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ABSTRACT In this paper, a wide-band distributed model that can approximate the behaviour of square and
octagonal inductors, both with and without tapering, is presented. This paper also presents a novel way of
accurately modelling the lateral coupling in the substrate. The presented model can be applied to any foundry
process, and its validity has been demonstrated using a novel technology, the D01GHGaN process developed
by OMMIC, which has a high resistivity substrate. To do so, seventeen inductors have been designed
and manufactured. The proposed model has been verified against EM simulations and measurements of
the designed inductors. Comparisons show that the model can correctly estimate the behaviour of the
inductor, improving the results of the EM simulations for most cases. The root mean square (RMS) error
calculated across the samples when estimating the inductance is 0.0565. The RMS error for the quality
factor results (2.2727) is also adequate, although there is more deviation when comparing the results with
the measurements.

INDEX TERMS Inductor model, lateral coupling, octagonal inductor, square inductor, tapered inductor.

I. INTRODUCTION
Integrated inductors are a key component in RFIC andMMIC
designs, since they have a significant impact on the size
and performance of the overall system. Because of this, esti-
mating the behaviour of these components has been a topic
of interest for the integrated design community for the last
two decades. Several works found in the literature provide
different models and techniques to model the behaviour of
manufactured inductors [1]–[4]. However, the growing inter-
est in GaN processes in the last years has increased the need
for a model that can correctly predict the behaviour of an
inductor layed out on a high-resistivity substrate.

Additionally, an accurate model for tapered inductors
would be welcome in the circuit designer community. Taper-
ing is a well-known and widely discussed approach for
increasing the quality factor (Q) of an inductor [5]–[7]. The
quality factor of an inductor is the ratio of its reactance to
its series resistance. The tapering technique consists on the
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gradual decrease of the width of each turn of the inductor so
that the outer turns are wider, reducing the ohmic losses of
the inductor, and the inner turns are narrower, maximising
the magnetic field flowing through the inner hole of the
inductor.

Numerous effects must be accounted for when modelling
an inductor, especially a tapered one, such as DC inductance,
skin effects, eddy currents and lateral coupling of the sub-
strate. The first three effects have been widely analysed in the
past [8]–[11]. [12] deems lateral coupling as not significant or
negligible on high-resistivity substrates, like the ones on GaN
or GaAs processes. Many papers have attempted to emulate
the effect of lateral coupling using resistors and capacitors
(RM and CM ), but the calculation of their values has always
been based on adjustment parameters or by applying extrac-
tion methods [13]–[16]. The model presented in this paper
includes mathematical formulation for modelling lateral cou-
pling and its impact on a high-resistivity substrate has been
demonstrated.

This paper proposes a model that can be utilised to pre-
dict the behaviour of square and octagonal inductors, both
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FIGURE 1. Generic inductor inset in the D01GH process.

FIGURE 2. Proposed inductor model for the inductor shown in Fig.1.

tapered and non-tapered. The model and its equations are
explained in Section II, whereas a comparison between
the results of the model, electromagnetic (EM) simulations
and measurements for different manufactured inductors is
shown in Section III. Finally, some conclusions are drawn
in Section IV.

II. PROPOSED INDUCTOR MODEL
The first aspect to consider when developing the model of an
inductor is the different materials involved in the definition
of the technology and their distribution. The D01GH GaN
process developed by OMMIC follows a similar composi-
tion to other GaN on Si technologies. A simplified version
of the cross-section for this process including an octago-
nal inductor is shown in Fig.1. In this case, the inductor
is constructed on the IN metal layer. The underpass of the
inductor is defined in the Metal 1 (MET1) layer. Between
these metal layers are two additional layers, SiN and SiO2,
which act as dielectric materials. Under the MET1 layer,
two high resistivity layers (AlGaN and Interface) can be
found. Finally, the Silicon (Si) substrate occupies the bottom
layer.

In addition to the utilised technology, several parame-
ters have to be taken into account when developing the
inductor model. Among these parameters are the shape of the
inductor (square, octagonal, circular), its number of turns or
segments, the length and width of each segment (important
for the case of tapered inductors), the length and width of
the underpass and the materials of the different metal lay-
ers that make up the inductor. Once these parameters have
been properly defined, the equivalent inductor model shown
in Fig.2 can be applied. In this scalable model, the number
of segments is mainly defined by the number of turns of the
inductor. Therefore, for an inductor with two turns, there will
be two segments, whereas for an inductor with two and a half
turns like the one shown in Fig.1, the number of segments
will be three.

A. SEGMENT BLOCK MODELLING
The schematic for the Segment block of the model is shown
in Fig.3. In this model, RSKIN (i) and L(i) represent the skin
and proximity effects of the inductor [1], [8] [12] for the seg-
ment. The total DC inductance of the inductor is split evenly
across the segments, while the resistance of each segment is
calculated using (1) [1], where l(i) and w(i) are the length and
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FIGURE 3. Schematic of the SEGMENT block.

width of the segment, σ is the conductivity of the metal of the
inductor (IN), tIN is the thickness of said metal and δEFF is
the effective skin depth, calculated using (2).
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In (2), w is the maximum width of the inductor, µ is the
magnetic permeability of the material and ω0 is the angular
frequency. In this model, it is assumed that the magnetic field
is spread evenly across the substrate and that no elements
are placed under the inductors. This is a common practice in
MMIC design.

