points and, then, applying the 

corresponding geometric transform. In the case of this study, a minimum of 40 

distributed ground control point (GCPs) were collected for each pair of images, 

considering the WV-2 data as the base image. A polynomial method was used with a 

Nearest Neighbor resampling (ENVI 2004) to fit the images in the overlapping areas, 

Dimensionality reduction for CASI imagery. Regarding HS image, due to the high 

number of spectral bands, an additional pre-processing step is sometimes required. 

HS classification is a challenging task due to the presence of redundant features, the 

imbalance among the limited number of available training samples for the 

supervised classification, and the high dimensionality of the data (Ghamisi et al. 

2017). Therefore, the high level of data dimensionality in HS imagery poses a 

problem for classifications because of the unbalance between the high 

dimensionality of the input data and the number of training samples used in the 

supervised classification process, known as the ‘Hughes phenomenon’ (Hughes 

1968). Hence, when the number of spectral bands (dimensionality) increases, with 

a constant number of training samples, the accuracy of the statistics estimation 

decreases (Ghamisi et al. 2015). To solve this issue, data reduction through band 

selection decreases dimensionality without the need to increase the amount of 

training samples.  

In a previous study, Ibarrola-Ulzurrun et al. 2017c compare the performance of 

different dimensionality reduction techniques and assessed strategies for selecting 

the most suitable number of components to increase the performance in the 

classification of CASI imagery. The study concluded that Minimum Noise Fraction 

(MNF) was the most suitable dimensionality reduction technique, which has also 
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𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

 

𝑀𝑆𝐴𝑉𝐼2 =  
2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2
 

After calculating both vegetation indices, boxplot analyses were obtained in 

order to select the most suitable vegetation index to distinguish between vegetation 

and non-vegetation areas. Then, the vegetation index threshold was used to create 

a mask to remove the non-vegetation pixels to subsequently, classify vegetation 

areas at species level. 

Classification 

Remote sensing classification assigns a unique label to each pixel vector so that 

it is well-defined by a given class with a degree of uncertainty (Xie et al. 2008, 

Bioucas-Dias et al. 2013). The major steps involved in the classification step may 

include determination of a suitable classification system, such as selection of 

training samples, selection of a suitable classification model, and accuracy 

assessment. The user needs the scale of the study area, the economic state, and the 

analyst skills, are important factors influencing the selection of the data, the design 

of the classification procedure, and the quality of the classification results (Lu and 

Weng 2007).  

Supervised classification methods are based on learning an established 

classification from a training dataset, which contains the predictor variables 

measured in each sampling unit and assigns prior classes to the sampling units (Xie 

et al. 2008). Training samples are usually collected from fieldwork or using fine 

spatial resolution images. In the case of this study, several field observations 

campaigns were carried out, to provide accurately located and quantitative ground 

reference data for each vegetation species of interest. Random sampling was used 

to select both training and testing Regions of Interest (ROIs) for the classification. 

This procedure was difficult to implement because of the variability of species 

spatial distribution and the small vegetation patches.  

The first step in the classification process was to determine the classes 

appearing in the study area and obtain the database set of training and testing ROIs 

for each one. The classes were chosen according to criteria of representativity and 

abundance. The selected species were: S. supranubius, P. lasiospermus, D. 

bourgaeana and P. canariensis (Fig. 1). In order to obtain reliable classification maps, 

the training and testing samples were selected during the field observations in well-

known sites around the study area.  

(1) 

(2) 
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Regarding the classification model, Support Vector Machines (SVM) (Cortes and 

Vapnik 1995) have demonstrated their effectiveness in several remote sensing 

applications  as well as in HS classification (Camps-Valls et al. 2008, Ballanti et al. 

2016). SVM contain a machine learning algorithm that separates classes by defining 

the optimal hyperplane between them, based on support vectors that are defined by 

training data (Mountrakis et al. 2011). Specifically, several researches address the 

problem of very high resolution classification by using SVM with a lower 

computational cost (Bruzzone and Carlin 2006, Ibarrola-Ulzurrun et al. 2017b, Xia 

et al. 2017). SVM was also selected because another previous study carried out in 

the same study area (Ibarrola-Ulzurrun et al. 2017b), comparing different 

algorithms, demonstrates the SVM capability to obtain accurate classification maps.  

