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Chapter

A Practical Fitting Method
Involving a Trade-Off Decision
in the Parametrization Procedure
of a Thermodynamic Model and
Its Repercussion on Distillation
Processes
Adriel Sosa, Luís Fernández, Elena Gómez,

Eugénia A. Macedo and Juan Ortega

Abstract

The design of processes containing information on phase equilibria must be
carried out through a series of steps, experimentation$ verification$modeling$
simulation. Each of these steps should be rigorously performed to guarantee a good
representation of the behavior of the system under study, whose adequate modeling
could be used to simulate the corresponding process. To carry out the different
previous tasks, two representative systems, extracted from known database, are
used. The quality checking of experimental data series is certified through several
thermodynamic consistency methods. The modeling is done by applying a multi-
objective optimization procedure, which allows to define a solution front (Pareto
front) for different sub-models that are established in this work. The fitness of
trade-off solutions, obtained from the efficient front, on the design of distillation
processes is analyzed through a simulation.

Keywords: multiproperty modeling, optimization procedure, trade-off decision,
distillation, simulation

1. Introduction

Nowadays, process simulation [1] plays an important role in the chemical engi-
neering field as an indispensable tool to gain precise knowledge about the process
units. The use of powerful mathematical-computational tools allows to accomplish
an optimal final design of chemical processes. An important matter is to ensure that
the mathematical model correctly represents the quantities that reflect the state of
the studied system. Then, what is a model? A model is a mathematical relationship
that links the state variables of a system, such as temperature, pressure, or
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compositions, influencing the process performance. Therefore, the accuracy of the
selected model is essential and greatly affects the final results of the simulation and
design processes. Two milestones should be considered.

The first one is the selection of the model, built-in with the mathematical
relationships that best represent the variables of the system. There is no a priori a
procedure to make this choice, so heuristic or experience-based criteria are gener-
ally used [2]. The second question refers to get the best parameters that complete
the definition of the model for a given data series. For this latter case, there are
several numerical procedures [3, 4] that allow to address the problem to optimize
the parameter set considering the starting hypothesis.

The thermodynamic properties having the greatest influence on the simulation
of separation processes are those related to phase equilibria (vapor-liquid equilib-
rium, VLE, in the scope of this work), as well as other thermodynamic quantities
that arise in the mixing process. These properties are associated with the excess
Gibbs energy gE, which is written as gE = gE(xi,p,T). As such, the goal of the
modeling is to achieve a functional type of f = f(θ,xi,p,T) that minimizes the norm
| gE � f |. The vector θ represents a set of parameters in the model, which must be
optimized. However, due to the existing relation between phase and mixing prop-
erties, former approach may not be enough. In the first place, gE values can only be
obtained from VLE, which satisfies a dependency of the type, F(xi,p,T) = 0,
preventing us from obtaining individual relations of gE with each one of the vari-
ables. On the other hand, defects in the experimental data could give place to
incoherencies between experimental activity coefficients γi = γi(xi,yi,p,T) and the
excess Gibbs function gE. Thus, the VLE fitting process becomes a bi-objective
optimization problem; hence, two error functions are included in the correlation
problem. The complexity grows as other properties, such as hE = hE(x,p,T), are
included in the modeling, since new error functions should also be minimized.
However, one of the benefits of this approach is to use a unique thermodynamic
model that avoids the issues caused by possible discontinuities or inconsistencies
between partial models of some properties. Even more relevant is that this allows
the model to describe better the physics of the system under study. This supposes a
mean to verify the coherence of the mathematical formalism imposed by thermo-
dynamics, validating the different properties. A drawback of this practice is the
increase of the complexity of the procedure, but this is just a numerical issue of
relative complexity. Therefore, addressing the global modeling of the thermody-
namic behavior of solutions as a problem with multiple objectives is a notable
contribution in chemical engineering.

It is known that the resolution of multi-objective problems does not produce a
single result; on the contrary, a set of non-dominated results that constitute the so-
called Pareto front [5] is obtained. There is no precise mathematical criterion that
allows the selection of a unique result. However, the process simulation requires a
single result to define the intended design, having to resort to external criteria
different from those used to obtain the front.

This study evaluates the effect of choosing the different results from the Pareto
front in the simulation task. To achieve this, some partial goals are proposed such as
(a) to establish a rigorous methodology to carry out the optimization procedure
with the suggested modeling and (b) to check the real impact of the chosen model
on the simulation, with the purpose of proposing a selection criterion. Thus, the
designed methodology should include different stages, like the data selection used
in the procedure, obtaining the result front and the election of the final result. Two
systems, considered as standard in many studies on thermodynamic behavior of
solutions, are selected since the necessary experimental information (VLE and hE) is
available in literature. After checking the data sets [6, 7], making up the
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testing $ modeling steps, and having obtained the corresponding result fronts, each
candidate model is analyzed on its suitability for process simulation.

