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Abstract

We apply the Wigner function formalism to the study of two-photon
polarization-momentum hyperentanglement generated in parametric down-
conversion. It is shown that the consideration of a higher number of degrees
of freedom is directly related to the extraction of additional uncorrelated
sets of zeropoint modes at the source. We present a general expression for
the description of the quantum correlations corresponding to the sixteen Bell
base states, in terms of four beams whose amplitudes are correlated through
the stochastic properties of the zeropoint field. A detailed analysis of the
two experiments on complete Bell-state measurement included in [Walborn
et al., Phys. Rev. A 68, 042313 (2003)] is made, emphasizing the role of the
zeropoint field. Finally, we investigate the relationship between the zeropoint
inputs at the source and the analysers, and the limits on optimal Bell-state
measurement.

Keywords: Entanglement, Bell-state analysis, parametric down-conversion,
Wigner representation, zeropoint field.
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1 INTRODUCTION

In the last two decades, parametric down-conversion (PDC) assumed an im-
portant role for the practical implementation of the quantum theory of in-
formation, such as quantum cryptography [1], quantum dense coding [2] and
teleportation [3]. The use of PDC as a source of entanglement involves the
necessity of performing a complete Bell-state measurement (BSM), which is
required in many quantum communication schemes. In this context, entan-
gled photon pairs produced in PDC have been used for experiments on a
partial Bell-state measurement [4], in which entanglement involves only one
degree of freedom, and a complete Bell-state measurement, in which hyper-
entanglement (entanglement between two or more degrees of freedom) takes
part [5]. More recently, these states have been used as an essential part of
cluster states [6] which are of great value in the field of quantum computing
[7].

The use of enlarged Hilbert spaces opened the door for a complete BSM
using linear optics and single photon detectors, first by considering that one
of the degrees of freedom was in a fixed quantum state [8], and encoding the
information in the other. Further studies about the actual limits for BSM
in these enlarged spaces have shown that, for two photons hyperentangled
in n degrees of freedom, the number of mutually distinguishable sets of Bell
states is bounded above by 2n+1 [9]. More recently, it has been shown that
at most 2n+1−1 classes out of 4n hyper-Bell states can be distinguished with
one copy of the input state, and that complete distinguishability is possible
with two copies, within the class of devices obeying linear evolution and local
measurement (LELM) [10]. In case the two photons are not brought together
at the LELM apparatus the maximun number of distinguishable classes is
2n.

The Wigner representation of quantum optics provides an alternative to
the standard Hilbert space formalism for the study of quantum information
and for its practical implementation with PDC. In the Wigner representation
within the Heisenberg picture (WRHP) the generation and propagation of
PDC light is treated as in classical optics by taking into account the zero-
point field (ZPF) entering the crystal and the different optical devices placed
between the source and the detectors. Finally, the vacuum fluctuations of
the electromagnetic field are subtracted at the detectors [11, 12]. Hence,
the peculiarities of the quantum world with respect to the image that clas-
sical physics offers are represented, in this context, by (i) the existence of
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a stochastic zeropoint field whose amplitudes are distributed according to a
positive Wigner function, and (ii) the way in which the signal is separated
from the zeropoint background in the detection process. These two features
give rise to the typical counterintuitive results within the quantum domain.

In essence, manipulating entanglement is a common denominator in the
different manifestations of quantum communication. In the WRHP, two-
photon polarization entanglement is represented by two stochastic light beams,
whose correlation properties arise from the coupling between two zeropoint
beams (each containing two sets of uncorrelated zeropoint modes) and the
laser beam at the crystal [12], following the classical Maxwell equations
[13, 14]. On the other hand, entanglement manipulation involves the change
in the correlation properties of the light beams when they are going through
the different optical devices, and this is related to the way in which the
vacuum modes are redistributed at the field amplitudes.

The WRHP description of the four polarization Bell base states was made
in [15] along with the application of the formalism to experiments on quan-
tum cryptography. In [16] partial Bell-state analysis was studied, and the
fermionic behaviour of two photons described by the singlet state, when they
reach a balanced beam-splitter, was explained using purely wave-mechanical
arguments based on the Wigner representation. More recently, the WRHP
formalism has been applied to the description of entanglement swapping
using PDC light, and it has been shown that the generation of mode en-
tanglement between two initially non interacting photons is related to the
quadruple correlation properties of the electromagnetic field, through the
stochastic properties of the vacuum [17]. These works emphasised the role of
the zeropoint field in the generation and propagation of light in experimen-
tal implementations of quantum communication, including the existence of
a relevant ZPF noise entering the idle channels of the analysers. Concretely,
according to [15] the effects of eavesdropping attacks in the case of projective
measurements are directly related to the inclusion of some fundamental noise,
that also turns out to be fundamental to reproduce the quantum results. In
this way, we can state that the zeropoint field carries the quantum informa-
tion which is extracted at the source, and also introduces some fundamental
noise at the idle channels of the analyzers. These two features of the zero-
point field are a common denominator in optical experiments on quantum
information.

The standard Hilbert-space formulation of quantum optics considers vac-
uum fluctuations in an implicit way through the Heisenberg principle and
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the use of normal ordering for the calculation of photodetection probabilities.
In contrast, the Wigner function offers the possibility of stating specifically
what the role of vacuum fluctuations is in the generation and measurement of
quantum information in quantum optical information processing using PDC.
In this way, the motivation for this paper and further works comes from the
following questions: What is the relationship between enlarging the Hilbert
space and the zeropoint field activated at the source? What is the role of the
zeropoint at the different stages of a BSM experiment? What is the relation-
ship between the zeropoint modes entering the source, the ones activated at
the idle channels of the analyzers, and the maximal information that can be
generated in each experiment? Thus, there is considerable motivation for the
application of the WRHP approach to the description of hyperentanglement
and its application to complete Bell-state analysis, in order to investigate the
role of the zeropoint field in this area.