To properly model the substrate of the inductor, all the
process layers should be considered in order to have the most
accurate model possible. Thus, the capacitance of the SiN
and SiO2 layers under the IN metal area occupied by each
segment (A(i)) of the inductor had to be modelled. To do
so, (3) and (4) are utilised, where t is the thickness of the
material. The AlGaN, Inter and Si layers found below the
MET1 layer are also considered. Since this process has a high
resistivity substrate, where ρSi is 5k�· cm and ρAlGaN and
ρInter are 100k�· cm, the resistance of each of these layers
must also be considered. The capacitances and resistances of
each layer can be obtained by applying (5) and (6) [1], [17].
In these equations, v = A(i)/π . The equations for the Inter
and Si layers are the same as for AlGaN, but keeping in mind

FIGURE 4. Schematic of the UNDERPASS block.

that the characteristics and properties (thickness, permitivity
and resistivity) of each layer are different. Since this is a
distributed model, the capacitors that account for the capaci-
tance of each layer are divided by two, as it can be observed
in the model shown in Fig.3. The resistors are multiplied by
two for the same reason [18].

CSiN (i) = ε0 · εSiN ·
A(i)
tSiN

(3)

CSiO2(i) = ε0 · εSiO2 ·
A(i)
tSiO2

(4)

CS.AlGaN =
2 · ε0 · εAlGaN · A(i)

2 · tAlGaN +
√
v−

√
4 · t2AlGaN + v

(5)

RS.AlGaN (i) =
ρAlGaN · ε0 · εAlGaN

CS.AlGaN (i)
(6)

B. INPUT/OUTPUT STRIPS AND UNDERPASS
BLOCK MODELLING
This model also takes into account the resistance of the
input and output strips of metal (RIS and ROS ) used to con-
nect the inductor, as well as the resistance of the under-
pass of the inductor (RU ), which is implemented in the
MET1 layer, as stated above. These values can be calculated
using (7)–(9), where ρ is the resistivity of the material, l is
the length of the strip or underpass and w is the width of
said strip/underpass [17]. The effects of the underpass on the
substrate are also considered, as shown in Fig.4, where the
resistances and capacitances are obtained using (5) and (6).

RIS =
ρIN · lIS
tIN · wIS

(7)
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ROS =
ρIN · lOS
tIN · wOS

(8)

RU =
ρMET · lU
tMET · wU

(9)

Another important aspect of this inductor model is that
it also considers the parasitic capacitances generated by the
coupling between the metal strips of the inductor and the
underpass. This effect can be modelled as a simple plane
parallel capacitor [19], [20], which is the typical widespread
solution. In the case of OMMIC’s D01GH process, the SiN
and SiO2 layers found between the IN and MET1 layers
(which is used for the underpass) produce capacitive effects
due to their dielectric characteristics. Therefore, two series
capacitors (CPSiN and CPSiO2) are included to model the
overlaps between the IN andMET1 layer for each segment of
the inductor. The combination of these two capacitors is cal-
culated for each segment and represented as CUNDERPASS(i) in
the model shown in Fig.2. The equations for both capacitors
are shown in (10) and (11) [1].

CPSiN = ε0 · εSiN · tSiN · w(i) · wUNDERPASS (10)

CPSiO2 = ε0 · εSiO2 · tSiO2 · w(i) · wUNDERPASS (11)

C. LATERAL COUPLING MODEL
Finally, the formulation of the CM and RM elements that
model the lateral coupling in the substrate will also be
explained. Although these elements have already been pre-
sented in previous publications [12]–[16], in those cases
CM and RM were obtained via extraction or by using for-
mulae with empirical adjustment factors, whereas in this
model they are obtained purely from the dimensions of the
inductor and physical properties of the materials that con-
form the substrate. In order to explain the formulation for
CM and RM , the area of the lines that conform the inductor
(ALINES ), the area of the internal hole of the inductor (AINT )
and the area occupied by the separation of the turns of the
inductor (ASEP) must be calculated. Based on these areas,
the total area occupied by the inductor can be defined as
shown in (12). The equations for the different areas for an
octagonal inductor are shown in (13)-(15). For other types of
inductors, such as square ones, the equations for the inter-
nal square calculation and separation area must be modified
accordingly. In (15), s is the separation between the turns
of the inductor and n represents the number of turns of said
inductor.