2. Modeling procedures

2.1 Thermodynamic model

The correlation of the iso-p {VLE + hE} data for each one of the two systems
selected is carried out using a parametric equation already used by us [8], which is
applied to the excess Gibbs function of a binary system:

gE p;T;xð Þ ¼ z1 1� z1ð Þ ∑
2

i¼0
gi p;Tð Þzi1z1 ¼

x1

x1 þ k2‐1g x2
(1)

and as described in [8]:

gi p;Tð Þ ¼ gi1 þ gi2 p
2 þ gi3 pT þ gi4=T þ gi5T

2 (2)

where kg
2–1 is a fitting parameter. In this study, several forms of Eq. (2) are

tested, by adapting it according to the availability of experimental data. Thus,
different “sub-models” are defined by neglecting terms in Eq. (2) which give rise to
the following four cases:

M1 ! gi2; gi3; gi4; gi5
� �

¼ 0;M2 ! gi2; gi3; gi5
� �

¼ 0;

M3 ! gi2; gi5
� �

¼ 0;M4 ! gi2 ¼ 0
(3)

From Eq. (1), the expression that characterizes the activity coefficients is

RTln γi ¼ z1 1� z1ð Þ g0 þ g1z1 þ g2z
2
1

� �

þ 1� i� x1ð Þ

g0 þ 2 g1 � g0
� �

z1 þ 3 g2 � g1
� �

z21 � 4g2z
3
1

� �

k2‐1g z1=x1ð Þ2
(4)

Likewise, the excess enthalpies hE are calculated considering.

hE ¼ gE � T ∂gE=∂T
� �

x,p; h
E ¼ z1 1� z1ð Þ h0 þ h1z1 þ h2z

2
1

� �

(5)

Eqs. (1) and (5) assume that the different sub-models established by Eq. (3)
impose certain behavior hypothesis in the mixture. Thus, sub-model M1 implies
that gE = hE. For the remaining assumptions, gE 6¼ hE, allowing different functions to
express the hEs.

2.2 Calculation of the efficient fronts

To obtain the optimal parameters of the different sub-models that represent the
data set iso-p VLE and hE, the multi-objective optimization (MOO) procedure is
used, which is characterized by the vector

OF ¼ s gE=RT
� �

s hE
� �� �

(6)

where s(yE) is the root of the mean square error (or RMSE) calculated by the
model when representing the generic property yE:
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s yE
� �

¼ ∑ yEexp � yEcal

� 	2
=m


 �0:5

; m ¼ number of experimental points (7)

The result of such a problem is a discrete set of values, taken from the efficient
front, s(gE/RT) = f[s(hE)], where each one of these give rise to different estimates of
the thermodynamic behavior. Here the ε-constraint algorithm [3] is used to solve
the MOO optimization problem. This procedure converts the multi-objective
nonlinear problem (MNLP) into multiple single-objective problem (constrained
nonlinear problem (CNLP)), thence minimizing only the first objective in Eq. (6),
that is,

OFε ¼ s gE=RT
� �

(8)

using the other vector element to establish a constraint in the calculation, that is,

constraint ! s hE
� �

, ε (9)

The value of ε is limited, from 0 to 500 J mol�1, since greater errors in the hE are
not acceptable. The efficient front is then achieved by solving the CNLP (Eqs. (8)
and (9)) for different values of ε in the indicated range. To do so, we used a hybrid
evolutionary algorithm [3], coupled with Nelder-Mead algorithm [9], for local
refinement.

3. Verification and selection of data series

3.1 Acetone + ethanol

There are 10 useful references in literature containing VLE data for the
acetone(1) + ethanol(2) system [10–19] showing a total of 15 experimental series. In
Figure 1, seven sets are iso-p (Figure 1(a)), and eight sets are iso-T (Figure 1(b)).

For use we refer to data series with information for the two phases. This is a
requirement to check the thermodynamic consistency. Figure 1(b) shows an azeo-
trope at high pressures, which moves from the acetone-rich region toward pure
ethanol as pressure increases; the separation between the compositions in the two
phases is reduced. Figure 1(c) and (d) contains, respectively, the variation of γi and
gE/RT with the liquid composition for the system at 101 kPa. Ethanol’s activity
coefficient shows some errors that surely affect the global consistency of the data
series. High slopes are observed as x1 ! 0 along with negative values of the natural
logarithm of γ1 for data series other than those referenced [14–16]. This is a clear
sign of inconsistency.

