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On the complex k-Fibonacci numbers
Sergio Falcon1*

Abstract: We first study the relationship between the k-Fibonacci numbers and the 
elements of a subset of ℚ2. Later, and since generally studies that are made on the 
Fibonacci sequences consider that these numbers are integers, in this article, we 
study the possibility that the index of the k-Fibonacci number is fractional; con-
cretely, 2n+1

2
. In this way, the k-Fibonacci numbers that we obtain are complex. And 

in our desire to find integer sequences, we consider the sequences obtained from 
the moduli of these numbers. In this process, we obtain several integer sequences, 
some of which are indexed in The Online Enciplopedy of Integer Sequences (OEIS).
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1. Introduction
Classical Fibonacci numbers have been very used in different sciences such biology, demography, or 
economy (Hoggat, 1969; Koshy, 2001). Recently, they have been applied even in high-energy physics 
(El Naschie, 2001, 2006). But, there exist generalizations of these numbers given by such researchers 
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as Horadam (1961) and recently by Bolat and Kse (2010), Ramírez (2015), Salas (2011) and the cur-
rent author Falcon and Plaza (2007a, 2007b, 2009a). In this paper, this last generalization is pre-
sented, so called the k-Fibonacci numbers.

1.1. On the k-Fibonacci numbers
For any positive real number k, the k-Fibonacci sequence, say 

{
Fk,n

}
n∈ℕ

, is defined recurrently by 

Fk,n+1 = k Fk,n + Fk,n−1 for n ≥ 1 with initial conditions Fk,0 = 0 and Fk,1 = 1.

For k = 1, the classical Fibonacci sequence is obtained and for k = 2, the Pell sequence appears.

The well-known Binet formula (Falcon & Plaza, 2007a; Horadam, 1961; Spinadel, 2002) allows us 
to relate the k-Fibonacci numbers to the characteristic roots �

1
 and �

2
 associated to the recurrence 

relation r2 = k r + 1 so that Fk,n =
�
n
1
− �

n
2

�
1
− �

2

.

If � denotes the positive characteristic root, � =
k+

√
k2+4

2
, the general term may be written as 

Fk,n =
�
n − (−�)−n

� + �
−1

, and it is verified that the limit of the quotient of two terms of the sequence 

{Fk,n}n∈ℕ is limn→∞

Fk,n+r

Fk,n
= �

r.

In particular, if k = 1, then � is the Golden Ratio, � =
1+

√
5

2
; if k = 2, �

2
 is the Silver Ratio and for 

k = 3, we obtain the Bronze Ratio (Spinadel, 2002).

Among other properties that we can see in Falcon and Plaza (2007a, 2007b, 2009a), we will need 
the Simson Identity: Fk,n−1Fk,n+1 − F

2

k,n = (−1)n.

2. The k-Fibonacci numbers and the set  = {(a, b), a, b ∈ ℚ}

Let us consider the set  = {(a, b), a, b ∈ ℚ} ⊂ ℂ. In , we define the operations 
(a, b) + (c,d) = (a + c, b + d) and for a fixed number k ∈ ℕ − {0},

Then,  is an abelian field, with the identity element being (0, 1), and

the inverse of the element (a, b) ≠ (0, 0).

From the definition of sum, it follows that n(a, b) = (na,nb), for n ∈ ℚ and (a, b)2 = (a, b) ⋅ (a, b).

2.1. The k-Fibonacci numbers and the pairs (1, 0)n

Now, we consider the subset  ⊂ A, defined as  = {(1, 0)n,n = 1, 2,…}. The elements of  are 
related to the k-Fibonacci numbers in the following form.

Lemma 1  The elements of  are of the form

Proof  We proceed by induction on n.

For n = 1, it is (1, 0) = (F
k,1
, F
k,0
).

Assume that (1, 0)n = (F
k,n
, F
k,n−1

)  holds.            Then, 
(1, 0)n+1 = (F

k,n
, F
k,n−1

)(1, 0) = (F
k,n−1

+ k F
k,n
, F
k,n
) = (F

k,n+1
, F
k,n
).

(1)(a, b) ⋅ (c,d) = (ad + b c + k a c,a c + bd).