The paper is organised as follows: In Section 2 we shall describe two-
photon polarization-momentum hyperentanglement generated in PDC, by
means of four correlated light beams. This description involves the consid-
eration of eight uncorrelated sets of vacuum modes, distributed in four ZPF
entering beams at the source. We shall obtain a compact expression for the
description of the sixteen Bell base states in the WRHP, in terms of four
two-by-two correlated beams. In Section 3 we shall apply this formalism to
study the experiments proposed in reference [8] in which one of the degrees of
freedom is in a fixed quantum state. We shall put the emphasis on the role of
the zeropoint field at the different steps of each experiment, in order to make
clear its relevant contribution to the signal fields arriving at the detectors.
This analysis is important, not only for the theoretical aspects concerning
optical experiments on quantum information, but also for its relation with
optical tests of Bell’s inequalities, in which the vacuum field entering the idle
channels of the analysers gives rise to enhancement [18, 19]. In Section 4 we
shall demonstrate that the number of independent sets of zeropoint modes
entering the source represents an upper bound to the maximum number of
Bell states that can be distinguished in hyperentanglement-assisted Bell-state
analysis. Also, we shall establish the relationship between the ZPF inputs
at the source and the analysers, and the maximum number of distinguish-
able Bell-state classes, in LELM apparatus in which the left and right input
channels are not brought together. Finally, in Section 5 we shall present the
main conclusions of this work, and sketch further steps for future research.
In order to a better understanding of the WRHP approach in this paper, we
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have included some fundamental ideas in Appendix A.

2 POLARIZATION-MOMENTUM HYPER-

ENTANGLEMENT IN THE WRHP

Let us start by considering the following situation: a type-I two-crystal source
is pumped by a laser beam. The first (second) crystal emits pairs of horizontal
(vertical) polarized photons in superimposed emission cones. Because the
photons are emitted on opposite sides of the cone, two sets of conjugated
beams, (a1, b2) and (a2, b1), which are represented by wave vectors kai , kbi

(i = 1, 2), can be selected [20]. If the coherence volume of the laser contains
the two-crystal interaction region, the quantum state corresponding to a
photon pair is usually expressed, in a particle-like description, as:

|Φ+〉 ⊗ |ψ+〉 = 1√
2
[|H〉1|H〉2 + |V 〉1|V 〉2]⊗

1√
2
[|a〉1|b〉2 + |b〉1|a〉2]. (1)

The state given by (1) is one of the sixteen base states corresponding to
the two-photon hyperentanglement on polarization and momentum degrees
of freedom, of the form |Π〉 ⊗ |η〉, where |Π〉 (|η〉) is the four-dimensional
vector representing one of the polarization (momentum) Bell base states [8]:

∣∣Ψ±
〉
=

1√
2
[|H〉1|V 〉2 ± |V 〉1|H〉2] ;

∣∣Φ±
〉
=

1√
2
[|H〉1|H〉2 ± |V 〉1|V 〉2] ,

(2)

∣∣ψ±
〉
=

1√
2
[|a〉1|b〉2 ± |b〉1|a〉2] ;

∣∣φ±
〉
=

1√
2
[|a〉1|a〉2 ± |b〉1|b〉2] . (3)

The study of polarization-momentum hyperentanglement in the WRHP
is based on the same ideas that were developed in references [11] and [12].
The key point in this case is that the selection of two sets of correlated beams,
(a1, b2) and (a2, b1), implies the consideration of eight sets of vacuum modes
which are “activated” at the crystal via the coupling with the laser beam
(see fig.1). The set of representative modes, corresponding to the entering
zeropoint beam of wave vector kxi

, is represented by the vacuum amplitudes:
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{αxi,λ} ≡
{
αk,λ;k ∈ [k]xi

}
; x = a, b ; λ = H, V ; i = 1, 2. (4)

Laser

FOUR CORRELATED

BEAMS

Fa2
(+)

Fa1
(+)

FOUR ZPF BEAMS

TWO-CRYSTAL

SOURCE

(TYPE-I PDC)

F b1
(+)

F b2
(+)

Figure 1: Sets of vacuum modes (on the left), which are “activated” and coupled
with the laser inside the crystal. The correlation properties of the four beams (on
the right) are related to the way in which the vacuum amplitudes are distributed
in the field amplitudes. Hence, each of the sixteen Bell base states is characterized,
in the WRHP approach, by a “particular” set of correlations.

In order to focus on the main points we shall first describe the generation
of the beams concerning one of the sixteen states, the one corresponding to
Eq. (1). The Hamiltonian corresponding to the electromagnetic field can be
expressed in the following way:

H = Hfree +Hint =
∑

λ=H,V

∑

k

h̄ωk,λα
∗
k,λαk,λ

+



ih̄g′

V

2

2∑

i, j = 1
i 6= j

∑

λ=H,V

∑

k ∈ [k]ai
k′ ∈ [k]bj

f (k,k′) exp (−iωpt)α
∗
k,λα

∗
k′,λ + c.c.



,

(5)
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where the crucial difference between (5) and Eq. (1) of [12] is that we have
made the change V → V/2, in order to consider that the energy of the
classical wave corresponding to the laser (with frequency ωp and momentum
kp), which is proportional to the squared amplitude, must be divided into
four beams. On the other hand, f (k,k′) is a function which is different from
zero only when the momentum matching condition is fulfilled, and g′ is a
constant related to the coupling parameter.

The evolution equation for αk,λ is given by the Hamilton (canonical)

equations, taking
√
h̄αk,λ as coordinates and

√
h̄α∗

k,λ as canonical momenta.
We have:

α̇k,λ = −iωk,λαk,λ + g′
V

2

∑

k′

f(k,k′) exp(−iωpt)α
∗
k′,λ, (6)

where {k, λ} represents any mode belonging to (4). The integration is per-
formed to second order in the coupling constant (g = g′∆t), from t = −∆t
to t = 0, ∆t being the interaction time inside the two-crystal source. For
t > 0 there is a free evolution.