Table 1 shows the results obtained in the application of different consistency
methods. The observation of the said table produces some comments which are
interesting in the work development. The Wisniak test and the direct van Ness test
accept most of the experimental series. The first of the methods rejects two (noted
as n° 10,12) while the second fails to validate only one, n° 8. The Kojima test rejects
five data series, with the error observed in the system n° 12 being critical. A new
methodology recently proposed by us [6, 7] was also applied, which rejects nine
systems: three by the integral form (n° 9, 11, 12) and six by the differential form
(n° 1, 3, 4, 8, 9, 12). These systems present obvious signs of inconsistency that are
also observed by at least one of the other methods. Therefore, the overall assess-
ment of these series (in other words, the quality of their experimental data) is not

4

Distillation - Modelling, Simulation and Optimization



positive, ruling out the use of these series for other subsequent tasks, such as
modeling and, specially, simulation.

Regarding hE, six references were found [20–25]. All extracted values are shown
in Figure 2(a and b), where the different series show an acceptable coherence,
having (dhE/dT)p,x > 0.

3.2 Benzene + hexane

In studies related to the thermodynamics of solutions, the experimental infor-
mation generated by the binary benzene + hexane, for different properties, has
been, and still is, used by researchers in that area as a reference of their investiga-
tions; therefore, the choice of this system is justified. Twenty-three useful VLE data
series were found in the bibliography [26–42], 16 iso-p and 7 iso-T. Figure 3 shows
important errors in some of the series [29, 31, 37] at 101 kPa, with data missing the
trend observed in the other series. These are propagated to the T vs x,y representa-
tions (Figure 4(a)). The random error for these series is serious as evidenced in
Figure 4(b).

Figure 1.
Plot of VLE data of the binary: acetone(1) + ethanol(2), iso-p ≈ 101.32 kPa. (a) T,x,y; (c) γ,x; (d) gE/RT,x.
(�) Ref. [10]; (∇) Ref. [11]; (○) Ref. [12]; (◊) Ref. [13]; (+) Ref. [14]; (△) Ref. [15]; (□) Ref. [16];
(b) p,x,y. iso-T: (▷) Ref. [14]; (○) Ref. [17]; Ref. [18] (�) T = 372.67 K; (▽) T = 422.56 K, (△)
T = 397.67 K; Ref. [19], (□) T = 344.19 K, (+) T = 363.19 K, (◊) T = 358.18 K.
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N° Ref. Type Area Fredenslund Wisniak Kojima Direct-Van Ness Proposed test

d% V �100 V Dw V M(Ii) V δln(γ1/γ2) V f-int. V f-dif. V VF

1 10 Iso-101 kPa 15 nv 1.9 nv 2.5 v 24 v 0.09 v 0.06 v �0.06 nv nv

2 11 Iso-101 kPa 13 nv 1.8 nv 2.6 v 18 v 0.09 v 0 v 0.004 v v

3 12 Iso-101 kPa 15 nv 1.8 nv 1.7 v 10 v 0.09 v 0.14 v �0.05 nv nv

4 13 Iso-101 kPa 23 nv 2.2 nv 2 v 15 v 0.09 v 0.11 v �0.08 nv nv

5 14 Iso-101 kPa 5 nv 1.2 nv 0.5 v 27 v 0.04 v 0 v 0.003 v v

6 15 Iso-101 kPa 7.1 nv 0.5 v 2.1 v 16 v 0.02 v 0.16 v 0.005 v v

7 16 Iso-101 kPa 1.4 v 0.6 v 2.8 v 40 nv 0 v 0.02 v 0.006 v v

8 14 Iso-328 K 1.7 v 0.9 v 2.1 v 74 nv 0.01 v 0.36 v �0.050 nv nv

9 17 Iso-298 K 41 nv 2.7 nv 1.5 v 82 nv 0.18 nv �0.09 nv �0.370 nv nv

10 18 Iso-372 K 3.3 nv 0.4 v 3.3 nv 14 v 0.02 v 0.11 v 0.009 v v

11 18 Iso-398 K 0.4 v 0.6 v 3 v 69 nv 0.02 v �2 nv 0.001 v nv

12 18 Iso-423 K 12 nv 0.6 v 4.4 nv 159 nv 0.01 v �24.5 nv �0.01 nv nv

13 19 Iso-344 K 2.8 nv 0.3 v 2.1 v 14 v 0.01 v 0.42 v 0.016 v v

14 19 Iso-358 K 3.3 nv 0.3 v 3 v 9 v 0.01 v 0.64 v 0.014 v v

15 19 Iso-363 K 0.2 v 0.2 v 2.5 v 19 v 0.01 v 0.83 v 0.029 v v

Limiting values: areas-test: d < 2; Fredenslund-test: δy�100 < 1; Wisniak-test: Dw < 3; Kojima-test: M(Ii) < 30; Direct Van Ness-test: δ(ln γ1/ln γ2) < 0.16; proposed-test: f-int > 0, f-dif > 0. Header
notation: V ! verified; FV ! fully verified. Test outcome: v ! verified; nv ! not verified; nd/� ! not available.

