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Abstract In the present paper, we give some fixed point

results for generalized Ćirić type strong almost contrac-

tions on partial metric spaces which generalizes some

recent results appearing in the literature. Particularly, our

result has as a particular case, mappings satisfying a gen-

eral contractive condition of integral type.
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Introduction

Partial metric spaces were introduced by Matthews in [20]

as a part of the study of denotational semantics of dataflow

networks. These spaces are a generalization of usual metric

spaces where the self distance for any point need not be

equal to zero.

Let us recall that a partial metric on a set X is a function

p : X � X ! ½0;1Þ such that for all x; y; z 2 X : (1) x ¼
y () pðx; xÞ ¼ pðx; yÞ ¼ pðy; yÞ (T0-separation axiom),

(2) pðx; xÞ� pðx; yÞ (small self-distance axiom), (3)

pðx; yÞ ¼ pðy; xÞ (symmetry), (4) pðx; yÞ� pðx; zÞ þ
pðz; yÞ � pðz; zÞ (modified triangular inequality).

A partial metric space (for short PMS) is a pair ðX; pÞ
such that X is a nonempty set and p is a partial metric on X.

It is clear that, if pðx; yÞ ¼ 0; then x ¼ y. But if x ¼ y,

pðx; yÞ may not be 0.

At this point it seems interesting to remark the fact that

partial metric spaces play an important role in constructing

models in the theory of computation (see for instance [15–

17], etc).

Example 1 Let X ¼ ½0;1Þ and pðx; yÞ ¼ maxfx; yg for

all x; y 2 X. Then ðX; pÞ is a PMS.

Example 2 Let I denote the set of all intervals ½a; b� for

some real numbers a� b. Let p : I � I ! ½0;1Þ be the

function such that pð½a; b�; ½c; d�Þ ¼ maxfb; dg� minfa; cg.

Then ðI; pÞ is a PMS.

Example 3 Let X ¼ R and pðx; yÞ ¼ emaxfx;yg for all

x; y 2 X. Then ðX; pÞ is a PMS.

Other examples of partial metric spaces may be found in

[16, 18, 20, 22], etc.

Each partial metric p on X generates a T0 topology sp on

X which has as a base the family open p-balls

fBpðx; eÞ : x 2 X; e [ 0g;

where

Bpðx; eÞ ¼ fy 2 X : pðx; yÞ\pðx; xÞ þ eg;

for all x 2 X and e [ 0.

Observe that a sequence fxng in a PMS ðX; pÞ; con-

verges to a point x 2 X, with respect to sp; if and only if

pðx; xÞ ¼ limn!1 pðx; xnÞ.

If p is a partial metric on X, then the functions ps; pw :

X � X ! R
þ :¼ ½0;1Þ; given by
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psðx; yÞ ¼ 2pðx; yÞ � pðx; xÞ � pðy; yÞ

and

pwðx; yÞ ¼ maxfpðx; yÞ � pðx; xÞ; pðx; yÞ � pðy; yÞg
¼ pðx; yÞ � minfpðx; xÞ; pðy; yÞg

are ordinary metrics on X. It is easy to see that ps and pw

are equivalent metrics on X.

According to [20], a sequence fxng in a PMS ðX; pÞ
converges, with respect to sps , to a point x 2 X if and only if

lim
n;m!1

pðxn; xmÞ ¼ lim
n!1

pðxn; xÞ ¼ pðx; xÞ:

A sequence fxng in a PMS ðX; pÞ is called a Cauchy

sequence if limn;m!1 pðxn; xmÞ exists (and is finite). ðX; pÞ
is called complete if every Cauchy sequence fxngn2x in X

converges, with respect to sp, to a point x 2 X such that

pðx; xÞ ¼ limn;m!1 pðxn; xmÞ.
Finally, the following crucial facts are shown in [20]:

1. fxng is a Cauchy sequence in ðX; pÞ if and only if it is a

Cauchy sequence in the metric space ðX; psÞ.
2. ðX; pÞ is complete if and only if ðX; psÞ is complete.

Matthews obtained, among other results, a partial metric

version of the Banach fixed point theorem ([20, Theorem

5.3]) as follows.

Theorem 1 ([20]) Let ðX; pÞ be a complete partial metric

space and let T : X ! X be a contraction mapping, that is,

there exists k 2 ½0; 1Þ such that

pðTx; TyÞ� kpðx; yÞ

for all x; y 2 X. Then T has a unique fixed point z 2 X.

Moreover, pðz; zÞ ¼ 0.