By substituting αk,H(t) and αk,V (t) in Eq. (A.1) we obtain the following
four correlated beams leaving the crystal (for more details see [11, 12]):

F(+)
a1

(r, t) = F (+)
p (r, t; {αa1,H ;α

∗
b2,H

})ia1 + F (+)
s (r, t; {αa1,V ;α

∗
b2,V

})ja1 , (7)

F
(+)
b2

(r, t) = F (+)
q (r, t; {αb2,H ;α

∗
a1,H

})ib2 + F (+)
r (r, t; {αb2,V ;α

∗
a1,V

})jb2 , (8)

F
(+)
b1

(r, t) = F ′(+)
p (r, t; {αb1,H ;α

∗
a2,H

})ib1 + F ′(+)
s (r, t; {αb1,V ;α

∗
a2,V

})jb1, (9)

F(+)
a2

(r, t) = F ′(+)
q (r, t; {αa2,H ;α

∗
b1,H

})ia2 + F ′(+)
r (r, t; {αa2,V ;α

∗
b1,V

})ja2 , (10)

where each polarization component is a linear transformation of the ZPF en-
tering the nonlinear medium. We have included the sets of relevant zeropoint
modes, for a better understanding of the correlation properties. For instance,
F

(+)
p is only correlated to F

(+)
q because {αa1,H} ({α∗

b2,H
}) is correlated to
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{α∗
a1,H

} ({αb2,H}), as it can be seen from Eq. (A.4). The same reasoning

applies to the correlations F
(+)
r ↔ F

(+)
s , F ′(+)

p ↔ F ′(+)
q , and F ′(+)

r ↔ F ′(+)
s .

Hence, the beam F
(+)
a1 (F

(+)
b1

) is correlated to F
(+)
b2

(F
(+)
a2 ), but there is no

correlation between the two beams corresponding to each photon.
Taking r = 0 at the center of the source, we have the cross-correlation:

〈F (+)
p (0, t)F (+)

q (0, t′)〉 = g
V

2
ν(t′ − t), (11)

where ν(t′ − t) vanishes when |t′ − t| is greater than the correlation time be-

tween the beams F
(+)
a1 and F

(+)
b2

[13]. Similar expressions hold for 〈F ′(+)
r (0, t)F ′(+)

s (0, t′)〉,
〈F (+)

r (0, t)F
(+)
s (0, t′)〉, and 〈F ′(+)

p (0, t)F ′(+)
q (0, t′)〉.

On the other hand, taking for instance the polarization amplitude F
(+)
p

at a point r and times t and t′, we have the autocorrelation:

〈F (+)
p (r, t)F (−)

p (r, t′)〉 − 〈[F(+)
ZPF,a1

(r, t) · ia1 ][F
(−)
ZPF,a1

(r, t′) · ia1 ]〉

=
g2|V |2

4
µ(t′ − t), (12)

where F
(+)
ZPF,a1

is the zeropoint beam corresponding to mode a1, and µ(t− t′)
is a correlation function which goes to zero when |t′ − t| is greater than the

coherence time of PDC light. Similar expressions hold for F
(+)
s , F

(+)
q , F

(+)
r ,

and for the corresponding primed amplitudes.

2.1 The sixteen hyper-Bell states in the WRHP

The four beams given in Eqs. (7) to (10) are correlated through the ZPF
entering the two-crystal source, which is “amplified” via the activation of
the eight sets of vacuum modes {kxi,λ (x = a, b; i = 1, 2;λ = H, V )}. The

beams F
(+)
a1 and F

(+)
b1

can be locally manipulated, allowing for the possibility
of distributing the vacuum amplitudes in sixteen different ways, each corre-
sponding to the generation of a concrete Bell base state. Hence, the possi-
bility of performing superdense coding is explained in the WRHP framework
through the change of the correlation properties of the light beams (repre-
sented by the four nonvanishing correlations p ↔ q and r ↔ s) when the
two uncorrelated beams corresponding to one photon are modified via lo-
cal manipulations. Such correlations have their origin in the crystal, where
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the zeropoint modes are coupled with the laser field, and the information is
carried by the amplified vacuum fluctuations.

Now let us characterize the correlation properties of the sixteen Bell base
states. For this purpose the description of the four polarization Bell-states,
in terms of two-parametrized two correlated beams, will be considered here
[16]. For the sake of simplicity, from now on in this section we shall discard
the dependence on position and time. We have:

F(+)
x1

=
{
[F (+)

s cosβ − F (+)
p sinβ]ix1

+ eiκ[F (+)
s sinβ + F (+)

p cosβ]jx1

}
eiϕ1 , (13)

F(+)
y1

=
{
[F ′(+)

s cosβ − F ′(+)
p sinβ]iy1 + eiκ[F ′(+)

s sinβ + F ′(+)
p cosβ]jy1

}
eiϕ2 ,

(14)

F(+)
a2

= F ′(+)
q ia2 + F ′(+)

r ja2 , (15)

F
(+)
b2

= F (+)
q ib2 + F (+)

r jb2 , (16)

where F
(+)
x1 (F

(+)
y1 ) is correlated to F

(+)
b2

(F
(+)
a2 ).

Eqs. (13) to (16) correspond to the description, in the WRHP, of the six-
teen Bell base states corresponding to polarization-momentum hyperentan-
glement of two photons. The essential point is that quantum correlations are
described in terms of four two-by-two correlated beams through the eight
sets of independent zeropoint amplitudes entering the nonlinear source.

The transformations concerning polarization are represented by two pa-
rameters, β and κ, which represent the action of a polarization rotator and
a wave retarder, respectively, on beams corresponding to photon “1”. In
this way, the combination β = 0, κ = 0 (β = 0, κ = π) corresponds to the
description of the polarization state |Ψ+〉 (|Ψ−〉). In both cases the non-null
correlations correspond to different polarization components, the only dif-
ference being the minus sign that appears in |Ψ−〉. On the other hand, the
case β = ∓π/2 and κ = π (β = −π/2, κ = 0) corresponds to the descrip-
tion of ∓|Φ+〉 (|Φ−〉), where the horizontal (vertical) component of a beam
is correlated with the horizontal (vertical) component of the conjugated one
[16].

On the other hand, momentum is represented by two couples of parame-
ters, (x, y) and (ϕ1, ϕ2), such that:
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• The combination (x, y) = (a, b) ((x, y) = (b, a)) and ϕ1 = ϕ2 = 0
corresponds to the state |ψ+〉 (|φ+〉).

• The situation in which (x, y) = (a, b), ϕ1 = 0 and ϕ2 = π, corresponds
to |ψ−〉.