Table 1.
Values obtained in the application of the thermodynamic consistency-test to VLE data of acetone + ethanol at different conditions.
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Figure 4 depicts the iso-p data set at pressures other than the atmospheric.
Figure 5(b) indicates that three of the published series [28] (the ones that corre-
spond to p = 610.8 kPa, 810.8 kPa, and 1013.5 kPa) show systematic errors, giving
rise to gE/RT < 0; thus γi < 1 as x1 ! 1. However, the representation of T vs x,y does
not reflect this anomalous behavior, so that probably they will be caused by a
systematic deficiency in the monitored temperature.

Available iso-T data series are represented in Figure 5. Data are found for the
whole composition interval only at 333 and 345 K. Several series were measured at
333 K [40–42], allowing their comparison. From the representation of p,x,y
(Figure 5(a)) and related mixing quantities (Figure 5(b)), an acceptable coinci-
dence is observed. Two of the data sets (Ref. [41]) show negative values of gE/RT in
the extreme points, at infinite dilution, which is a clear sign of inconsistency.

Conclusions drawn from the visual inspection are confirmed by the consistency
analysis presented in Table 2. Data series n° 11 is discarded since consistency cannot
be evaluated due to the lack of data in the zone corresponding to x1 > 0.2. All
consistency tests, except the direct van Ness, did not accept the series measured at

Figure 2.
hE values for the binary acetone(1) + ethanol(2). (a) p = 101.32 kPa; (b) p = 400 kPa. (○) Ref. [20]; (�)
Ref. [21]; (□) Ref. [22]; (+) Ref. [23]; (△) Ref. [24]; (◊) Ref. [25].

Figure 3.
Plot of iso-p VLE data of the binary benzene + hexane at 101 kPa. (a) T,x,y; (b) γ,x; gE/RT,x. (○) Ref. [34]

Ref. [35] (+) Ref. [26] (◊) Ref. [37]; (�) Ref. [29]; (∇) Ref. [32]; (▷) Ref. [31]; (◁) Ref. [37].
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the highest pressures (n° 13–16). This is due to the wrong relationship between the
pure component saturation temperature (Appendix Table A1) and equilibrium
temperature. However, it is interesting to recognize that when using other vapor
pressure parameters this defect can be solved. The data series (n° 3, 4, 6–9, 19,
21–23) accepted by the proposed test [7] offer the highest consensus among all the
battery of test about the quality of data, so these series could be used for subsequent
tasks.

A total of 17 references were found in literature [36, 43–58] of hE measured in
the range of [293–323] K and atmospheric pressure, except those data of Yi et al.
[58], at 80 kPa. Figure 6(a) presents the data series considered in this study. It
refers to a solution with endothermic effects (hE ≈ 900 J mol�1 at x = 0.5 and
T = 298 K), decreasing as temperature increases; however, the high observed dis-
persion of experimental values is not sufficient evidence to ensure this effect.
Inspection of the hE does not recommend excluding any of these data series; thus
they will be considered in the data treatment.

Figure 5.
Plot of iso-T VLE data of the binary benzene(1) + hexane(2). (a) p,x,y; (b) gE/RT,x. (○) Ref. [40]; (□)
Ref. [42] Ref. [41]: (+) T = 314 K; (◊) T = 323 K; (�) T = 333 K; (△) T = 303 K; (▽) Ref. [39].

Figure 4.
Plot of iso-p VLE of the binary benzene(1) + hexane(2). (a) T,x,y; (b) gE/RT,x. Ref. [33]: (○) p = 26 kPa;
(□) p = 40 kPa; (+) p = 53 kPa; (◊) Ref. [26]; Ref. [28]: (�) p = 405.4 kPa; (△) p = 610.8 kPa; (▽)
p = 810.8 kPa; (▷) p = 1013.5 kPa.
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N° Ref. Type Area Fredenslund Wisniak Kojima Direct-Van Ness Proposed test