Evaluation of classification results is an important process in the mapping 

procedure. Thus, the statistical accuracy assessment used in the study was the 

standardized confusion Error Matrix. The confusion matrix approach is the most 

widely used and reports two global accuracy measurements, Overall Accuracy and 

Kappa coefficient. Kappa coefficient describes the proportion of correctly classified 

validation sites after random agreements are removed (Rosenfield and Fitzpatrick-

Lins 1986). Moreover, it is recognized as a powerful method for analyzing a single 

error matrix and for comparing the differences between various error matrices (Lu 

and Weng 2007). Finally, combining classification with preliminary feature 

extraction and reduction techniques increase the classification accuracy.  

Change Detection Analysis 

The final step in the framework (Fig. 3) is the analysis of changes. After a 

revision of the state-of-art of different change detection methods, the post-

classification technique was decided as the most suitable method for the study. It is 

a useful technique for extracting land used and land cover information, which 

independently classifies each image and compares the classified maps on a pixel-by-

pixel basis to identify changes. Besides, it minimizes the impacts of atmospheric, 

sensor and environmental differences between multi-temporal and multi-source 

images. Thus, no precise atmospheric correction is strictly required during the pre-

processing of each scene. Moreover, it is useful because it provides details about 

changes and avoids selecting appropriate thresholds (Coppin et al. 2004, Alqurashi 

and Kumar 2013).  

RESULTS 

Pre-processing results 

After the radiometric and atmospheric corrections, the wavelet ‘à trous’ 

pansharpening technique was applied. The spatial resolution obtained after the 

pansharpening step and the resizing was 0.5 meters for both MS and HS imagery. 
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Fig. 5 shown the spatial improvement of the MS bands and the importance of this 

step due to the small size of vegetation. Afterwards, orthorectification was carried 

out, achieving an improved error around 2-2.5 meters (reference image error ca. 36 

meters) (Fig. 6). Once both satellites images were orthorectified, a precise image co-

registration was performed to almost achieve subpixel accuracy.  

  

(a)  (b)  

Figure 5. (a) Original Multispectral image and (b) fused image. Up: Quickbird 

images; Down: Worldview-2 images. 

Regarding the dimensionality reduction of CASI imagery, a selection of the 

suitable components was carried out analyzing the eigenvalues and the standard 

deviation values of the entropy (Ibarrola-Ulzurrun et al. 2017c). Besides, a visual 

assessment of the MNF components was made to determine which components are 

spatially coherent and which contain noise. Based on this procedure, a total of 8 

components (Fig. 7) were chosen without losing relevant information for the 

vegetation classification for the final classification, instead of the original 68 bands. 
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Figure 8. NDVI and MSAVI boxplot diagrams for: (a) QB, (b) WV-2 and (c) CASI. 

Table 2. NDVI threshold to discriminate vegetated and non-vegetated areas in each 

image. 

 Threshold 

QB 2002 0.18 

WV 2011 0.22 

CASI 2017 0.20 

 

Finally, Fig. 9 (up) shows the pre-processed and masked images used for the 

classification step. It can be appreciated how the vegetated area has increased from 

2002 to 2017. 

(a) 

 

 

(b) 

  

(c) 
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(a) (b) (c) 

Figure 9. Up: Masked and pre-processed images: (a) QB, (b) WV-2 and (c) CASI. 

Down: Classification maps: (a) Quickbird, (b) Worldview-2 and (c) CASI imagery 

(light green: S. supranubius; dark green: P. canariensis; violet: P. lasiospermus; 

yellow: D. bourgaeana). 

Classification results 

It is important to highlight the difficulty in classifying some types of vegetation 

due to the complexity of this heterogeneous shrubland ecosystem with mixed and 

small vegetation species such as D. bourgaeana. Hence, the major impact on the 

mapping of different types of vegetation is the misclassification created within the 

plant species, due to their spectral similarity and the mixing contributions from 

different covers in some pixels. Thus, it is important to create a reliable training 

sample database, which allows an accurate supervised classification to be made. 

This assumption leads us back to the importance of obtaining a fused image with the 

maximum spatial quality that allows to differentiate some small size species from 

others, avoiding pixel misclassification but also preserving the original spectral 

information. 

A visual inspection of each classification was carried out to identify areas of 

potential error contrast between classifications. Moreover, the results of the 

classification were quantitatively assessed using the confusion matrices and the 

Overall Accuracy and Kappa coefficient. 



189 
 

Table 3 shows the SVM classification Overall Accuracy and the Kappa coefficient. 

