

s the GDH/R_{NH4}+ ratio in the mesozooplankton constant through different oceanic systems?

Fernández-Urruzola I., Packard T. and Gómez M.

Institute of Oceanography and Global Change, Biological Oceanography Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain. <u>*E-mail address:*</u> ifernandez@becarios.ulpgc.es

INTRODUCTION Classical tenets of Nitrogen Cycle

- (I) Nitrogen availability is **frequently limited** in ocean ecosystems.
- (II) Phytoplankton can use inorganic fixed-nitrogen compounds (NH₄⁺, NO₃⁻, NO₂⁻), as well as some organic compounds (urea, free amino acids).
- (III) Other pathways of N cycling (Denitrification, Anammox and DNRA) can occur in OMZ and sediments.

(Dugdale and Goering, 1967; Zehr and Ward, 2002; Brandes *et al.*, 2007; Francis *et al.*, 2007; Yool *et al.*, 2007).

Zehr and Kudela (2011)

INTRODUCTION Importance of NH₄⁺ in marine systems

- (I) NH₄⁺ is an intermeditate product in decomposition of organic matter, which constitutes the most reduced form of N.
- (II) NH_4^+ sustains a global average of 80 % of the authotroph's requeriments (Harrison, 1992), with the mesozooplankton responsible for 12 23 % (Hernández-León, 2008).

Zehr and Kudela (2011)

INTRODUCTION

How to determine NH₄⁺ excretion in zooplankton?

WATER BOTTLE-INCUBATIONS

Direct measurement.

Low data acquisition rate.

X

Complicated by organism manipulation, overcrowding and starvation.

(Mulling et al., 1975; Ikeda and Skjoldal, 1980; Bidigare, 1983)

ENZYMATIC ASSAYS (GDH)

High data acquisition rate.

Measurement of potential NH₄⁺ excretion.

Variability in the GDH/RNH₄⁺ ratio.

(Bidigare and King, 1981)

Why Glutamate dehydrogenase (GDH, EC 1.4.1.3) ?

Modified from Yuen and Chiew (2010)

(I) GDH is found in high levels in planktonic crustaceans (Regnault, 1987).

 \Rightarrow Its role in amino acids catabolism agues for its control over a great proportion of NH₄⁺ excretion.

(II) Good correlation with NH_4^+ excretion in several marine zooplankters.

Table I. Correlation coefficients between GDH and RNH_4^+ calculated in different works.

SAMPLE	r ²	REFERENCE
P. flexuosus (n=7)	0.92	Bidigare and King (1981)
Macrozooplankton (n=10)	0.98	Park <i>et al.</i> (1986)
<i>L. lingvura</i> (n=41)	0.87	Fernández-Urruzola <i>et al.</i> (2011)

But... Is that relationship constant in all the situations?

Park et al. (1986)

Some factors could affect the relationship between GDH activity and NH₄⁺ excretion!!

- Physiology and biochemistry should share scaling exponent (Berges et al., 1993).

- Changes in nutritional state lead to increase the variability (Park, 1986; Hernández-León and Torres, 1997; Fernández-Urruzola *et al.*, 2011).

MATERIAL AND METHODS

Location and Sampling

MATERIAL AND METHODS

Experimental design

TEADDed III Mik/teanvalueses for Rhunanato GOD Hactivity is fitnet has optianthism sizes put do optiang kitem different cruises.

CRUISE	T (≌ C)	$NH_4^+Excretion$ (µmol $NH_4^+\cdoth^{\cdot1}\cdotmg$ protein)	GDH Activity (μ mol NH ₄ ⁺ · h ⁻¹ · mg protein)	GDH/RNH₄ ⁺
Camvalex I (n = 15)	20	0.46 ± 0.21 ≈ 0.48	2.13 ± 1.07 ≈ 2.21	5.43 ± 3.70
Malaspina LEGS 3 - 4 (n = 29)	19	0.30 ± 0.19 ≈ 0.33	1.90 ± 0.92 ≈ 2.09	9.57 ± 9.42
Malaspina LEG 7 (n = 61)	21	0.39 ± 0.32	2.39 + 0.94	13.26 ± 15.67
Succession (n =15)	11	0.23 ± 0.20	1.93 ± 1.33 ≈ 3.52	22.10 ± 18.59

 \Rightarrow **Temperature** influences on both metabolism and biochemistry: *correction via* Q_{10} *factor needed* !!

Sample	GDH/RNH₄ ⁺	Reference
L. lingvura <mark>(</mark> n = 16)	10.41 ± 4.84	Fernández-Urruzola <i>et al</i> ., 2011
Mixed zooplankton	12.57 ± 11.11	Hernández-León and Torres, 1997
Mixed zooplankton (n=8)	23.4 ± 4.0	King <i>et al</i> ., 1997
Mixed zooplankton (n=10)	18.8 ± 6.72	Park <i>et al</i> ., 1987
Mixed zooplankton (n=5)	18.7 ± 4.3	Bidigare and King, 1982
C. finmarchicus (n=10)	16.8 ± 2.6	Bidigare and King, 1981
Mixed zooplankton (n=5)	18.7 ± 8.5	Bidigare, 1981

Table IV. GDH/RNH₄⁺ Values from different works.

GDH/RNH4⁺ values one order of magnitude higher when completely starved.

Park (1986), Fernández-Urruzola et al. (2011)

Do these metabolic rates really follow the Kleiber's Law?