• Finally, in the case (x, y) = (b, a), ϕ1 = π and ϕ2 = 0, we have the
description of |φ−〉.

Because of the fact that multiplying a given Bell state by a phase factor
is irrelevant, it can be easily seen that there are four dichotomic parame-
ters giving rise to the sixteen Bell base states. For instance, the parame-
ters β = (0,−π/2) and κ = (0, π) define the polarization Bell-state, and
[x, y] = [(a, b), (b, a)] and [ϕ1, ϕ2] = [(0, 0), (0, π)] the momentum Bell-state.
These parameters can be changed locally, and this property is of interest in
connection to dense coding and superdense coding [8, 9].

3 COMPLETE BSM IN THE WRHP

In this section we shall apply the Wigner formalism for hyperentanglement
to the description of a complete BSM of the four Bell states, by considering
that one of the two degrees of freedom is in a fixed state: (i) First, we shall
consider the experimental setup shown in Fig. 2 of reference [8], in which
the momentum degrees of freedom are used as the ancilla, in order to encode
information in polarization Bell states; (ii) in the second experiment (Fig. 3
of [8]), the polarization state is fixed, and the four momentum Bell-states
can be distinguished.

Both setups correspond to a broad class of LELM devices, in which the
modes corresponding to the input photons are not brought together in the
apparatus. In this case, it has been demonstrated that there are at most 2n

distinguishable classes of Bell states [10]. As we are considering experiments
in which one of the degrees of freedom is in a fixed state, each of the 22 = 4
distinguishable classes of Bell states will just correspond to one of the four
Bell states of the other degree of freedom.

In order to focus on the role of the zeropoint field, we shall describe
the different steps of the experiments. The values of the field amplitudes
at the detectors are usually computed by propagating them through the
optical devices from the source to the detectors. In these experiments an
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identical distance separating the source from the respective optical devices
and detectors will be considered, so that the contribution of the related
phase shift in Eq. (16) of [12] will be discarded in the calculation of the
probabilities. For simplicity, we shall focus on the ideal situation t = t′, so
that we can discard the dependence on position and time.

3.1 Discrimination of the polarization Bell-states

The hyperentangled-Bell-state analyser includes two polarizing beam-splitters
(PBS) which transmit (reflect) the vertical (horizontal) polarization, and
switch modes (remain in the same mode), in order to perform a controlled-
NOT (CNOT) logic operation between the polarization (control) and spatial
(target) degrees of freedom. Each outgoing beam passes through a polariza-
tion analyzer (PA) in the ±45◦ basis, consisting of a half-wave plate, a PBS,
and two detectors. The vacuum zeropoint field at the idle channels of the
analyzers is represented in Fig. 2, this being an important ingredient of our
approach, as we shall see later.

By considering (x, y) = (a, b) and ϕ1 = ϕ2 = 0 in Eqs. (13) to (16), we
obtain four correlated beams which describe one of the four states: |Ψ±〉 ⊗
|ψ+〉 and |Φ±〉 ⊗ |ψ+〉, depending on the value of β and κ. The action of
CNOT gates is represented by the following output beams:

F′(+)
a1

= i[F (+)
s cosβ − F (+)

p sinβ]ia1 + eiκ[F ′(+)
s sinβ + F ′(+)

p cosβ]ja1 , (17)

F′(+)
b1

= i[F ′(+)
s cosβ − F ′(+)

p sinβ]ib1 + eiκ[F (+)
s sinβ + F (+)

p cosβ]jb1 , (18)

F′(+)
a2

= iF ′(+)
q ia2 + F (+)

r ja2 , (19)

F′(+)
b2

= iF (+)
q ib2 + F ′(+)

r jb2 , (20)

where we have considered the imaginary unit in order to account for the
reflection at the PBS, in contrast to the equation (3) of reference [8], in
which there is no phase shift associated to the reflection.

A quick look at Eqs. (17) to (20) shows that, in the case β = 0, the
nonzero correlations are those concerning amplitudes related to orthogonal
polarizations of beams a1 and a2, or b1 and b2. This is consistent with the
transformation |Ψ±〉|ψ+〉 → |Ψ±〉|φ+〉 (see Eq. (4) of [8]). In contrast, in the
case β = ±π/2 there is no change in the correlation properties of the light

11



HWP PBS

ZPFb2

CNOT

ZPFa2

B2-

B2+

A2-

A2+

PA

PA

b2

a2a2

b2

ZPFb1

CNOT

ZPFa1

B1-

B1+

A1+

PA

PA

b1

a1a1

b1

A1 -

Figure 2: Polarization-momentum hyperentanglement analyzer using a fixed
entangled state in momentum. The consideration of the zeropoint field at
the idle channels of the analyzers is a key point in the Wigner approach.

beams. These properties justify that the momentum state |ψ+〉 can be used
to discriminate between the four polarization Bell states. It is noteworthy
that there is no additional zeropoint amplitudes entering the PBSs at the
CNOT gates (see Fig. 2), so that the PBSs mark the momentum state
due to the consideration of the eight sets of independent zeropoint modes
at the two-crystal source, and their subsequent redistribution in the beams’
amplitudes.

Now, taking into account the action of the half-wave plate -HWP@45◦-,
and that the polarization analyzers are oriented at 45◦, the polarizing beam-
splitters will reflect (transmit) the component of the field along the unit
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vector i (j), which is oriented at +45◦ (−45◦) with respect to the horizon-
tal direction. In order to express the field amplitudes at the detectors, we
must add the corresponding zero-point component that enters through the
free channel of each PBS. After some easy algebra, we obtain the following
compact expression for the four field amplitudes at the detectors, concerning
the paths a1 and b1:

F
(+)
X1±

=
in1±

√
2

{
i[F̃

(+)
s,X cosβ − F̃

(+)
p,X sinβ]± eiκ[F̌

(+)
s,X sinβ + F̌

(+)
p,X cos β]

}
u±

+ im1± [F
(+)
ZPFX1

· u∓]u∓, (21)

and for the paths a2 and b2

F
(+)
Y2±

=
in2±

√
2
[iF̌

(+)
q,Y ± F̃

(+)
r,Y ]u± + im2± [F

(+)
ZPFY2

· u∓]u∓, (22)

where: X, Y = A or B; u+ ≡ i, u− ≡ j, and ni+ = 1, ni− = 0, mi+ = 0,

mi− = 1, for i = 1, 2. Also we have defined the amplitudes F̃
(+)
v,Z and F̌

(+)
v,Z

(v = p, q, r, s; Z = X, Y ), where F̃
(+)
v,Z = F

(+)
v in the case Z = A, and

F̃
(+)
v,Z = F ′(+)

v stands for Z = B. In contrast, F̌
(+)
v,Z = F ′(+)

v in the case Z = B,

and F̌
(+)
v,Z = F

(+)
v stands for Z = A.