d% V �100 V Dw V M(Ii) V δln(γ1/γ2) V f-int. V f-dif. V FV

1 33 Iso-26 kPa 23.2 nv 1.2 nv 1.45 v 74 nv 0.123 v �0.06 nv �0.073 nv nv

2 33 Iso-40 kPa 16.3 nv 1.2 nv 1.02 v 19 v 0.068 v �0.02 nv �0.013 nv nv

3 33 Iso-53 kPa 17.5 nv 0.8 v 1.93 v 31 nv 0.063 v 0.04 v 0.001 v v

4 26 Iso-97 kPa 19.2 nv 0.6 v 1.7 v 54 nv 0.02 v 0.05 v 0.005 v v

5 31 Iso-101 kPa 36.5 nv 0.6 v 1.65 v 10 v 0.012 v 0.02 v �0.047 nv nv

6 26 Iso-101 kPa 3.6 nv 0.4 v 1.6 v 24 v 0.020 v 0.11 v 0.006 v v

7 34 Iso-101 kPa 2.5 nv 0.3 v 1.63 v 24 v 0.004 v 0.04 v 0.007 v v

8 35 Iso-101 kPa 1.5 v 0.1 v 1.7 v 27 v 0.003 v 0.01 v 0.014 v v

9 37 iso-101 kPa 9 nv 0.4 v 1.75 v 44 nv 0.159 v 0.05 v 0.004 v v

10 29 iso-101 kPa 12.3 nv 0.6 v 1.66 v 22 v 0.048 v �0.01 nv �0.013 nv nv

11 32 Iso-101 kPa nd — nd — nd — nd — nd — nd — nd — nv

12 37 Iso-101 kPa 9 nv 0.7 v 2.77 v 52 nv 0.043 v 0.02 v �0.018 nv nv

13 28 Iso-405 kPa 59 nv 1.2 nv 5.9 nv 1319 nv 0.2 nv �0.21 nv �0.145 nv nv

14 28 Iso-610 kPa 58.9 nv 1.1 nv 7.51 nv 343 nv 0.043 v �0.14 nv �0.079 nv nv

15 28 Iso-810 kPa 96.3 nv 2 nv 11.5 nv 291 nv 0.124 v �0.16 nv �0.08 nv nv

16 28 Iso-1010 kPa 95.4 nv 3 nv 14.97 nv 6776 nv 0.364 nv �0.07 nv �0.192 nv nv

17 41 Iso-303 K 16.8 nv 1.6 nv 0.61 v 670 nv 0.167 nv 0.03 v �0.096 nv nv

18 41 Iso-314 K 17.5 nv 2.7 nv 0.68 v 1149 nv 0.312 nv 0 nv �0.122 nv nv

19 41 Iso-323 K 7.9 nv 0.6 v 0.97 v 270 nv 0.048 v 0.13 v 0.006 v v

20 40 Iso-333 K 31.1 nv 1.8 nv 2.42 v 41 nv 0.082 v �0.33 nv �0.048 nv nv
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N° Ref. Type Area Fredenslund Wisniak Kojima Direct-Van Ness Proposed test

d% V �100 V Dw V M(Ii) V δln(γ1/γ2) V f-int. V f-dif. V FV

21 42 Iso-333 K 1.7 v 0.1 v 1.31 v 12 v 0.002 v 0.5 v 0.017 v v

22 41 Iso-333 K 1.2 v 0.4 v 1.22 v 88 nv 0.017 v 0.41 v 0.009 v v

23 39 Iso-343 K 7.4 nv 0.5 v 1.53 v 19 v 0.027 v 0.29 v 0.001 v v

Limiting values: areas-test: d < 2; Fredenslund-test: δy�100 < 1; Wisniak-test: Dw < 3; Kojima-test: M(Ii) < 30; direct Van Ness-test: δ(ln γ1/ln γ2) < 0.16; proposed-test: f-int > 0, f-dif > 0. Header
notation: V ! verified; FV ! fully verified. Test outcome: v ! verified; nv ! not verified; nd/� ! not available.

Table 2.
Values obtained in the application of the thermodynamic consistency-test to VLE data of benzene + hexane at different conditions.
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4. Results and discussion

4.1 Modeling: efficient front and models

The VLE data series previously verified has been modeled according to the
procedure described in Section 2. The efficient fronts obtained for each system are
shown in Figure 7.

Figure 6.
Plot of hE values for the binary benzene + hexane. (a) hE vs x, (b) hE (at x = 0.5) vs T. (○) Ref. [43], (□)
Ref. [44], (+) Ref. [45], (◊) Ref. [46], (�) Ref. [47], (△) Ref. [48], (▽) Ref. [36], (▷) Ref. [49],
(◁) Ref. [50], (□) Ref. [51], Ref. [52], Ref. [53], Ref. [54], Ref. [55], Ref. [56],
Ref. [57], Ref. [58].

Figure 7.
Efficient fronts for s(gE/RT) = f(s(hE)), obtained for acetone + ethanol. Arrows and labels indicate the chosen
results on each of the fronts, using the models: (▴) M2; (�) M3; and (▾) M4.
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Acetone(1) + ethanol(2): the efficient fronts of results for the binary
acetone + ethanol were obtained from sub-models M2, M3, and M4. Sub-model M1
did not produce an acceptable representation of the thermodynamic behavior, so it
was ignored. The obtained fronts shown in Figure 7 reveal that the three sub-
models produced similar results when acceptable error in hE is greater than
140 J mol�1. This implies that, from this limit on, the problem becomes mono-
objective, regardless of the sub-model used. For smaller errors of the hE, s(hE)
< 140 J mol�1, differences between sub-models M2, M3, and M4 to reproduce the
VLE data are significant, reducing the maximum error by approximately δs
(gE/RT) ≈ 0.15 between them. The efficient front achieved with model M4 shows an
almost constant s(gE/RT). The other two sub-models reveal an exponential behavior
as s(hE) decreases. From the set of results obtained, three of them are chosen (see
Figure 7) to carry out a more detailed analysis on their ability to describe simulta-
neously the VLE and hE. Some particular comments on those three results are:

• The result labeled as “1” (by M4) describes well the two properties under
study, as seen in Figure 8, but at the expense of using more parameters.
Specifically, this model links the state variables at equilibrium (Figure 8(a)),
describing the observed folding at the lowest temperatures. The estimate of

Figure 8.
Plot of VLE at 101 kPa and hE estimates for binary acetone(1) + ethanol(2) at 101.32 kPa. Models drawn
from Figure 7(a). Results (——) 1-(M4), 2-(M3), 3-(M3). (a) T vs x1,y1; (b)γi vs x1; (c)
gE/RT vs x1; (d) h

E vs x1.
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activity coefficients (Figure 8(b)) is acceptable. Estimations of gE/RT for this
system are close to the set that displays the highest values. The estimate for the
hE is acceptable, although the model does not reproduce the data series
extracted from Ref. [20].

• Result 2 (M3), which displays the highest error in the VLE estimate, wrongly
estimates an azeotrope and a whole range immiscible region (Figure 8(a)).
This poor description of the liquid phase is due to the high values of γi and the
gE/RT (Figure 8(b and c)). At first, the hE is correctly represented by this
parametrization, although the presence of the immiscibility truncates the
validity region of the model (Figure 8(d)).

• Result 3 (M3) produces an unsatisfactory representation in the hEs, which also
presents an inversion of the thermal gradient of this property.

Final model selection should ensure that selected parametrization describes, at
least qualitatively, the thermodynamic behavior closest to the real one. In this case,
result 2 reproduces almost exactly the hE, although it produces an incorrect gE

behavior, hence limiting its subsequent applicability. The choice between results 1
and 3 will depend on the influence of the hE on the calculations in which the model
is involved.

This analysis will serve as a basis to inspect the results of the remaining binary
(benzene + hexane) on the results emitted by each of the models.

Benzene(1) + hexane(2): sub-model M4 was not used for the binary
benzene + hexane because of the similarity with the efficient front produced by M3
model. Thus, sub-models M1, M2, and M3 were only applied, as shown in Figure 9.
Sub-models M2 and M3 produce very similar results, with almost constant error,
s(gE/RT), lower than 5.5 � 10�3 J mol�1 for all s(hE). Consequently, those result
fronts of sub-models M1 and M2 are evaluated. The efficient front of sub-model M1

Figure 9.
Efficient fronts for s(gE/RT) = f(s(hE)), obtained for benzene + hexane. Arrows and labels indicate the chosen
results on each of the fronts, using the models: (●) M1; (▴) M2; and (�) M3.
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produces a quasi-linear behavior with the variation of s(hE). The difference between
this front and that of sub-model M2 is δs(gE/RT) ≈ 0.14, when ε = 0. The fronts for
models M1 and M2 do not intersect, unlike the earlier case, showing a maximum
value of s(hE) at 170 J mol�1 and 450 J mol�1, respectively. The VLE diagrams
produced by the four selected results are shown in Figure 10, along with one of the
validated data series for this result. The best description of this system is achieved
with result 4 (M1), which reproduces the behavior of T-x-y experimental data
(Figure 10(a)) and the other quantities calculated (Figure 10(b and c)). Never-
theless, the description of hE with this model is not good. Result 1 (M2) produces an
azeotrope at x1 < 0.2, which does not occur experimentally. This poor estimation
occurs even though the greater number of parameters, increasing the model’s
capacity to reproduce the hE, as proven in Figure 11. Results 2 and 3 overestimate γi,
hence gE/RT (see Figure 10(b and c)).

This discrepancy gives rise to the formation of minimum boiling point azeo-
tropes, which are not in accordance with experimental data. Of all the results cho-
sen, only result 1 (belonging to sub-model M2) shows a hE that varies significantly
with temperature, since sub-model M1 is independent of this variable. The use of
either result 2 or 3 is discouraged since their estimations of hE, especially at temper-
atures other than 298 K, are not correct, in addition to the described issues in

Figure 10.
Plot of VLE at 101 kPa estimates for binary benzene(1) + hexane(2). Models drawn from Figure 9. Results
(——) 1 (M2), 2 (M1), 3 (M1) and 4 (M1). (a) T vs x,y; (b)γ vs x; (c) gE/RT vs x.
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representing the phase equilibria. This being said, result 3 represents the average
behavior of this property in the working range.

From previous observations, result 4 (M1) is recommended for those cases
where the hE plays a secondary role in comparison to the reliable reproduction of
the VLE diagram. Otherwise, result 1 (M2) is preferred, despite the qualitative
misfit to experimental data. Table 3 presents an overview of the present section
with a summary of the models to be used in the simulation task.