It can be observed that accuracy increases depending on the type of imagery, being 

CASI imagery the most suitable sensor to obtain accurate thematic map, followed by 

WV-2 imagery. The main reason is the higher available number of spectral bands for 

the classification. Fig. 9 (down) presents the thematic maps for each scene. It is 

visually observed, the increase of S. supranubius in 2015, followed by a decrease in 

2017. P. lasiospermus increases its coverage area from 2002 to 2017. D. bourgaeana 

seems to suffer a reduction of its cover area too, while P. canariensis remains stable. 

Table 3. SVM classification Overall Accuracy and Kappa coefficient. 

 Overall Accuracy (%) Kappa coefficient 

QB 77.99 0.632 

WV-2 85.03 0.741 

CASI 95.77 0.922 

 

Change Detection Analysis 

Table 4 and Fig. 10 show the total vegetation and species coverage in the 

different years. Knowing the spatial resolution (0.5 m of pixel size) of each scene, it 

is possible to obtain specific coverage values in km2. It is observed how the total 

vegetation has almost doubled since 2002. Moreover, it is demonstrated that P. 

canariensis and D. bourgaeana have barely changed their coverage area, as it was 

expected taking into account the previous works of Olano et al. 2017 and Cubas et 

al. 2018. On the other hand, P. lasiospermus has increased from 2002 to 2017, 

tripling its initial extent in the last 15 year; while S. supranubius has experienced an 

increase of 0.032 km2 from 2002 to 2011, however, its population has decreased by 

2017 to lower values than in 2002, with a net loss of 0.014 km2 in the 15 years 

analyzed. 

 

Figure 10. Vegetated area and plant species coverage in 2002, 2011 and 2017 in 

the different scenes. 
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Table 4. Vegetation and plant species coverage in % and km2 in the different 

scenes. 

 
QB 2002 WV 2011 CASI 2017 

 % km2 % km2 % km2 

Total vegetation 31.33 0.215 56.61 0.388 59.38 0.407 

P. canariensis 1.16 0.008 1.24 0.009 1.90 0.013 

S. supranubius 11.69 0.080 16.35 0.112 9.65 0.066 

P. lasiospermus 15.83 0.109 34.05 0.234 47.16 0.323 

D. bourgaeana 2.66 0.018 4.97 0.034 0.68 0.005 

 

The results are influenced by the many factors: sensor spatial resolution, mixing 

of species, classification accuracies, etc. However, they provide quite accurate 

information about the dynamics of the Teide ecosystem and it is possible to obtain 

reasonable trends of the vegetation changes in the habitat.  

DISCUSSION 

A complex ecosystem, with mixed vegetation and small size, was analyzed using 

remote sensing data, being a challenging methodological framework. Specifically, it 

was observed the necessity to perform accurate pre-processing steps in order to 

improve the spectral and spatial quality of the imagery. Vegetation indices were also 

applied to improve the final mapping accuracy. After performing the specific pre-

processing steps, it was possible to obtain quite reliable thematic maps applying the 

SVM algorithm, properly trained and parameterized, which were used for the 

change detection study.  

Multi-source and multi-temporal remote sensing imagery were used to 

complement and add accurate information to field observations for a future 

ecosystem management. Important outcomes of the study are the increase in the 

coverage of vegetation (practically doubled) in 15 years, the dominance of P. 

lasiospermus whose extension has almost tripled, and the decline of S. supranubius 

(despite the rebound of 2011), corroborating the works by Olano et al. 2017 and 

Cubas et al. 2018, for specific test locations. It surprises the rapid expansion of P. 

lasiospermus, a very rare species several decades ago, whose current predominance 

is accelerated vigorously, altering the landscape in this sector of the high mountain 

ecosystem. Undoubtedly, the aforementioned facilitating effect of herbivores, their 

better resistance to herbivory, and their own thermophilic character, are factors 

that help explaining their considerable increase in a warming scenario. 

Thanks to remote sensing, it has been possible to study those changes in a larger 

area, as well as obtaining quantitative results of how the species coverage and 

location have changed during years. However, some advanced tasks have to be 
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undertaken before satisfactory results can be achieved (i.e. suitable data, pre-

processing, develop accurate classification models, knowledge of the study area, and 

time and cost restrictions). In conclusion, the remote sensing framework proposed 

is ecological relevant, statistical credible, cost-effective, flexible and transferability 

to other systems giving a guidance to environmental managers to consider remote 

sensing as a useful tool. Moreover, hints and advices are given to facilitate the 

framework application to other habitats and ecosystems. 