(2)(a, b)−1 =
1

k ab + b2 − a2
(−a, k a + b)

(3)(1, 0)n = (F
k,n
, F
k,n−1

)
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It follows that, from Equations (1) and (2), we can deduce that (1, 0)−n = (−1)n(−F
k,n−1

, F
k,n
). This 

formula allows us to define the k-Fibonacci numbers of negative index (as is known),

On the other hand, (1, 0)n(1, 0)−n = (1, 0)0 and taking into account the Simson Identity,

Consequently, we can define (1, 0)0 = (0, 1), with (0, 1) being the multiplicative identity in .

From Formula (2), it is (1, 1)−1 =
1

k
(−1, k + 1), and consequently, 

(F
k,n
, F
k,n
)−1 = (F

k,n
(1, 1))−1 =

1

F
k,n

1

k
(−1, k + 1).

The previous definition and the results obtained allow us to find some properties of the k-Fibonacci 
numbers, previously proven in papers (Falcon & Plaza, 2007a, 2007b, 2009a), in the next subsection. ✷

2.1.1. Convolution of the k-Fibonacci numbers
It is obvious that

On the other hand, and taking into account the Simson Identity,

Equating first elements of this pair with (5), we deduce the convolution formula (Falcon & Plaza, 
2007b; Vajda, 1989): Fk,m+n = Fk,mFk,n+1 + Fk,m−1

Fk,n.

And as particular cases, we will mention the following:

(1) � If m = n, then Fk,2n =
1

k
(F2k,n+1 − F

2

k,n−1)

(2) � If m = n + 1, then Fk,2n+1 = F
2

k,n+1 + F
2

k,n

3. k-Fibonacci numbers of the half index
In this section, we will study the k-Fibonacci numbers of the half index.

We will call Fk, 2n+1
2

 a k-Fibonacci number of the half index.

Taking into account (1, 0)1∕2(1, 0)1∕2 = (1, 0) and Equation (1), it is

(Fk,1∕2, Fk,−1∕2)(Fk,1∕2, Fk,−1∕2) = (1, 0). Hence, applying definition:

(4)F
k,−n

= (−1)n−1F
k,n

(1, 0)n(1, 0)−n = (F
k,n
, F
k,n−1

)(F
k,−n
, F
k,−n−1

)

= (F
k,n
F
k,−n−1

+ F
k,n−1

F
k,−n

+ k F
k,n
F
k,−n
, F

k,n
F
k,−n

+ F
k,n−1

F
k,−n−1

)

= (−1)n(F
k,n
F
k,n+1

− F
k,n−1

F
k,n

− k F2
k,n
, −F2

k,n
+ F

k,n−1
F
k,n+1

)

= (−1)n(F
k,n
F
k,n+1

− F
k,n
(F
k,n+1

), (−1)n) = (0, 1).

(5)(1, 0)m(1, 0)n = (1, 0)m+n = (Fk,m+n, Fk,m+n−1)

(1, 0)m(1, 0)n = (Fk,m, Fk,m−1
)(Fk,n, Fk,n−1)

= (Fk,mFk,n−1 + Fk,m−1
Fk,n + k Fk,mFk,n, Fk,mFk,n + Fk,m−1

Fk,n−1)

= (Fk,m(k Fk,n + Fk,n−1) + Fk,m−1
Fk,n, Fk,mFk,n + Fk,m−1

Fk,n−1)

= (Fk,mFk,n+1 + Fk,m−1
Fk,n, Fk,mFk,n + Fk,m−1

Fk,n−1).

(1, 0) = (2Fk,1∕2Fk,−1∕2 + k F
2

k,1∕2, F
2

k,1∕2 + F
2

k,−1∕2)

= (Fk,1∕2(k Fk,1∕2 + Fk,−1∕2 + Fk,−1∕2), F
2

k,1∕2 + F
2

k,−1∕2)

= (Fk,1∕2(Fk,3∕2 + Fk,−1∕2), F
2

k,1∕2 + F
2

k,−1∕2).
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Then, we obtain the system of quadratic equations

From the second equation, we obtain Fk,−1∕2 = ± i Fk,1∕2. If we suppose the real part of the complex 
number Fk,1∕2 is positive, then we must take Fk,−1∕2 = −i Fk,1∕2. Replacing in (6), the following equa-
tion holds:

Hence, we can accept for the k-Fibonacci numbers of index − 2n+1

2
 the following definition: 

Fk,− 2n+1

2

= (−1)n+1i Fk, 2n+1
2

. This formula is very similar to Formula (4) for the k-Fibonacci numbers of 
negative integer indices.