4.2 Simulation results of a rectification process for each of the studied
dissolutions

The models obtained previously are used in the design of a simulation operation
comparing their capacity in terms of some operation variables such as composition
and temperature profiles, as well as energy consumption. General conditions for
the simulations are summarized in Table 4. In all cases, columns are fed with a
1 kmol/h at equimolar composition of the corresponding solution, at 298.15 K and
101.32 kPa. Simulations are performed using the RadFrac block of AspenPlus© V8.8
(AspenOne©, [59]).

Figure 11.
Estimation of hE values at 101.32 kPa using the different results indicated in the fronts of Figure 9 for benzene
(1) + hexane(2). (a) hE vs x1 (T = 298.15 K), (b) hE vs T (x1 = 0.5). Results (——) 1 (M2); 2
(M1); 3 (M1); 4 (M1).

System M1 M2 M3 M4

Acetone + ethanol û ü üü üü

Benzene + hexane üü üü ü û

üü ! used for modeling and simulation;ü ! used for modeling; û ! not used.

Table 3.
List of sub-models applied to each system.

Binary system Reflux ratio Distillate rate (kmol/h) n° stages Feed stage

Acetone + ethanol 6 0.5 22 16

Benzene + hexane 10 0.6 30 20

Table 4.
Operation data for the rectification columns to separate the binaries.
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Acetone(1) + ethanol(2): the simulation of a rectification column to purify the
acetone+ethanol binary system, using the result labeled as “2” in Figure 7, does not
provide a coherent resolution because it estimates the presence of two immiscible
liquid phases. The final values obtained with results 1 and 3 are detailed in Table 5,
while the composition profiles are shown in Figure 12. In both cases the composi-
tion of the distillate is higher than 99% in acetone and at the same temperature in
the stage.

The exact purity is slightly higher with result 1 than with result 3, the difference
being 0.2%. The calculation in the bottoms of the tower reveals differences between
the two parametrizations, giving place to an effluent somewhat purer in the case of
result 1. The difference between both models is 0.001 in molar fraction. These
observations directly affect the calculation of the energy balance and, therefore, to
the consumed energy. Thus, the consumption in the condenser is estimated simi-
larly with both parametrizations, while that of the reboiler is significantly higher
with result 3, due to the greater quantity of ethanol and the incorrect estimate of
other quantities, such as the mixing enthalpies.

Stage Result 1 (M4) Result 3 (M3)

x1 y1 T/K x1 y1 T/K

1 0.990 0.993 329.0 0.989 0.991 329.0

5 0.974 0.981 329.1 0.970 0.978 329.1

9 0.941 0.957 329.3 0.935 0.953 329.4

13 0.853 0.900 330.1 0.846 0.894 330.2

17 0.518 0.709 334.4 0.526 0.710 334.2

22 0.010 0.031 350.6 0.011 0.035 350.5

Qc/kJ h
�1 1.035E5 1.034E5

Qr/kJ h
�1 1.038E5 1.044E5

Table 5.
Quantities obtained in the simulation of a separation process for the binary acetone(1) + ethanol(2), using
different values from the efficient front shown in Figure 7.

Figure 12.
Plot of composition and temperature profiles obtained in the simulation of a separation operation for acetone
(1) + ethanol(2) system, using the different parametrizations proposed: (—) 1 (M4). L, liquid stream profile;
V, vapor stream profile.

16

Distillation - Modelling, Simulation and Optimization



The composition profiles and temperature gradient of the two tested solutions
present similar qualitative behaviors. Most of the column is used as an enriching
region which requires a high number of stages in both cases.

Benzene(1) + hexane(2): values obtained in the simulation of the distillation
operation of this binary dissolution are in Table 6, while composition and temper-
ature profiles are plotted in Figure 13. For the first three results (1, 2, and 3), the
presence of an azeotrope limits the distillate composition. Thus, result 1 produces an
effluent with a benzene composition of 16.7% (v/v), while for results 2 and 3, the
compositions are, respectively, 37.2 and 30.9%. The simulation carried out with the
parametrization of result 4 produces a purer distillate of 15.6%, due to the absence of
the azeotrope. However, the folding effect observed between the equilibrium
curves in experimental data as well as the diagram estimated by result 4 complicates
the separation beyond this point. This justifies that the composition profiles are
similar to results 1 and 4 (see Figure 13).