Future studies will include the systematic change detection monitoring in the 

whole Teide National Park, using Worldview-2 and Worlview-3 imagery, in order to 

obtain more accurate results and with a continuity during years. Moreover, 

vegetation features, habitat heterogeneity, species richness, species-area 

relationships can be extracted from this study. Thus, specific research plans could 

be implemented following the proposed framework. 
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8.1. CONCLUSIONS AND CONTRIBUTIONS 

The general objective of the Thesis was the study of processing methodologies 

which, when applied to very high resolution multispectral and hyperspectral remote 

sensing imagery, serve to obtain accurate information for the conservation of 

natural areas. Advanced processing methodologies, applied to remote sensing data, 

have been reviewed, studied and evaluated for the subsequent monitoring and 

management of land resources in several complex and vulnerable ecosystems of 

Canary Islands (Spain). 

Novel and suitable methodologies have been compiled on: the acquisition of data 

of the study area and plant communities, the pre-processing (pansharpening, 

orthorectification, dimensionality reduction in HS imagery, etc.) and classification 

of MS and HS data at both pixel and object levels. In this context, pre-processing 

techniques, as well as spectral unmixing and classification methodologies for both 

MS and HS data, have been the main topics addressed in the Thesis. 

One of the most challenging aspect of this Thesis was the generation of reliable 

and accurate products in heterogeneous and complex ecosystems with plant species 

with small size and low leaf area. Usually, remote sensing are applied in non-

complex ecosystems, with well-differentiated classes and without high spectral 

variability within the image, such as different blooming dates within species, plant 

species variability due to the area, topographic changes, etc. Thus, it is shown during 

the whole manuscript the importance of the pre-processing techniques in this type 

of complex ecosystems. 

Specific conclusions have been discussed in the different chapters, but to 

summarize: 

1. Regarding the selection of the appropriate data for the characterization of 

the ecosystems to be analyzed, we can conclude the importance to choose the 

suitable imagery, depending on the final study purpose. For instance, it is 

demonstrated how Worldview satellite imagery would be the most suitable 

data to perform change detection studies at specific level in the considered 

ecosystem, covering a large area and achieving a good compromise between 

the spectral and spatial resolutions. 

Moreover, in-situ measures and ancillary data were essential during the 

processing of the data, such as ground truth data for the supervised 

classification, DEMs for the orthorectification, orthophotos for HS 

sharpening, etc. 

 

2. The second specific objective was to analyze, validate and apply advanced 

pre-processing algorithms to generate imagery with high spatial and spectral 

quality. During the Thesis, it was shown that the selection of accurate pre-

processing techniques is critical to improve the spectral and spatial quality 
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information of the imagery (atmospheric correction, image sharpening, 

orthorectification, etc.). 

Specifically, advanced pansharpening methods in MS imagery are important 

to obtain image with finer spatial detail, fundamental due to the small size of 

the plants to be discriminated. Moreover, pansharpening is studied not only 

as the most suitable technique for different ecosystems, but also as an 

essential step for high resolution imagery, in order to obtain accurate 

thematic maps. On the other hand, the fusion of airborne HS imagery with 

higher spatial resolution data (orthophotos, drone, etc.) can be an important 

pre-preprocessing for the monitoring of complex ecosystems. A 

comprehensive assessment has been carried out and the benefits and 

drawbacks of HS sharpening methods have been identified. 

 

3. Concerning the objective of developing specific products for the management 

of land resources, it has been highlighted during the whole work the 

challenge of obtaining accurate vegetation maps in some vulnerable and 

heterogenic ecosystems, as Teide National Park. As it was said in the specific 

objectives, the research difficulty is the generation of a robust and automatic 

methodology for the systematic mapping of heterogeneous ecosystems. In 

this context, the first remark is that those mixed ecosystems need advanced 

processing techniques and very high resolution data. For instance, object-

based classification provides better results in heterogenic ecosystems using 

VHR MS imagery. On the other hand, advanced unmixing techniques are 

needed to address the spectral variability of heterogenic and mixed 

ecosystems using HS imagery. In this case, it is possible to get suitable 

abundance estimations and accurate thematic maps, without applying 

hyperdimensionality reduction techniques, and thus, avoiding the “Hughes” 

effect. 