3.1. Binnet identity
The Binnet identity for the k-Fibonacci numbers of integer indices (Falcon & Plaza, 2007b) continues 
being valid for the case of that n =

2r+1

2
 because its characteristic equation is the same in both cases, 

r2 − k r − 1 = 0. This shows that we could have defined the k-Fibonacci numbers from this formula 
and then to then found the different sequences for k = 1, 2,….

It is noteworthy that many of the general formulas found for the k-Fibonacci numbers continue 
checking for the case of n = (2r + 1)∕2, except perhaps that sometimes it is necessary to multiply 
by the factor i =

√
−1. We have proved in Falcon and Plaza (2007a, 2007b) and in this same paper, 

the formulas Fk,2n+1 = F
2

k,n+1 + F
2

k,n and Fk,2n =
1

k
(F2k,n+1 − F

2

k,n−1). Next, we will prove that both for-
mulas are also valid for any number if we take into account the number of the half index. From the 
preceding formulas,

From the second terms of both pairs, Fk,n = F
2

k, n+1
2

+ F2
k, n−1

2

.

And from the first terms,

Finally, if we substitue n by 2n in these formulae, we find both initial formulas.

Also the convolution formula remains valid, and its proof is similar to the preceding, from 
(1, 0)n+m = (1, 0)

2n−1

2 (1, 0)
2m+1

2  and we would obtain:

 Fk,n+m = Fk, 2n+1
2

Fk, 2m+1

2

+ Fk, 2n−1
2

Fk, 2m−1

2

.

(6)
Fk,1∕2(Fk,3∕2 + Fk,−1∕2) = 1

F2k,1∕2 + F
2

k,−1∕2 = 0

(7)Fk,1∕2(Fk,3∕2 − i Fk,1∕2) = 1

(1, 0)
n+1

2 (1, 0)
n+1

2 = (1, 0)n+1

→

(
Fk, n+1

2

, Fk, n−1
2

)(
Fk, n+1

2

, Fk, n−1
2

)
=
(
Fk,n+1, Fk,n

)

→

(
2Fk, n+1

2

Fk, n−1
2

+ k F2
k, n+1

2

, F2
k, n+1

2

+ F2
k, n−1

2

)
=
(
Fk,n+1, Fk,n

)

Fk,n+1 = 2Fk, n+1
2

Fk, n−1
2

+ k F2
k, n+1

2

= Fk, n+1
2

(
k Fk, n+1

2

+ Fk, n−1
2

+ Fk, n−1
2

)

=
1

k

(
Fk, n+3

2

− Fk, n−1
2

)(
Fk, n+3

2

+ Fk, n−1
2

)

→ Fk,n+1 =
1

k

(
F2
k, n+3

2

− F2
k, n−1

2

)
.
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However, the Catalan formula for the k-Fibonacci numbers dictates that if n is an integer number 
(Falcon & Plaza, 2007a,  2007b,  2009a), then Fk,n−rFk,n+r − F

2

k,n = (−1)n−r−1F2k,r changes if the num-
ber is of the half index. In this case, the Catalan formula takes the form 
Fk, 2n+1

2
−rFk, 2n+1

2
+r − F

2

k, 2n+1
2

= (−1)n−r−1i F2k,r. It is enough to apply the Binnet Identity, taking into ac-

count that �
1
⋅ �

2
= −1. Consequently, the Simson Identity Fk,n−1Fk,n+1 − F

2

k,n = (−1)n is transformed 
into Fk, 2n−1

2

Fk, 2n+3
2

− F2
k, 2n+1

2

= (−1)ni.

3.2. Some notes about the k-Fibonacci numbers of the half index 

(1) � Both Real and imaginary parts of Fk, 2n+1
2

 never are integers. Consequently, Fk, 2n+1
2

 never is a 
Gaussian Integer (Weisstein, 2009).