Later on, Abdeljawad et al. [1], Acar et al. [2, 3], Altun

et al. [6–8], Karapinar and Erhan [19], Oltra and Valero

[21] and Valero [27], gave some generalizations of the

result of Matthews. Also, Ćirić et al. [14], Samet et al. [25]

and Shatanawi et al. [26] proved some common fixed point

results in partial metric spaces. The best two generaliza-

tions of it were given by Romaguera [23, 24].

Theorem 2 Let ðX; pÞ be a complete partial metric space

and let T : X ! X be a map such that

pðTx; TyÞ�uðMðx; yÞÞ ð1:1Þ

for all x; y 2 X, where

Mðx; yÞ ¼ max

�
pðx; yÞ; pðx; TxÞ; pðy; TyÞ; 1

2
½pðx; TyÞ þ pðy; TxÞ�

�

and u satisfies one of the following:

1. u : ½0;1Þ ! ½0;1Þ is [23] an upper semicontinuous

from the right such that uðtÞ\t for all t [ 0;

2. u : ½0;1Þ ! ½0;1Þ is a [24] nondecreasing function

such that unðtÞ ! 0 as n ! 1 for all t [ 0:

Then T has a unique fixed point z 2 X. Moreover,

pðz; zÞ ¼ 0:

In [22], Romaguera defined the 0-complete PMS as

follows: A sequence fxng in a PMS ðX; pÞ is called 0-

Cauchy if

lim
m;n!1

pðxn; xmÞ ¼ 0

and ðX; pÞ is called 0-complete if every 0-Cauchy sequence

in X converges, with respect to sp, to a point z 2 X such

that pðz; zÞ ¼ 0. It is clear that every complete PMS is 0-

complete, but as it was shown in [22] the converse is not

true.

On the other hand Berinde [9–11] defined weak con-

traction (or ðd; LÞ-weak contraction) mappings in a metric

space as follows.

Definition 1 Let ðX; dÞ be a metric space and T : X ! X

be a self operator. T is said to be a weak contraction (or

ðd; LÞ-weak contraction) if there exists a constant d 2 0; 1ð Þ
and some L� 0 such that

dðTx; TyÞ� ddðx; yÞ þ Ldðy; TxÞ ð1:2Þ

for all x; y 2 X.

Note that, by the symmetry property of the distance, the

weak contraction condition implicitly includes the fol-

lowing dual one

dðTx; TyÞ� ddðx; yÞ þ Ldðx; TyÞ ð1:3Þ

for all x; y 2 X. So, in order to check the weak contrac-

tiveness of a mapping T , it is necessary to check both (1.2)

and (1.3).

In [9] and [11], Berinde showed that any Banach,

Kannan, Chatterjea and Zamfirescu mappings are weak

contraction. Using the concept of weak contraction map-

pings, Berinde [9] proved that if T is a ðd; LÞ-weak

contraction self mapping of a complete metric space X,

then T has a fixed point. Also, Berinde shows that any

ðd; LÞ-weak contraction mapping is a Picard operator.

Then, Berinde [12] introduced the nonlinear type weak

contraction using a comparison function and proved the

following fixed point theorem. A map u : Rþ ! R
þ,

where R
þ ¼ ½0;1Þ, is called comparison function if it

satisfies:

1. u is monotone increasing,

2. limn!1 unðtÞ ¼ 0 for all t 2 R
þ.

If u satisfies (1) and

3.
P1

n¼0 unðtÞ converges for all t 2 R
þ;

then u is said to be ðcÞ-comparison function.
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It is clear that ðcÞ-comparison function implies com-

parison function, but the converse may not be true. We can

find some properties and examples of comparison and ðcÞ-
comparison functions in [11].

Definition 2 Let ðX; dÞ be a metric space and T : X ! X

is a self operator. T be said to be a weak u-contraction (or

ðu; LÞ-weak contraction) if there exists a comparison

function u and some L� 0 such that

dðTx; TyÞ�uðdðx; yÞÞ þ Ldðy; TxÞ ð1:4Þ

for all x; y 2 X.

Similar to the case of weak contraction, in order to

check the weak u-contractiveness of a mapping T , it is

necessary to check both (1.4) and

dðTx; TyÞ�uðdðx; yÞÞ þ Ldðx; TyÞ ð1:5Þ

for all x; y 2 X.

Clearly any weak contraction is a weak u-contraction, but

the converse may not be true. Also the class of weak u-con-

tractions includes Matkowski type nonlinear contractions.