Regarding the classification methodologies, they have not been only used to 

obtain the vegetation maps at species level, but also as an indirect method to 

evaluate the importance of pansharpening, to assess the suitable number of 

components in HS data and to analyze the performance of spectral unmixing 

techniques. The most suitable and robust classification algorithm to apply in 

the MS and HS data was identified. 

 

4. The last specific objective was to study the variability of natural resources in 

the Teide National Park. The specific conclusions of this objective are 

described in detail in Chapter 7, in which a frame work selected for change 

detection in heterogenic land ecosystems was identified, after testing 

different options. Thus, we can conclude that remote sensing is an important 

tool for detecting changes in large areas in an automatic, continuous and 

effective way. It provides quantitative results of the species coverage and 

how they have changed during a temporal period. 

We can confirm that the Thesis provides important information of the 

performance of algorithms at different levels of the pre-processing chain. In 
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addition, a general framework for the processing of very high resolution MS and HS 

data has been developed, that could be used as a reference for the generation of land 

products in similar ecosystems. It has been shown that the thematic maps obtained 

by different methodologies, are accurate enough. Moreover, the potential used of the 

vegetation maps, at species level, for carrying out an environmental plan has been 

discussed. The information provided in this work is used at operational level by the 

Teide National Park managers. 

As a final though, the current society has effects on the natural environment, not 

only negative effects such as using the natural resources and degrading ecosystems, 

but also positive effects, protecting natural areas of interest. This Thesis allows the 

analysis of fundamental environmental parameters for different sectors of high 

socio-economic interest, since the economic impact of the natural resources used by 

humans is linked to tourism, pollution, loss of biodiversity, sustainable management 

of plant resources and climate change.  

8.2. FUTURE RESEARCH  

The outcome of the Thesis allows the scientific community to have a number of 

image processing techniques applicable to multi-source sensors. This enables the 

development of studies at the highest possible resolution and increases the potential 

of research for environmental management, especially in vulnerable and complex 

ecosystems. However, additional improvements can be undertaken. 

In this context, future research could be to: 

 Obtain accurate land products using HS drone imagery at a very high spatial 

resolution (for instance, less than 10 cm). This will lead to studies of specific 

conditions of the shrubs appearing in the ecosystems studied during the 

Thesis. Due to the ultra-high spatial resolution, chemical components of the 

small leaves can be analyzed and studied, the hydric stress of the plant 

species and the health status, as well as several physiological parameters. 

 

 Include ancillary data, such as orthophotos, LiDAR and SAR imagery, in the 

framework described during the Thesis, to improve: 

o Change detection using textural parameters from orthophotos from 

several decades ago, when RGB information was not available, until 

the present. 

o Use LiDAR and SAR data, which can complement MS and HS imagery. 

For instance, LiDAR can be used to obtain improved DEMs on each 

study, to analyze the geomorphological structures from the land, to 

study the height of specific plant species, calculate the biomass, 

detection of areas prone to fire propagation, detection of soil 

moisture, identification and analysis of ecosystem degradation, etc. 



CHAPTER 8 
 

202 
 

o On the other hand, high resolution SAR data combined with the optical 

and infrared information can improve the classification accuracies. 

 

 Study changes in other areas of interest of the Teide National Park, using the 

same type of imagery (i.e. Worldview-2 and Worlview-3), which could have 

a continuity on time during years. Besides, study the dynamics in land 

resources over time and its possible relationship with climate change or 

anthropogenic factors in Teide National Park.  

 

 Validate the whole framework in other study areas of interest in the Canary 

Islands or other similar regions around the world. 

 

 Analyze and validate deep learning approaches for both MS and HS 

classification, such as CNNs. 

8.3. SCIENTIFIC CONTRIBUTIONS 

Next, the publications derived from this thesis are shown: 

8.3.1. Publications 

J. Marcello, E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Chanussot, G. Vivone. 

Assessment of hyperspectral sharpening for the monitoring of natural áreas 

suing multiplatform remote sensing imagery. Transactions on Geosciene and 

Remote sensing. Under review. 

E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín, J.L. Martín-Esquivel. Temporal 

dynamics analysis of a mountain ecosystem based on multi-source and multi-

scale remote sensing data. Ecosphere Journal. Under review. 

E. Ibarrola-Ulzurrun, L. Drumetz, J. Marcello, C. Gonzalo-Martín, J. Chanussot. 

Hyperspectral Classification through Unmixing Abundance Maps Addressing 

Spectral Variability. Transactions on Geosciene and Remote sensing. Accepted. 