(2) � For a fixed number k, it is verified that Fk,n <
|||Fk, 2n+12

||| < Fk,n+1 except for the classical Fibonacci 
number |||F 3

2

||| < F1.
(3) � Taking into account that |�

2
| decreases when n increases, the absolute value of Fk, 2n+1

2

 tends to 
the Real part of this number: 

3.3. Another formula for the k-Fibonacci numbers of the half index

If, in the Binnet Identity Fk, 2n+1
2

=
�

2n+1

2

1
− �

2n+1

2

2

�
1
− �

2

, we multiply both numerator and denominator of the 

fraction by �
2n+1

2

1
+ �

2n+1

2

2
 and then we do the division, on obtaining the following formula for the cal-

culus of the k-Fibonacci number of the half index:

4. On the sequences of k-Fibonacci numbers of half index
Let us consider the k-Fibonacci sequence of complex numbers 

{
Fk, 2n+1

2

}

n∈ℕ
.

The Binnet Identity can be indicated as Fk, 2n+1
2

=
�

2n+1

2 − (−1)
2n+1

2 �
−
2n+1

2

√
k2 + 4

 

hence

Consequently,

Hence, the real part of the first term of this sequence is Re
(
Fk, 1

2

)
=

√
�

k2 + 4
 and the real parts of 

the successive terms is obtained multiplying the real part of the previous term by �. Similarly, the 
imaginary part of the first term of this sequence is Im

�
Fk, 1

2

�
=

1√
(k2+4)�

 and the imaginary parts of 

the successive terms are obtained by multiplying the imaginary part of the previous term by 
−�−1 = �

2
.

(8)lim
n→∞

|||Fk, 2n+12
||| = lim

n→∞

(
Re(Fk, 2n+1

2

)
)
.

Fk, 2n+1
2

=
1

�
2n+1

2

1
+ �

2n+1

2

2

2n∑

j=0

(−1)j�
2(n−j)

1
.

(9)Fk, 2n+1
2

=
1

√
k2 + 4

�
�
n
√
� + (−1)n

1

�
n
√
�
i

�

(10)Re
(
Fk, 2n+1

2

)
= �

n

√
�

k2 + 4

(11)
Im

(
Fk, 2n+1

2

)
= (−1)n

1

�
n

√
�(k2 + 4)
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Consequently, this k-Fibonacci sequence takes the form

From Equations (8) and (10), we deduce that the sequence 
{
|Fk, 2n+1

2

|
}

 diverges.

From Equation (9), we obtain the following interesting results.

4.1. Theorem
For all n ∈ ℕ, following equalities hold:

(1) �
Re

(
F
k, 2n+1

2
+r

)

Re

(
F
k, 2n+1

2

) = �
r

(2) �
Im

(
F
k, 2n+1

2
+r

)

Im

(
F
k, 2n+1

2

) = (−1)r
1

�
r

(3) � limn→∞

|||||

F
k, 2n+1

2
+r

F
k, 2n+1

2

|||||
= �

r

The first two formulae are obvious. As for the third, we must bear in mind that the imaginary part 
tends to zero when the index tends to infinite, so its contribution to the modulus of the complex 
number decreases when n increases. In consequence,

The next theorem relates the k-Fibonacci numbers of the half index to the k-Fibonacci numbers of 
the integer index.

4.2. Theorem
For all integers k and for all n ∈ ℕ:

Proof  Applying the Binnet identity to both sides of this equation, taking into account (�
1
�
2
)
1

2 = −i, 
and after removing k2 + 4 from both denominators, it becomes

In particular, for n = r = 0, Equation (7) is obtained. � ✷

1
√

(k2 + 4)�

{
(�n+1 + (−1)n

1

�
n
i)

}
.

lim
n→∞

||||||

Fk, 2n+1
2

+r

Fk, 2n+1
2

||||||
= lim

n→∞

Re
(
Fk, 2n+1

2
+r

)

Re
(
Fk, 2n+1

2

) =
Re

(
Fk, 2n+1

2
+r

)

Re
(
Fk, 2n+1

2

) = �
r .