In order to calculate the joint detection probabilities we shall use Eq.
(A.7) along with the correlation properties given in Eq. (11). We shall take
into account that the ZPF inputs at the PBSs are uncorrelated with the
signals and with each other. After some easy calculations, we obtain the
following general expression for the joint detection probability:

PX1±,Y2±

kX1±
kY2±

=
1

4

∣∣∣[−i2〈F̌ (+)
q,Y F̃

(+)
p,X 〉+ (±)1(±)2e

iκ〈F̃ (+)
r,Y F̌

(+)
s,X 〉]sinβ

+i[(±)2〈F̃ (+)
r,Y F̃

(+)
s,X 〉+ (±)1〈F̌ (+)

q,Y F̌
(+)
p,X 〉]cosβ

∣∣∣
2

, (23)

where kX1±
, kY2±

, are constants which are related to the effective efficiency
of the detection process. Let us now consider the following cases:

• Case I (β = 0) corresponds to the states |Ψ±〉 ⊗ |ψ+〉. From (23) it
can be easily shown that for κ = 0 (κ = π), which corresponds to the
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polarization state |Ψ+〉 (|Ψ−〉), only the four probabilities PA1+,A2+
,

PB1+,B2+
, PA1−,A2−

, PB1−,B2−
(PA1+,A2−

, PB1+,B2−
, PA1−,A2+

, PB1−,B2+
)

are different from zero.

• Case II (β = ±π/2) corresponds to the states |Φ±〉⊗|ψ+〉. In this case,
from (23) it is shown that for κ = 0 (κ = π), which corresponds to the
polarization state |Φ−〉 (|Φ+〉), only the four probabilities PA1+,B2+

,
PB1+,A2+

, PA1−,B2−
, PB1−,A2−

(PA1+,B2−
, PB1+,A2−

, PA1−,B2+
, PB1−,A2+

)
are nonzero.

Hence, the detector signatures allow to distinguish between the polariza-
tion Bell states. The discrepancy with Walborn’s Table I in ref. [8], with
respect to the states |Φ−〉 and |Φ+〉, is due to the consideration of the complex
factor i for the reflected amplitudes at the CNOT gates [21]. For this reason,
the corresponding joint probabilities for these two states are exchanged with
respect to the work of Walborn et al.

3.2 Discrimination of the momentum Bell-states

The experimental setup is shown in Fig. 3. Two half-wave plates (HWP),
which are aligned at 45◦ in modes b1 and b2, perform the CNOT operation.
The BSs are balanced nonpolarizing beam splitters [8]. In this case, the
polarization degrees of freedom are used as ancilla, so that the polarization
state is fixed, and corresponds to |Ψ+〉. In the Wigner formalism, by putting
κ = β = 0 in Eqs. (13) to (16), we obtain the following four beams in order
to compactly describe the four states |Ψ+〉 ⊗ |ψ±〉 and |Ψ+〉 ⊗ |φ±〉:

F(+)
x1

= [F (+)
s ix1

+ F (+)
p jx1

]eiϕ1 , (24)

F(+)
y1

= [F ′(+)
s iy1 + F ′(+)

p jy1 ]e
iϕ2 , (25)

F(+)
a2

= F ′(+)
q ia2 + F ′(+)

r ja2 (26)

F
(+)
b2

= F (+)
q ib2 + F (+)

r jb2 . (27)

Now, we define the matrices M̂x and M̂y: in the case x = a, y = b, M̂x = Î

(identity matrix) and M̂y = M̂HWP ; on the other hand, if x = b, y = a, then

M̂x = M̂HWP and M̂y = Î. In this way, the beams entering the BSs are
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1

2

BS

BS

HWP

Mx

My

ZPFX1

X1H

A2H

X1V

A2V

Y1V

B2V

Y1H

B2H

ZPFY1

ZPFA2

ZPFB2

a2

x1

y1

b2

Figure 3: Hyperentangled-Bell-state analyzer using a fixed entangled state
in polarization. We have represented two optical devices, Mx and My, in
order to account for the two possibilities, depending on the value of x and
y. The zeropoint field at the idle channels of the analyzers is represented by
four beams.
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F′(+)
x1

= M̂xF
(+)
x1

; F′(+)
y1

= M̂yF
(+)
y1
, (28)

F′(+)
a2

= F(+)
a2

; F′(+)
b2

= M̂HWPF
(+)
b2

= F (+)
r ib2 + F (+)

q jb2 . (29)

From Eqs. (28) and (29) it can be easily seen that, for x = a, y = b (x = b,
y = a), the only non-null cross-correlations are those concerning the same
polarization (orthogonal polarizations). For this reason, the CNOT operation
marks the polarization state. This operation does not introduce additional
zeropoint fluctuations, because the HWPs do not activate zeropoint modes.
Finally, the BSs transform the beams given in Eqs. (28) and (29) without the
consideration of additional zeropoint modes, because there is no idle channel
at the BSs.

Finally, if we consider the zeropoint amplitudes at the idle channels of
the PBSs (see Fig. 3), the field amplitudes at the detectors X1H , X1V , Y1H
and Y1V can be expressed by the following compact expression:

F
(+)
Z1λ

=
inλ

√
2

{
im1(Z)[M̂xF

(+)
x1

] + im2(Z)[M̂yF
(+)
y1

]
}
· uλ + F

(+)
vac,Z1λ

, (30)

where: Z = X, Y , λ = H, V ; uH ≡ i, uV ≡ j; nH = 1, nV = 0; m1(X) = 1,
m1(Y ) = 0; m2(X) = 0, m2(Y ) = 1.