E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín. Assessment of Component 

Selection Strategies in Hyperspectral Imagery. Entropy, 2017, 19(2).  

E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello. Influence of pansharpening in 

obtaining accurate vegetation maps. Canadian Journal of Remote Sensing, 

2017, pp. 1-17. 

E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello-Ruiz, García-Pedrero, A., 

Rodríguez-Esparragón, D, 2016. Fusion of High Resolution Multispectral 

images in vulnerable coastal and land ecosystems. Sensors 2017, 17(2), pp. 

228. 

8.3.2. Book Chapters 

E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín. Advanced Classification of 

Remote Sensing High Resolution Imagery. An Application for the Management 



Conclusions and future research  
 

203 

 

of Natural Resources. In Developments and Advances in Intelligent Systems 

and Applications 2018, pp. 1-13. Springer, Cham. 

8.3.3. Conferences 

E. Ibarrola-Ulzurrun, L. Drumetz, J. Chanussot, J. Marcello-Ruiz, C. Gonzalo-Martín. 

Classification using unmixing models in areas with substantial endmember 

variability. WHISPERS, September 2018. Amsterdam (Netherlands). 

E. Ibarrola-Ulzurrun, L. Drumetz, J. Chanussot, C. Gonzalo-Martín, J. Marcello-Ruiz. 

Extended Linear Mixing Model in an ecosystem with high spectral variability. 

IGARSS, July 2018. Valencia (Spain). 

E. Ibarrola-Ulzurrun, J. Marcello-Ruiz, C. Gonzalo-Martín, J. Chanussot.  Evaluation of 

hyperspectral classification maps in heterogeneous ecosystem. IGARSS, July 

2018. Valencia (Spain). 

E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello-Ruiz. Evaluación de técnicas de 

reducción de la dimensionalidad en imágenes hiperespectrales y su aplicación 

para la clasificación de ecosistemas terrestres. AET Conference, October 2017. 

Murcia (Spain). 

E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín. Cartografiado de un ecosistema 

costero vulnerable mediante clasificación basada en objetos en imágenes de 

muy alta resolución. AET Conference, October 2017. Murcia (Spain). 

E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello-Ruiz. Vulnerable land 

ecosystems classification using spatial context and spectral indices. SPIE 

Remote Sensing Conference, September 2017. Warsaw (Poland). 

E. Ibarrola-Ulzurrun, J. Marcello, C. Gonzalo-Martín. Evaluation of dimensionality 

reduction techniques in hyperspectral imagery and their application for the 

classification of terrestrial ecosystems. SPIE Remote Sensing Conference, 

September 2017. Warsaw (Poland). 

E. Ibarrola-Ulzurrun, J. Marcello-Ruiz, C. Gonzalo-Martín. Sea floor mapping of 

coastal ecosystems using very high resolution imagery and OBIA classification. 

International Congress Energy and Environmental Engineering and 

Management, July 2017. Las Palmas de Gran Canaria (Spain). 

E. Ibarrola-Ulzurrun, C. Gonzalo-Martín, J. Marcello-Ruiz. Influence of 

pansharpening techniques in obtaining accurate vegetation thematic maps. 

SPIE Remote Sensing Conference, September 2016. Edinburgh (United 

Kingdom). 

E. Ibarrola-Ulzurrun, J. Marcello-Ruiz, C. Gonzalo-Martín. Pansharpening in coastal 

ecosystems using Worldview-2 imagery. SPIE Remote Sensing Conference, 

September 2016. Edinburgh (United Kingdom). 

Ulzurrun, E. I., Martín, C. G., & Ruiz, J. M. Analysis of Land and marine resources by 

processing high resolution satellite images. In 11th Iberian Conference on 

Information Systems and Technologies (CISTI) (pp. 1-4), June 2016. Gran 

Canaria (Spain). 



CHAPTER 8 
 

204 
 

J. Marcello, F. Marqués, F. Eugenio, A. Medina y E. Ibarrola. Selección de información 

espacial para mejorar la clasificación temática en imágenes de alta resolución. 

AET Conference, October 2015. Sevilla (Spain). 

A. García-Pedrero, D. Rodríguez-Esparragón, J. Marcello-Ruiz, E. Ibarrola-Ulzurrun, 

M. Lillo-Saavedra and J. Marcello-Ruiz. Automatic identification of shrub 

vegetation of the Teide National Park. IWOBI, July 2015. San Sebastian (Spain). 