The residual streams obtained by results 1 and 4 contain benzene with a purity
higher than 99.9%, while the other two results do not produce the separation of the

Stage Result 1 (M2) Result 2 (M1) Result 3 (M1) Result 4 (M1)

x1 y1 T/K x1 y1 T/K x1 y1 T/K x1 y1 T/K

1 0.167 0.161 341.3 0.372 0.372 337.3 0.310 0.309 340.1 0.167 0.156 341.7

5 0.201 0.189 341.3 0.372 0.372 337.3 0.312 0.311 340.1 0.220 0.202 341.9

10 0.280 0.250 341.6 0.372 0.372 337.3 0.319 0.316 340.1 0.310 0.278 342.2

15 0.505 0.414 343.1 0.374 0.373 337.3 0.337 0.330 340.1 0.473 0.407 343.2

20 0.842 0.740 348.5 0.405 0.388 337.4 0.392 0.369 340.2 0.772 0.663 346.8

25 0.991 0.982 352.6 0.409 0.390 337.4 0.422 0.389 340.3 0.988 0.975 352.4

30 1.000 0.999 352.8 0.692 0.510 338.8 0.785 0.631 344.0 1.000 0.999 352.8

Qc/kJ h
�1 1.829E5 1.988E5 1.686E5 1.804E5

Qr/kJ h
�1 1.886E5 2.050E5 1.802E5 1.898E5

Table 6.
Quantities obtained in the simulation of a distillation process for the binary benzene(1) + hexane(2), using
different values from the efficient front shown in Figure 9.

Figure 13.
Plot of composition and temperature profiles obtained in the simulation of a separation operation for the binary
benzene(1) + hexane(2), using the different parametrizations proposed: (——) 1 (M2); (- - - -) 2 (M1);
(������) 4 (M1). L, liquid stream profile; V, vapor stream profile.
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binary dissolution with high purities (no more than 79%), due to the presence of the
azeotrope at intermediate composition. The differences noted in compositions in
the head and bottom of the column cause that the corresponding temperatures are
also different. Between results 1 and 4, there is a difference in temperature of almost
0.5 K, while results 2 and 3 estimate lower temperatures by more than 1 K with
respect to the others. In this case, the modeling errors in another of properties, such
as excess enthalpies, as well as the differences in the output composition, also
affects to produce noteworthy differences in the energetic consumptions of both
condenser and boiler. In this sense, similar results are obtained for results 1 and 4,
although, a priori, it is not possible to indicate which of these is closer to the true
behavior of the column.

5. Conclusions

The aim of this work is to present the practice carried out on a set of operations
constituting a procedure involving the following sequences: experimentation $
verification $ modeling $ simulation. A description of the last three operations is
proposed since the necessary experimental information (iso-p and iso-T VLE data
and hE) was extracted from the available publications. The proposed methodology is
applied to two significant binary systems in the dissolution thermodynamic field,
such as acetone-ethanol and benzene-hexane. The data checking is carried out with
different classical methods, which is recommended in the recent literature [6]. In
addition, a rigorous method recently designed by the authors [7] was also used in
order to guarantee the quality of the experimental data used. This method has the
advantage of offering some information about the origin of deficiencies in the
experimental data.

A polynomial expression was used in themodeling step (see Eqs. (1) and (3)), used
in the correlation of thermodynamic properties, from which four sub-models (M1–
M4) are established in Section 2.1, depending on the availability of data for each
system to avoid overfitting. Modeling in all cases was performed on the Gibbs
dimensionless function, gE/RT (VLE), and on hE data, two-objective optimization
approach addressed as a sequence of mono-objective subproblems according to the ε-
constraint algorithm. A set of models are selected from the attained efficient fronts to
provide a rationale on the trade-off decision task that is supposed to yield the final
model for later uses, such as design/simulation. For the two studied cases, these fronts
reveal a quasi-linear trend (with a negative slope) when the number of parameters
used in the model is small. Efficient fronts’slope decreases as the number of parameters
increases, until the error of VLE delinks to that of the hE for highly flexible models.

The rectification of the selected systems was simulated using the RadFrac block
of AspenPlus© with the selected thermodynamic parametrizations. For the binary
acetone + ethanol, some models showed an immiscible region, not reflected by the
experimental information, giving rise to incoherent simulations. Two models gave
rise to inexistent azeotropes in the benzene + hexane dissolution, with incorrect
results in the simulation. On the other hand, errors in the excess enthalpy estimates
did not influence on the procedure simulation, but it should be noted that it has an
important role in the modeling of binary systems. In summary, the influence of a
certain set of parameters on the simulation varies depending on each particular
system. Besides, it is observed that, as the number of parameters grows in a model,
the optimization problem mutes toward a mono-objective one since the considered
criteria are invariant in one another. In these cases, taking the set of parameters that
present the lowest error on hE is the best option. However, increasing the number of
parameters might lead to overfitting if not enough attention is paid to the model
extrapolation capabilities.
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A. Vapor pressure modeling

Vapor pressures of pure compounds are calculated using Antoine equation:

log poi =kPa ¼ A� B= T=K � C½ � (10)

Parameters A, B, and C, from literature [60–62], are shown in Table A1.
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A B C Ref.

Acetone 6.42448 1312.25 32.45 [60]

Ethanol 7.24677 1598.67 46.42 [61]

Benzene 6.03053 1211.03 52.36 [62]

Hexane 5.87891 1089.49 60.55 [62]

Table A1.
Parameters of Antoine equation for pure compounds in this work.
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