In the same way, we have the following expression for the field amplitudes
at the detectors A2H , A2V , B2H and B2V :

F
(+)
V2λ′

=
inλ′

√
2

{
im1(V )F(+)

a2
+ im2(V )[M̂HWPF

(+)
b2

]
}
· uλ′ + F

(+)
vac,V2λ′

, (31)

where: V = A,B, λ′ = H, V ; m1(A) = 1, m1(B) = 0; m2(A) = 0, m2(B) =
1.

Now, using Eqs. (11) and (A.7), and taking into account that the ZPF
inputs at the PBSs are uncorrelated with the signals and with each other,
we shall consider the following cases:

• Case I (x = a, y = b) corresponds to the states |Ψ+〉 ⊗ |ψ±〉. After
some easy algebra, we obtain:
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PA1H,A2H

kA1H
kA2H

=
PB1H,B2H

kB1H
kB2H

=
PA1V ,A2V

kA1V
kA2V

=
PB1V ,B2V

kB1V
kB2V

= g2|V |2|ν(0)|2

16
|eiϕ1 + eiϕ2 |2 ,

(32)
and

PA1H,B2H

kA1H
kB2H

=
PB1H,A2H

kB1H
kA2H

=
PA1V ,B2V

kA1V
kB2V

=
PB1V ,A2V

kB1V
kA2V

= g2|V |2|ν(0)|2

16
|eiϕ1 − eiϕ2 |2 .

(33)

From Eqs. (32) and (33) it can be seen that, in the case ϕ1 = ϕ2 = 0
(ϕ1 = 0, ϕ2 = π), which corresponds to the momentum state |ψ+〉
(|ψ−〉), only the four probabilities in Eq. (32) (Eq. (33)) are nonzero.

• Case II (x = b, y = a) corresponds to the states |Ψ+〉 ⊗ |φ±〉. In this
case, we obtain:

PA1H,A2V

kA1H
kA2V

=
PA1V ,A2H

kA1V
kA2H

=
PB1H,B2V

kB1H
kB2V

=
PB1V ,B2H

kB1V
kB2H

= g2|V |2|ν(0)|2

16
|eiϕ1 − eiϕ2 |2 .

(34)

The above probabilities are non-null only in the case ϕ1 = π, ϕ2 = 0
(or viceversa), i.e. the WRHP description of the momentum state |φ−〉.
On the other hand:

PA1H,B2V

kA1H
kB2V

=
PA1V ,B2H

kA1V
kB2H

=
PB1H,A2V

kB1H
kA2V

=
PB1V ,A2H

kB1V
kA2H

= g2|V |2|ν(0)|2

16
|eiϕ1 + eiϕ2 |2 .

(35)

From Eq. (35), the corresponding probabilities are non-null only in the
case ϕ1 = ϕ2 = 0, i.e. the situation corresponding to the momentum
state |φ+〉.

There is a discrepancy with Walborn’s Table II in ref. [8], with respect
to the states |φ−〉 and |φ+〉, which is due to the consideration of the complex
factor i for the reflected amplitudes at the BSs [21]. Then, the corresponding
joint probabilities for these two states are exchanged with respect to the work
of Walborn et al.
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4 ZPF AND THE LIMITS ON OPTIMAL

BSM

Let us consider the following situation: two photons entangled in n di-
chotomic degrees of freedom enter a LELM apparatus via separate spatial
channels, designated L and R. Each photon contains 2n modes, and a uni-
tary matrix transforms the 2n+1 input modes to 2n+1 output modes to the
detectors. In [10] it is demonstrated that: (i)A single detector click cannot
discriminate between any of the Bell states, so that the 2n+1 possibilities
for the second detector event form a simple upper bound on distinguishable
Bell-state classes using LELM devices; (ii) There can be at most 2n+1 − 1
distinguishable classes of hyper-Bell states for two bosons. This number is
reduced to 2n in the case that the left and right channels are not brought
together in the apparatus. The experiments described in Sec. 3 are just an
example of this situation in the case of photons, for n = 2. This section is
divided in two parts: (1) First, we shall investigate the relationship between
the statement (i) and the zeropoint field inputs when optical experiments
using parametric down conversion are considered; (2) We shall study the
relationship between the number of vacuum inputs at the source and the
analysers, and the maximum number of distinguishable classes, 2n, in the
kind of experiments as the ones described in Sec. 3.

1. Given an optical n-qubit state, the maximum number of mutually dis-
tinguishable sets of Bell states is bounded above by 2n+1 [9, 10]. The
demonstration of this point in the Hilbert space is based on a particle-
like description, which contrasts to the image in the WRHP formal-
ism. For instance, in [16] it was stressed that two-photon entangle-
ment in only one degree of freedom implies the consideration of four
independent sets of zeropoint modes at the source, which are “acti-
vated” through a coupling with the laser inside the crystal. In this
paper, the generation of polarization-momentum hyperentanglement is
represented via the consideration of eight sets of independent vacuum
modes, which are amplified at the two-crystal source. Hence, hyper-
entanglement, i.e. entanglement in Hilbert spaces of higher dimensions
is closely related to the inclusion of more sets of vacuum modes en-
tering the source. With an increasing number of vacuum inputs, the
possibility of extracting more information from the zeropoint field also
increases. As we shall demonstrate below, for a given n, the maximal
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distinguishability in a Bell-like experiment is bounded by the number
of independent vacuum sets of modes which are extracted at the source,
being this number equal to 2n+1. In order to prove this statement, we
shall consider the following lemmas:

Lemma I: For a two-photon n-qubit state generated via PDC, the num-

ber of independent sets of zeropoint modes which are necessary for the

generation of entanglement, is just 2n+1.

Proof: By considering the situation described in this paper, in which
n = 2, the interaction Hamiltonian given in Eq. (5) gives rise to linear
evolution equations for the amplitudes αk,λ [see Eq. (6)]. Hence, the
2n+1 sets of field amplitudes outgoing the crystal are generated from an
identical number of independent sets of ZPF amplitudes entering the
nonlinear source, which are “amplified” via the coupling with the laser
beam. This result is also true for n = 1, as it has been demonstrated
elsewhere [12, 16]. For n > 2, the interaction Hamiltonian is also
quadratic, which implies that the evolution equations for the vacuum
amplitudes are linear. Hence, this result is valid for any n ≥ 1.