 

 

 

 

 

 

 

 



Acronyms 
  
  
 

205 

 

ACRONYMS 

6S: Second Simulation of the Satellite Signal in the Solar Spectrum   

AE: Autoencode 

ANN: Artificial Neural Networks 

ACORN: Atmosphere CORrection Now   

ATCOR: Atmospheric and Topographic Correction 

AutoMCU: Auto Monte Carlo Unmixing   

AVHRR: Advanced Very High Resolution Radiometer 

BT: Brovey Transform   

CART: Classification and Regression Trees   

CASI: Compact Airborne Spectrographic Imager  

CC: Correlation coefficient   

CDL: Coupled Dictionary Learning   

CNMF: Coupled Nonnegative Matrix Factorization   

CNN: Convolutional Neural Networks 

CVA: Change Vector Analysis   

DBN: Deep Belief Network 

DCT: Discrete Cosine Transform   

DEM: Digital Elevation Model   

ELMM: Extended Linear Mixing Model 

EM: Expectation Maximization  

ERGAS: Spectral Relative Dimensionless Global Error (erreur relative globale 

adimensionnelle de synthése) 

FC: Frequency Comparison   

FCLSU: Fully Constrained Least Squared Unmixing 

FDM: Fractal Dimension Map   

FIHS: Fast Intensity Hue Saturation   

FLAASH: Fast one-of-sight Atmospheric Analysis of Spectral Hypercubus   

FSC: Fast Sample Consensus 
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GCPs: Ground Control Points   

GEOBIA: Geographic Object-based image analysis   

GFPCA: Guided Filter PCA   

GIS: Geographic Information Systems   

GLCM: Gray Level Co-occurrence Matrix   

GLP: Generalized Laplacian Pyramid   

GPS: Global Position System   

GS: Gram-Schmidt   

GSA: GS Adaptive   

HCS: Hyperspherical Color Sharpening   

HPF: High-Pass-Filtering   

HPM: High-Pass-Modulation   

HS: Hyperspectral   

HSI: Hyperspectral imagery   

ICA: Independent Component Analysis   

IHS: Intensity-Hue-Saturation   

IM: Intensity Modulation   

INTA: Instituto Nacional de Técnica Aeroespacial   

IOCAG: Instituto de Oceanografía y Cambio Global   

KPCA: Kernel PCA   

KT: Kauth-Thomas   

LMM: Linear Mixing Model 

LT: Linear Transforming 

MAC: Maximum Abundance Classification 

MESMA: Multiple Endmember Spectral Mixture Analysis 

MIR: Middle Infrared 

MNF: Minimum Noise Fraction   

MODTRAN: MODerate spectral resolution atmospheric TRANsmittance   

MS: Multispectral   
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MSAVI2: Modified Soil Adjusted Vegetation Index 

MTF: Modulation Transfer Function   

MVPCA: Maximum-Variance PCA   

NDVI: Normalized Difference Vegetation Index   

NIR: Near Infrared   

OA: Overall Accuracy 

OBIA: Object-based image analysis   

PAN: Panchromatic   

PCA: Principal Component Analysis  

PLMM: Perturbed Mixing Model  

QB: Quickbird 

QNR: Quality with No Reference   

QUAC: Quick Atmospheric Correction  

RANSAC: RANdom SAmple Consensus 

RBMs: Restricted Boltzmann Machines 

RE: Red Edge   

RED: Red 

RELMM: Robust ELMM   

RGB: Red – Green – Blue   

RMSE: Root Mean Square Error   

ROI: Region of interest   

RPC: Rational Polymodal Coefficients 

SAM: Spectral Angle Mapper   

SCLSU: Scaled Constrained Least Squares Unmixing   

SFIM: Smoothing Filter-based Intensity Modulation   

SPCA: Data Slicing PCA 

SVM: Support Vector Machine   

TD: Transformed Divergence   
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TM: Thematic Mapper   

ULPGC: Universidad Las Palmas de Gran Canaria   

UPM: Universidad Politécnica de Madrid   

VHR: Very High Resolution  

VHSR: Very High Spatial Resolution   

VIS: Visible   

WAT⊗FRAC: Weighted Wavelet ‘à trous’ through Fractal Dimension Maps   

WAVE_ATROUS: Wavelet ‘à trous’   

WV-2: Worldview-2   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