Theorem 3 Let ðX; dÞ be a complete metric space and

T : X ! X be ðu; LÞ-weak contraction with u is ðcÞ-com-

parison function. Then T has a fixed point.

Let ðX; dÞ be a metric space and T : X ! X be a map

such that

dðTx; TyÞ� aMdðx; yÞ þ Ldðy; TxÞ

for all x; y 2 X, where a 2 ½0; 1Þ; L� 0,

Mdðx; yÞ

¼ max dðx; yÞ; dðx; TxÞ; dðy; TyÞ; 1

2
½dðx; TyÞ þ pðy; TxÞ�

� �
:

Then T is called Ciric type strong almost contraction [13].

In light of the above information, Altun and Acar [5]

introduced the concepts of weak and weak u-contractions

in the sense of Berinde on partial metric space, showed that

any Banach, Kannan, Chatterjea and Zamfirescu mappings

are weak contraction and proved some fixed point theorems

in this interesting space.

Let ðX; pÞ be a partial metric space. A map T : X ! X is

called ðu; LÞ-weak contraction if there exists a comparison

function u and some L� 0 such that

pðTx; TyÞ�u pðx; yÞð Þ þ Lpwðy; TxÞ ð1:6Þ

for all x; y 2 X.

As above, because of the symmetry of the distance, the

ðu; LÞ-weak contraction condition implicitly includes the

following dual one

pðTx; TyÞ�u pðx; yÞð Þ þ Lpwðx; TyÞ ð1:7Þ

for all x; y 2 X. Consequently, in order to check the ðu; LÞ-
weak contractiveness of T , it is necessary to check both

(1.6) and (1.7).

Theorem 4 Let ðX; pÞ be a 0-complete partial metric

space and T : X ! X be ðu; LÞ weak contraction with a

ðcÞ-comparison function. Then T has a fixed point.

Later, Acar et al generalized Theorem 4 to Ciric type

strong almost contractions and they proved the following

results.

Theorem 5 Let ðX; pÞ be a 0-complete partial metric

space and T : X ! X be a map such that

pðTx; TyÞ�uðMðx; yÞÞ þ Lpwðy; TxÞ

for all x; y 2 X, where L� 0, u is a ðcÞ-comparison func-

tion and Mðx; yÞ as in Theorem 2.

Then T has a fixed point in X.

Theorem 6 Let ðX; pÞ be a 0-complete partial metric

space and T : X ! X be a map such that

pðTx; TyÞ�uðMðx; yÞÞ þ Lpwðy; TxÞ

for all x; y 2 X, where L� 0, Mðx; yÞ as in Theorem 2 and

u : ½0;1Þ ! ½0;1Þ is an upper semicontinuous from the

right function such that uðtÞ\t for all t [ 0.

Then T has a fixed point in X.

The purpose of this paper is to present a generalization

of Theorem 5 which has as a particular case mappings

satisfying an integral type almost contraction condition.

Main results

Let F be the class of functions defined by

F ¼ f/ : ½0;1Þ ! ½0;1Þ : / is continuous and non decreasingg:

Some examples of functions belonging to F are: /ðtÞ ¼ kt

with k 2 ð0;1Þ; /ðtÞ ¼ t

1 þ t
; /ðtÞ ¼ lnð1 þ tÞ and

/ðtÞ ¼ arctan t.

Our main result is the following.

Theorem 7 Let ðX; pÞ be a 0-complete partial metric

space and T : X ! X be a mapping satisfying

/ pðTx; TyÞð Þ�/ uðMðx; yÞÞð Þ þ Lpwðy; TxÞ ð2:1Þ

for all x; y 2 X, where L� 0, Mðx; yÞ is defined as in

Theorem 2, / 2 F and u is a ðcÞ-comparison function.

Then T has a fixed point z in X such that pðz; zÞ ¼ 0.

Proof We take x0 2 X and consider xn ¼ Txn�1 ¼ Tnx0

for any n 2 N. If xn ¼ xnþ1 for some n 2 N, then xn is a
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fixed point of T and the proof is finished. Suppose that

xn 6¼ xnþ1 for any n 2 N:

Since

1

2
½pðxnþ1; xnþ1Þ þ pðxn; xnþ2Þ� �

1

2
½pðxn; xnþ1Þ þ pðxnþ1; xnþ2Þ�

� maxfpðxn; xnþ1Þ; pðxnþ1; xnþ2Þg;

then we have

Mðxn; xnþ1Þ ¼ maxfpðxn; xnþ1Þ; pðxn; xnþ1Þ; pðxnþ1; xnþ2Þ;
1

2
½pðxnþ1; xnþ1Þ þ pðxn; xnþ2Þ�g

¼ maxfpðxn; xnþ1Þ; pðxnþ1; xnþ2Þg:

Applying the contractive condition (2.1) we have

/ pðxnþ1; xnþ2Þð Þ ¼ / pðTxn; Txnþ1Þð Þ
�/ uðMðxn; xnþ1ÞÞð Þ þ Lpwðxnþ1; xnþ1Þ
¼ / uðMðxn; xnþ1ÞÞð Þ

ð2:2Þ

If Mðxn; xnþ1Þ ¼ pðxnþ1; xnþ2Þ for some n 2 N, then from

(2.2) we obtain,

/ pðxnþ1; xnþ2Þð Þ�/ uðpðxnþ1; xnþ2ÞÞð Þ

and, since / is nondecreasing,

pðxnþ1; xnþ2Þ�uðpðxnþ1; xnþ2ÞÞ\pðxnþ1; xnþ2Þ

which is a contradiction. Therefore Mðxn; xnþ1Þ ¼
pðxn; xnþ1Þ for all n 2 N. From (2.2), we get

/ pðxnþ1; xnþ2Þð Þ�/ uðpðxn; xnþ1ÞÞð Þ

and, since / is nondecreasing,

pðxnþ1; xnþ2Þ�uðpðxn; xnþ1ÞÞ:

By using mathematical induction, we obtain

pðxnþ1; xnþ2Þ�unþ1 pðx0; x1Þð Þ:

for all n 2 N. By triangle rule, for m [ n, we have

pðxn; xmÞ�
X
k¼n

m�1

pðxk; xkþ1Þ �
X
k¼n

m�2

pðxkþ1; xkþ1Þ

�
X
k¼n

m�1

pðxk; xkþ1Þ

�
X
k¼n

1
pðxk; xkþ1Þ

�
X
k¼n

1
uk pðx0; x1Þð Þ:

Since u is a ðcÞ-comparison function, thenP1
k¼0u

k pðx0; x1Þð Þ is convergent and so xnf g is a 0-Cauchy

sequence in X. Since X is 0-complete, xnf g converges, with

respect to sp, to a point z 2 X such that

lim
n!1

pðxn; zÞ ¼ pðz; zÞ ¼ 0:

Now we claim that pðz; TzÞ ¼ 0. Suppose on contrary

pðz; TzÞ[ 0: As / is a ðcÞ-comparison function, /ðtÞ\t

for t [ 0, As limn!1 pðxnþ1; xnÞ ¼ 0 and limn!1
pðxn; zÞ ¼ 0, there exists n0 2 N such that for n [ n0,

pðxnþ1; xnÞ\
1

3
pðz; TzÞ ð2:3Þ

and there exists n1 2 N such that for n [ n1,

pðxn; zÞ\ 1

3
pðz; TzÞ: ð2:4Þ

If we take n [ maxfn0; n1g then, by (2.3), (2.4) and tri-

angular inequality, we have

1

2
½pðxn; TzÞ þ pðz; TxnÞ� �

1

2
½pðxn; zÞ þ pðz; TzÞ

� pðz; zÞ þ pðz; TxnÞ�

� 1

2

1

3
pðz; TzÞ þ pðz;TzÞ þ 1

3
pðz; TzÞ

� �

¼ 5

6
pðz; TzÞ: ð2:5Þ

Now for n [ maxfn0; n1g, then, by (2.3), (2.4) and (2.5),

we have

/ pðxnþ1; TzÞð Þ ¼ / pðTxn; TzÞð Þ
�/ uðMðxn; zÞð Þ þ Lpwðz; xnþ1Þ
¼ / uðpðz; TzÞÞð Þ þ Lpwðz; xnþ1Þ:

Letting n ! 1 in the last inequality, we have

/ pðz; TzÞð Þ�/ uðpðz; TzÞÞð Þ and since / is nondecreasing

pðz; TzÞ�uðpðz; TzÞÞ\pðz;TzÞ which is a contradiction.

Therefore pðTz; zÞ ¼ 0 and z ¼ Tz. h

We can obtain the following corollaries from our main

theorem.

Corollary 1 Theorem 4.

Proof Consider / ¼ I½0;1Þ identity mapping in

Theorem 7.