Lemma II: The propagation of the 2n+1 sets of field amplitudes outgoing

the crystal through a LELM device gives rise to 2n+1 output amplitudes

to the detectors. Each of them will include, at least, the 2n+1 sets of

input ZPF amplitudes at the source.

Proof: Given the fact that linear mode transformations lead to Bogoli-
ubov transformations of the mode operators, which are generated via
quadratic Hamiltonians [22], the total set of unitary transformations,
including the generation of PDC light at the crystal and the action of
linear optical devices between the nonlinear source and the detectors,
are represented by quadratic Hamiltonians in mode operators, which
give rise to linear equations (see Fig. 4). When passing to the Wigner
representation, in which the destruction (creation) operator âk,λ (â†

k,λ)
is substituted by a complex amplitude αk,λ (α∗

k,λ), each of the 2n+1 out-
put field amplitudes at the detectors will include, generally, the 2n+1

sets of field amplitudes outgoing the crystal, and so the 2n+1 input ZPF
amplitudes at the nonlinear source (see Lemma I).

Lemma III: The 2n+1 possibilities for the second detection event, which

constitutes a simple upper bound on distinguishable Bell-state classes

from LELM devices, is just the number of the input ZPF sets of modes
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at the source.

Proof: This result follows from lemmas I and II.

Hence, the upper bound of 2n+1, which limits the optimality of any
Bell-state analysis, coincides with the number of relevant ZPF modes
at the source. This key point represents the relationship between the
information that can be effectively measured in an experiment and the
ZPF inputs at the source. In other words, the number of relevant sets of
zeropoint modes at the source represents a limit on optimal Bell-state
analysis in the enlarged Hilbert space.

From [10], it is well known that a single detector event cannot discrim-
inate any of the Bell base states. Let us consider that a PBS is placed
at each of the beams (13) to (16) in order to measure the single and
joint detection probabilities, following a setup similar to Fig. 1 of Ref.
[15], and taking into account the vacuum inputs at the idle channels of
the PBSs. Using the autocorrelation properties of the light field given
in Eq. (12), the expression (A.5) for the single detection probability,
and the field amplitudes at the detectors, it can be easily demonstrated
that the single detection probabilities are identical, and independent of
the parameters β, κ, (x, y) and (ϕ1, ϕ2). The same reasoning holds for
the experiments developed in Sec.3, by using the field amplitudes at
the detectors given in Eqs. (21) and (22) [(30) and (31)] for the first
(second) experiment.

2. The noise entering the idle channels of the analyzers limits the optimal-
ity of the Bell-state analysis, and this idea is worthy of consideration.
In Section 3 we have applied the WRHP formalism to complete BSM,
in the case where one of the degrees of freedom is in a fixed (ancillary)
state, and the information is encoded in the other degree of freedom.
These experiments correspond to a general class of setups in which
the two photons are not mixed in the apparatus, so that the maximun
number of distinguishable classes of Bell states, is just 2n [10]. From
the point of view of the WRHP approach, this is exactly the number
of non-vanishing cross-correlations between the field amplitude at each
detector on the left (right) side, and the whole set of amplitudes at the
detectors on the right (left) side, in the optimal situation of maximal
distinguishability.

On the other hand, each cross-correlation property of the field of the
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Figure 4: The ZPF inputs at the non linear source are amplified and propa-
gate through linear devices. The total set of transformations are represented
by a quadratic Hamiltonian which gives rise to linear evolution equations.
The total number of modes outgoing towards the detectors is equal to the
entering ZPF modes at the crystal, which are amplified via the coupling with
the laser beam. We have also represented the ZPF inputs at the detectors.

kind of Eq. (11) is related to the probability of a joint detection, in
which the subtraction of the zeropoint intensity at each detector is rele-
vant (A.6). In order to be able to measure such a correlation, the beam
has to be divided, being necessary a zeropoint contribution through the
idle channel of the PBS, in order to preserve the commutation relations.
This zeropoint beam introduces two sets of vacuum modes, one of them
corresponding to vertical polarization and the other to the horizontal
one, which are uncorrelated with the signal entering the other channel.

For instance, if n = 1 (n = 2), i.e. the photon pair is described by
two (four) correlated beams, and two (four) correlations are generated
by the source between the “amplified” zeropoint fluctuations, almost
two (four) entry points of noise are necessary for measuring such cor-
relations, so that four (eight) sets of zeropoint amplitudes enter the
analyser. In the general case of n degrees of freedom, the total number
of entry points of noise at the analysers is just 2n, so that 2n+1 sets
of vacuum amplitudes must be taken into account at the Bell state
analyser.
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The net effect of the vacuum inputs at the BSM station is to decrease
the optimality of the Bell-state analysis. Following [10], given a de-
tection at, for instance, the left side, the 2n possible joint detections
at the right side, in the case in which the photons are not mixed at
the LELM device, gives the maximaum number of sets of Bell states
that can be distinghished in these experiments. However, following the
WRHP formalism, the upper bound, 2n+1, is given by the number of
ZPF sets of modes which are amplified at the source. Which quantity
must be subtracted from 2n+1 in order to obtain 2n? The answer is just
2n, which constitutes the number of zeropoint sets of vacuum modes
on the right side (the area corresponding to the second detection), and
also the total number of entry points of noise at the analyser. For in-
stance, in Walborn’s experiments we can determine the number of Bell
states classes that can be distinguished by subtracting the number of
channels with noise from the number of ZPF entry modes, so that in
this case we have 8− 4 = 4. Due of the fact that one of the degrees of
freedom is in a fixed state, this number will coincide with the number
of the Bell base states corresponding to the other degree of freedom.