(12)Fk, 2n+1
2

(
Fk, 2n+3

2
+r − i Fk, 2n+1

2
+r

)
= Fk,n+1(Fk,n+1+r − i Fk,n+r) + i (−1)

nFk,r

(LHS) = (�
n+

1

2

1
− �

n+
1

2

2
)

(
�
n+

1

2
+1+r

1
− �

n+
1

2
+1+r

2
− i�

n+
1

2
+r

1
+ i�

n+
1

2
+r

2

)

= �
2n+2+r

1
+ (−1)ni�r+1

2
− i�2n+1+r

1
+ (−1)n�r

2

+ i(−1)n�r+1
1

+ �
2n+r+2

2
+ (−1)n�r

1
− i�2n+r+1

2

(RHS) = (�n+1
1

− �
n+1

2
)
(
�
n+1+r

1
− �

n+1+r

2
− i�n+r

1
+ i�n+r

2

)

+ (−1)ni(�r
1
− �

r

2
)(�

1
− �

2
)

= �
2n+2+r

1
− (−1)n+1�r

2
− i�2n+1+r

1
+ i(−1)n+1�r−1

2

− (−1)n+1�r
1
+ �

2n+2+r

2
+ i(−1)n+1�r−1

1
− i�2n+1+r

2

+ (−1)ni�r+1
1

+ (−1)ni�r−1
1

+ (−1)ni�r−1
2

+ (−1)ni�r+1
2

= (LHS).
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4.3. On the sequences of k-Fibonacci numbers of the half index
Taking into acccount a k-Fibonacci number of the half index is a complex number which both real-
part and imaginary part are never integers, the sequences of these numbers do not have greater 
interest. Of course, in these sequences, the initial relation is verified, that is Fk,n+1 = k Fk,n + Fk,n−1.

The sequences related to the modulus of these complex numbers are more interesting.

Let |Fk,r| be the modulus of the k-Fibonacci number Fk,r, when r = 2n+1

2
.

The floor function of |Fk,n| is the integral part of this number: Ok,n = Floor[|Fk,n|]. We can also say 
that they are obtained by the rounding down of |Fk,n|.

The round function of |Fk,n| is the closest integer to this number: Rk,n = Round[|Fk,n|].

The ceiling function of |Fk,n| is the function whose value is the smallest integer, not less than |Fk,n|: 
Ck,n = Ceiling[|Fk,n|] (http://en.wikipedia.org/wiki/Catalan_number). We can also say that they are 
obtained by the rounding up of |Fk,n|.

For k = 1, 2, 3, we will obtain the following sequences, none of which is indexed in Sloane (2006), 
from now on OEIS:

(1) � For k = 1:

(a) O
1
= {0, 0, 1, 2, 3, 6, 10, 16,…}

(b) R
1
= {1, 1, 2, 4, 6, 10, 17, 27,…}

(c) C
1
= {1, 1, 2, 3, 4, 7, 11, 17, 27,…}

(2) � For k = 2:

(a) O
2
= {0, 1, 3, 7, 18, 45, 108, 262,…}

(b) R
2
= {1, 1, 3, 8, 19, 45, 109, 263,…}

(c) C
2
= {1, 2, 4, 8, 19, 46, 109, 263,…}

(3) � For k = 3:

(a) O
3
= {0, 1, 5, 18, 59, 198, 654,…}

(b) R
3
= {1, 2, 5, 18, 60, 198, 654,…}

(c) C
3
= {1, 2, 6, 19, 60, 199, 655,…}

5. Integer sequences from (1, 1)n

Let us remember that (0, 1) is the unity element of  = {(a, b)}, so (0, 1)n = (0, 1). Then, taking into 
account Equation (3), (1, 0)n = (Fk,n, Fk,n−1), if a and b are non-null simultaneously, then

5.1. Expression of a k-Fibonacci number whose index is a multiple of another index
As ((1, 0)n)m = (1, 0)n⋅m = (Fk,n⋅m, Fk,n⋅m−1

) and 

((1, 0)n)m = (Fk,n, Fk,n−1)
m =

m∑

j=0

(
m

j

)
F
m−j

k,n
F
j

k,n−1
(Fk,m−j , Fk,m−j−1), we obtain

(a, b)n = (a(1, 0) + b(0, 1))n =

n∑

j=0

(
n

j

)
(a(1, 0))n−jbj

=

n∑

j=0

(
n

j

)
an−jbj(1, 0)n−j =

n∑

j=0

(
n

j

)
an−jbj(Fk,n−j , Fk,n−j−1).

http://en.wikipedia.org/wiki/Catalan_number
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For m = 2: Fk,2n =
2∑

j=0

(
2

j

)
F
2−j

k,n
F
j

k,n−j
Fk,2−j = k F

2

k,n + 2Fk,nFk,n−1 (Falcon & Plaza, 2007a, 2007b).