Notice that if f : ½0;1Þ ! ½0;1Þ is a Lebesgue-inte-

grable mapping then the function defined by

/ðtÞ ¼
Z t

0

f ðsÞds fort 2 ½0;1Þ ;

belongs to F . Therefore we can obtain the following

corollary.
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Corollary 2 Let ðX; pÞ be a 0-complete partial metric

space and T : X ! X be a mapping satisfying

ZpðTx;TyÞ

0

f ðsÞds�
ZuðMðx;yÞÞ

0

f ðsÞds þ Lpwðy; TxÞ

for all x; y 2 X, where L� 0, Mðx; yÞ as in Theorem 2, u is

a ðcÞ-comparison function and f : ½0;1Þ ! ½0;1Þ is a

Lebesgue-integrable mapping.

Then T has a fixed point in X.

Now we give an illustrative example.

Example 4 Let X ¼ A [ B, where A ¼ f0g [ f1
n
: n 2

f1; 2; . . .gg; B ¼ f2; 3; 4; . . .g and

pðx; yÞ ¼
max x; yf g; x 6¼ y

0; x ¼ y

�
:

Then ðX; pÞ is a partial metric space and it is also 0-com-

plete. Define T : X ! X by

Tx ¼
x3; x 2 A

1

x
; x 2 B

8<
: :

We show that the contractive condition (2.1) of Theorem 7

is satisfied for /ðtÞ ¼ t, uðtÞ ¼ t
2

and L ¼ 2.

Now consider the following cases.

Case 1. If x ¼ y; then pðTx; TyÞ ¼ 0 and so the result is

clear. Therefore we will assume x 6¼ y in the following cases.

Case 2. Let x; y 2 A. Then (note that if x ¼ 1 or y ¼ 1

then inff y � x3
�� �� : x; y 2 A with x 6¼ yg ¼ 1

2
: If x 6¼ 1 and

y 6¼ 1; then x3 � 1
2

x)

pðTx; TyÞ ¼ maxfx3; y3g

� 1

2
maxfx; yg þ 2jy � x3j

¼ 1

2
pðx; yÞ þ 2pwðy; TxÞ

¼ uðMðx; yÞÞ þ Lpwðy; TxÞ:

Case 3. Let x; y 2 B. Then

pðTx; TyÞ ¼ max
1

x
;
1

y

� �

¼ 1

minfx; yg

� 1

2
maxfx; yg

¼ 1

2
pðx; yÞ

�uðMðx; yÞÞ þ Lpwðy; TxÞ:

Case 4. Let x 2 A and y 2 B. Then

pðTx; TyÞ ¼ max x3;
1

y

� �

� 1

2
y

¼ 1

2
pðx; yÞ

�uðMðx; yÞÞ þ Lpwðy; TxÞ:

Case 5. Let x 2 B and y 2 A. This case is similar to Case 4.

Hence, all conditions of Theorem 7 are satisfied.

Therefore T has a fixed point in X.

Note that pðT0; T1Þ ¼ 1 ¼ Mð0; 1Þ, then the condition

of (1.1) is not satisfied, because we can not find a function

u satisfying

pðT0; T1Þ ¼ 1�uðMð0; 1ÞÞ ¼ uð1Þ

and the condition (1) or (2) of Theorem 2. Therefore

Theorem 2 is not applicable to this example.

In the above, we show that if T is a generalized almost

contraction then it has a fixed point. But in order to guarantee

the uniqueness of the fixed point of T , we have to consider an

additional condition, as in the following theorem.

Theorem 8 Let ðX; pÞ be a 0-complete partial metric

space and T : X ! X be a map such that (2.1) holds.

Suppose T also satisfies the following condition: there

exists a comparison function u1;some L1 � 0 and /1 2 F
with /1ðtÞ[ 0 for t [ 0 such that

/1 pðTx; TyÞð Þ�/1 u1 Mðx; yÞð Þð Þ þ L1pwðx; TxÞ ð2:6Þ

holds, for all x; y 2 X. Then T has a unique fixed point in X.

Proof Suppose that, there are two fixed points z and w of

T . If pðz;wÞ ¼ 0, it is clear that z ¼ w. Assume that

pðz;wÞ[ 0: By (2.6) with x ¼ z and y ¼ w, we have

0\/1 pðz;wÞð Þ ¼ /1 pðTz; TwÞð Þ
�/1 u1 Mðz;wÞð Þð Þ þ L1pwðz; TzÞ
¼ /1 u1 Mðz;wÞð Þð Þ
¼ /1 u1 pðz;wÞð Þð Þ

since / is nondecreasing

0\pðz;wÞ�u1 pðz;wÞð Þ\pðz;wÞ

which is a contradiction. Therefore T has a unique fixed

point. h
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