Hence, for a given n, if NZPF,S = 2n+1 is the number of sets of zeropoint
modes at the source, NZPF,x = 2n, x = L,R, is the number of sets
of vacuum modes entering the idle channels of the analysers at the
left or right area, and Nic = 2n is the number of idle channels (entry
points of noise) at the analyser, the maximum number of mutually
distinguishable classes of Bell states, Nmax,class, will be given by:

Nmax,class = NZPF,S −NZPF,x = NZPF,S −Nic. (36)

5 CONCLUSIONS

The zeropoint field at the optical experiments on quantum information is
not merely a mathematical tool which gives rise, after being subtracted, to a
broad class of theoretical results. From our point of view, the vacuum field
has a “visible” presence in these experiments, and this is what we are trying
to demonstrate in this paper. Using the WRHP approach we have analysed
polarization-momentum hyperentanglement in detail, showing the close re-
lationship between enlarging Hilbert spaces and ZPF inputs at the source,
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so that the possibility for extracting more information, when an enlarged
Hilbert space is used, is due to the consideration of a greater number of ZPF
inputs which are amplified at the source.

Eqs. (13) to (16) give the WRHP description of the sixteen Bell-like
states in terms of four two-by-two correlated beams. Each of the states
is described by giving the value of four parameters: two of them (β and
κ) indicate the polarization Bell-state, and the other two, the dichotomic
couples (x, y) and (ϕ1, ϕ2), are related to the momentum. Let us emphasize
that these parameters can be locally controlled because all of them appear in
Eqs. (13) and (14), corresponding to photon 1. Hence dense coding [8] and
superdense coding [9] are justified, in the context of WRHP, by the possibility
of changing the correlation properties of the four beams through the action of
a linear optical device which operates in the same way as in classical optics.
This contrasts with the usual description in the Hilbert space, in which local
operations are represented by unitary operators. In the Wigner framework,
the effect of a linear optical device on a beam accounts for a change in the
distribution of the zeropoint amplitudes inside the field components, so that
there is a change in the correlation properties. Given that these operations
do not introduce additional zeropoint noise, the information encoded in the
zeropoint amplitudes entering the source can be manipulated in order to
succesfully complete a quantum dense coding protocol.

We have analysed two experimental setups for complete BSM, each using
a fixed state in one of the two degrees of freedom, so that the information
is encoded in the other, as it appears in reference [8]. As we have already
pointed out, once within the Wigner framework, the typical quantum results
appear precisely as a consequence of the role of the zeropoint field in the pro-
duction, propagation and detection of light. Quantum correlations can then
be explained solely in terms of the propagation of those vacuum amplitudes
through the experimental setup, and their subsequent subtraction at the de-
tectors. Hence, the Wigner formalism allows for an interpretation of these
experiments in terms of waves, where photons are just wave-packets carry-
ing the zeropoint amplitudes through the experimental setup, and finally
detected.

We have explained how the zeropoint inputs contribute to distinguisha-
bility in a Bell-state analysis in which both down-converted photons are not
brought together at the LELM device. In this situation, the difference be-
tween the amplified zeropoint modes at the source (2n+1) and the ZPF inputs
at the Bell-state analyser (2n), gives the maximal distinguishability of Bell-
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state classes (2n). The influence of the zeropoint inputs in a general strategy
of Bell-state measurement, in which both photons are brought together at
the apparatus [23], will be the aim of further research.

The main conclusion of this work is that the WRHP approach allows
for the possibility of obtaining additional information to the one provided
by the standard Hilbert space formalism, just by considering the role of the
zeropoint field at the different steps of an optical quantum communication
experiment using PDC. Likewise, there is a close relationship between the
zeropoint extracted at the source, the corresponding zeropoint field entering
the vacuum channels of the analyzers, and the maximal information that can
be extracted in a concrete experiment, as we have discussed in Sec.4. This
idea will be developed in further works.
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A Appendix: General aspects of the WRHP

The Wigner transformation establishes a correspondence between a field op-
erator acting on a vector in the Hilbert space and a (complex) amplitude of
the field. In the context of PDC the electric field corresponding to a signal
generated by the source (placed at r = 0) is represented by a slowly varying
amplitude [12]:

F(+)
s (r, t) = ieωst

∑

k∈[k]s,λ=H,V

(
h̄ωk

2ǫ0L3

) 1

2

αk,λ(t)uk,λe
ik·r, (A.1)

where [k]s represents a set of wave vectors centered at ks, and ωs is the
average frequency of the beam. uk,λ is a unit polarization vector. In the
Heisenberg picture all the dynamics is contained at the amplitudes αk,λ(t),
while the Wigner function is time-independent. In PDC, the initial state
is the vacuum, which is characterized by an electric field given by (A.1),
by putting αk,λ(t) = αk,λexp(−iωkt), where αk,λ represents the zeropoint
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amplitude corresponding to the mode {k, λ}. The Wigner distribution for
the vacuum field amplitudes is [11]:

WZPF ({α}) =
∏

[k],λ

2

π
e−2|αk,λ|

2

, (A.2)

where {α} represents the set of zeropoint amplitudes. Given two complex
amplitudes, A(r, t; {α}) and B(r′, t′; {α}), the correlation between them is
given by:

〈AB〉 ≡
∫
WZPF ({α})A(r, t; {α})B(r′, t′; {α})d{α}. (A.3)

For instance, from (A.2) the well known correlation properties hold:

〈αk,λαk′,λ′〉 = 〈α∗
k,λα

∗
k′,λ′〉 = 0 ; 〈αk,λα

∗
k′,λ′〉 = 1

2
δk,k′δλ,λ′. (A.4)

In the Wigner approach, the single and joint detection probabilities in
PDC experiments are calculated by means of the expressions [12]:

PA ∝ 〈IA − IZPF,A〉, (A.5)

PAB ∝ 〈(IA − IZPF,A)(IB − IZPF,B)〉, (A.6)

where Ii ∝ F
(+)
i F

(−)
i , i = A,B, is the intensity of light at the position of the

i-detector, and IZPF,i is the corresponding intensity of the zeropoint field.
In experiments involving polarization, the following simplified expression for
the joint detection probability will be used for practical matters:

PAB (r, t; r′, t′) ∝
∑

λ

∑

λ′

∣∣∣
〈
F

(+)
λ (φA; r, t)F

(+)
λ′ (φB; r

′, t′)
〉∣∣∣

2

, (A.7)

where and φA and φB are controllable parameters of the experimental setup.
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