For m = 3: Fk,3n =
2∑

j=0

(
3

j

)
F
3−j

k,n
F
j

k,n−j
Fk,3−j = (k2 + 4) F3k,n − 3k Fk,n−1F

2

k,n + 3k
2F2k,n−1Fk,n (Falcon & 

Plaza, 2007a, 2007b).

Equation (13) can be written as Fk,m⋅n = Fk,n
∑m−1

j=0

�m
j

�
F
m−j−1

k,n
F
j

k,n−1
Fk,m−j and that denotes that 

Fk,m⋅n is a multiple of Fk,n.

In short:

(1) � If a ≠ 0 and b ≠ 0: (a, b)n =
n∑

j=0

(
n

j

)
an−jbj(Fk,n−j , Fk,n−j−1)

(2) � If b = 0: (a, 0)n = an(1, 0)n = an(Fk,n, Fk,n−1)

(3) � If a = 0: (0, b)n = bn(0, 1)n = bn(0, 1)

If a = b = 1, then (1, 1)n =
n∑

j=0

(
n

j

)
(Fk,n−j , Fk,n−j−1): the first terms of the sequence of powers 

{(1, 1)n} are the binomial transforms of the k-Fibonacci sequence (Falcon & Plaza, 2009b).

5.2. Integer sequences of coefficients from (1, 1)n

In the sequel, we give the expressions of the first terms of this sequence {(1, 1)n}, for n = 0, 1, 2,…

With the coefficients of the first terms of the pairs of the Second-Hand Side, we form Table 1.

The number ai,j is the coefficient of ki−j in the first elements of the pairs of (1, 1)i. The first diagonal 
is the sequence of powers of 2, {2n},n = 0, 1, 2,….

(13)Fk,m⋅n =

m∑

j=0

(
m

j

)
F
m−j

k,n
F
j

k,n−1
Fk,m−j

(1, 1)0 = (0, 1)

(1, 1)1 = (1, 1)

(1, 1)2 = (1, 1)(1, 1) = (k + 2, 2)

(1, 1)3 = (k + 2, 2)(1, 1) = (k2 + 3k + 4, k + 4)

(1, 1)4 = (k2 + 3k + 4, k + 4)(1, 1) = (k3 + 4k2 + 8k + 8, k2 + 4k + 8)

…

Table 1. Coefficients in 
∑n

j=0

�n

j

�

F
k,n−j

1 2 3 4 5 6 7 8
1 1

2 1 2

3 1 3 4

4 1 4 8 8

5 1 5 13 20 16

6 1 6 19 38 48 32

7 1 7 26 63 104 112 64

8 1 8 34 96 192 272 256 128
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Any other coefficient of the row r and column c, can be calculated as ar,c = ar−1,c +
c∑

j=1

ar−j,c−j. For 
instance, 192 = 104 + 63 + 19 + 5 + 1.

Moreover: the sequence of the sums of the coefficients of each row is the bisection of the classical 

Fibonacci sequence {1, 3, 8, 21, 55, 144, 377, 987,…} = A001906 and its alternate sums is this 

same sequence {1, 1, 2, 3, 5, 8, 13, 21,…} = A000045. Hence, we can write 
∑n

j=0

�n
j

�
Fn−j = F2n 

and 
∑n

j=0(−1)
n−j−1

�n
j

�
Fn−j = Fn.

Only the first four column sequences are listed in OEIS as A000012, A000027,  A034856, A006416.

Each diagonal sequence is the convolution of the preceding diagonal sequence and 
A011782 = {1, 1, 2, 4, 8, 16, 32,…} and are listed in OEIS:

A000079, A001792, A049611, A049612, A055589, A055852, A055853, A055854, and A055855.

Finally, we indicate that the generating function of the diagonal sequence Dn = {1,n,…} is 

d(n) =
(1 − x)n−4

(1 − 2x)n−2
.
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