RESULTS AND DISCUSSION Effect of biomass on GDH/RNH₄+ ratio

The effect of biomass acts in a similar way in both enzimatic and physiolocal rates. Thus, it is not seem to be the main factor on the GDH/RNH_4^+ ratio variability.

RESULTS AND DISCUSSION Effect of biomass on GDH/RNH₄⁺ ratio

Table V. Scaling exponents for NH₄+ excretion rates summarized from the literature.

Organisms	Mass variable	NH4 ⁺ Scaling exponent	Reference
Ocean zooplankton	Dry weight	1.00	Blazka <i>et al</i> ., 1982
Ocean zooplankton	Dry weight	1.00	Vidal and Whitledge, 1982
Crangon crangon	Dry weight	0.79	Regnault and Batrel, 1987
Ocean zooplankton	Carbon	0.84	lkeda 1988
Ocean zooplankton	Nitrogen	0.65 - 0.80	Ikeda and Skjoldal, 1989
Mixed zooplankton	Carbon	0.92	Schmeider, 1990

(I) Enzyme activities greater than physiologycal rates.

Potential measurement!

- (II) NH₄⁺ excretion data more scattered.Methodological artifacts?
- (III) Isometric relationship with biomass of both scaling exponents. (b = 1, p < 0.05)

Values in agreement with other works.

The effect of biomass acts in a similar way in both enzimatic and physiolocal rates. Thus, it is not seem to be the main factor on the GDH/RNH₄⁺ ratio variability.

RESULTS AND DISCUSSION GDH activity to NH₄⁺ excretion relationship

GDH activity µmol-mgprot¹h

- Rapid fall of nitrogen release after depletion of the food source (Mayzaud, 1976; Ikeda and Skjodal, 1980).
- GDH does not vary significantly with environmental changes, proving its constitutive nature.

Ferná htterzetaretzola (20al.) (2011)

- Rapid fall of nitrogen release after depletion of the food source (Mayzaud, 1976; Ikeda and Skjodal, 1980).
- GDH does not vary significantly with environmental changes, proving its constitutive nature.

Sta	rvation (h)	Apparent Km (mM)	GDH/RℕH₄⁺	O₂ consumption (μ mol O ₂ · h ⁻¹ · mg protein ⁻¹)	Ro₂/RNH₄⁺
	4	4.69 ± 0.69	11.23 ± 4.46	0.61 ± 0.09	4.57 ± 1.90
	10	12.1 ± 5.9	9.74 ± 2.98	1.29 ± 0.32	6.66 ± 1.65
	18	8.55 ± 4.04	11.14 ± 5.93	0.5 ± 0.15	5.51 ± 2.47
	26	19.44 ± 10.8	30.87 ± 25.28	0.6 ± 0.11	11.51 ± 1.73
	42	4.67 ± 0.79	16.28 ± 1.55	0.2 ± 0.18	2.13 ± 0.29
	54	5.04 ± 0.27	64.72 ± 51.3	0.22 ± 0.22	7.07 ± 3.25
	68	2.84	102.41	0.24	12.9
	72	4.89 ± 3.45	67.89 ± 29.5	0.55 ± 0.05	15.49 ± 8.6
	76	5.95 ± 2.48	39.1 ± 5.09	0.74 ± 0.43	14.12 ± 2.96
	82	6.25 ± 2.51	89.1 ± 34.58	0.59 ± 0.36	47.2 ± 15.5

Table VI. Effect of starvation on the Michaelis constant for glutamate, and on the GDH/ RNH_{4^+} and RO_2/RNH_{4^+} ratios.

Fernández-Urruzola et al. (2011)

- Rapid fall of nitrogen release after depletion of the food source (Mayzaud, 1976; Ikeda and Skjodal, 1980).
- GDH does not vary significantly with environmental changes, proving its constitutive nature.

RESULTS AND DISCUSSION

Intracellular substrate levels as a key factor

The intracellular substrates might be the answer !!

Roy and Packard (1998) found a decrease in intracellular substrates concentrations with food source limitation. As a concequence, the actual enzimatic rates would also decrease.

Aguiar-González et al. (2012)

An enzyme kinetic-based model should predict the *in vivo* RNH_4^+ on natural samples of zooplankton from different productivity areas.

- (I) GDH/RNH₄⁺ is not constant in all the marine ecosystems sampled so far. However, the ratios argue that the zooplankton communities are in a healthy physiological state.
- (II) Starvation causes NH_4^+ excretion and GDH activity to diverge more than does biomass.
- (III) Intracellular substrate levels should explain the variability between the physiological and enzimatic rates. As a result, a kinetic-based model would predict *in vivo* NH₄⁺ excretion rates better than other theories based in biomass, such as the MTE.

This research is framed in the EXZOME project (CTM 2008 – 01616/MAR), which is funded by the extinct Spanish Science and Education Ministry. I. Fernandez-Urruzola receives finantial support from the Formation and Perfection of the Researcher Personal Program from the Basque Government.

I also thank to MALASPINA 2010 (CSD-20080077) and SUCCESSION projects for inviting me to participate in their cruises.

s the GDH/R_{NH4}+ ratio in the mesozooplankton constant through different oceanic systems?

Fernández-Urruzola I., Packard T. and Gómez M.

Institute of Oceanography and Global Change, Biological Oceanography Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain. <u>*E-mail address:*</u> ifernandez@becarios.ulpgc.es