ATOTAL = ALINES + AINT + ASEP (12)

ALINES =
N∑
i=1

l(i) · w(i) (13)

ASEP = 2π ·
[
(n·rEXT · s)− (w(1) · (2n− s− 1))+ 1.5s2

]
(14)

AINT = π · r2INT (15)

When modelling the lateral coupling through the sub-
strate, the main aspects to consider are the capacitance and

resistance generated between the edges of the internal hole of
the inductor and between the edges of the different turns. This
way, it could be theorised that RM is the series connection
of the resistance between the edges of each turn and the
resistance between the edges of the internal hole. There-
fore, if the equation for the resistance of a three-dimensional
conductor (16) is utilised as a reference and modified accord-
ingly, RM could be calculated as shown in (17), where lIND is
the total length of the inductor.

R = ρ ·
l
A
= ρ ·

l
w · t

(16)

RM = ρSi ·
lIND

ASEP + AINT
(17)

For the calculation of CM , the equation of a parallel-plate
capacitor, shown in (18) was considered [21]. In this case and
in a similar fashion to the calculation of RM , the lateral capac-
itance can be considered as the series combination of the
capacitances that result of the parasitic coupling between the
edges of the turns of the inductor in the substrate and between
the sides of the inner hole. Since the resulting capacitance
in the series connection of capacitors is always determined
by the smallest capacitor, in this case CM is equivalent to
the capacitance between the sides of the internal hole of the
inductor. The resulting equation for this case is (19), where
di is the diameter of the internal hole of the inductor.

C =
ε · A
d

(18)

CM =
ε0 · εSi · AINT

di
(19)

III. MODEL VERIFICATION
In order to demonstrate that the developed model
can correctly estimate the behaviour inductors of the
OMMIC D01GH GaN-on-Si process, seventeen induc-
tors of different shapes (tapered and non-tapered square
and octagonal inductors) and sizes were simulated using
Keysight Momentum 3D EM Simulator and manufactured.
The main characteristics of these inductors are shown
in Table 1.

TABLE 1. Physical characteristics of the inductors.
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FIGURE 5. EM simulation and microphotograph of the manufactured inductors.

The inductors were simulated up to 50GHz with a high
meshing resolution in order to guarantee that a correct anal-
ysis was performed. Fig. 5 shows four of the manufactured
inductors (one of each type), as well as current density
simulation results for each one at the frequency where the
maximum quality factor is reached.

As it can be observed, all the manufactured inductors
have input and output GSG pads, so they can be measured
directly on-wafer and not be affected by the parasitic effects
caused by bonding. The measurements were performed using
the Agilent 8720ES S-Parameter Network Analyzer, which
permits the measurement of circuits up to 20GHz. All mea-
surement results were obtained by de-embedding the effects
of the probes, the GSG pad parasitics and the inductive effects
of the metal lines reaching to and from the inductors by using
open, short and thru structures that were on the same die
as the inductors. Fig. 6 shows the comparison between the

EM simulations, the measurements and the developed model
for the four inductors shown in Fig. 5. Additionally, Table 2
shows the model parameters for the four inductors shown
in Fig. 5.

From the results shown in Fig. 6, it can be observed that
the developed model provides excellent results for the esti-
mation of the inductance, most of the times delivering a more
accurate result than the EM simulation, both in magnitude
and frequency response. The quality factor results, however,
show more variability. In some cases, the model is not as
precise as the EM simulation result at low frequencies for
the octagonal inductors. However, for the other types of
inductors, the model matches or improves the results of the
EM simulations.

In order to have a more analytical view of the results and
perform a more detailed analysis, Table 3 has been filled
out. In this table, the measured results for the inductance and
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FIGURE 6. Comparison between the model, EM and simulation results for each inductor shown in Fig. 5.

quality factor have been compared with the results obtained
in the EM simulations and with the model presented in
this paper. To perform this comparison, the results have

been compared at the frequency at which the maximum
measured (MM) quality factor (fQMM ) is obtained. This way,
it can be verified whether the model is valid at a critical point
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TABLE 2. Model parameters for the inductors shown in Fig. 5.

of each inductor or not. It must be noted that inductor L5 is a
variation of inductor L4, but with an additional metalization
layer that was not included in the model. Therefore, this
inductor and its results are not considered in the overall
analysis.

The results shown in the table demonstrate that the model
can correctly predict the inductance of the manufactured
inductors, showing a maximum positive error of 9.57% when
compared to the measured value at fQMM . This error is
lower than the maximum positive one obtained in the EM
simulations, 12.24% for the same inductor (L15). In general,
it can be observed that the results are better for the model,
although the results are better for the EM simulation for
the case of the non-tapered and tapered square inductors.
However, the results of the inductance estimation are evenly
matched for both the model and the EM simulations. Based
on these results, it can be stated that the model can correctly
estimate the inductance of the four types of inductors that
have been tested.

Regarding the quality factor, the results are worse than
the ones obtained for the inductance, as observed in Fig. 5
and Table 3. In this case, the maximum relative error of
the model is obtained for inductor L13, with a result of
−37.93%. For the same inductor, the EM simulation relative
error is −17.59%, which is a far better estimation. However,
if the results are analysed for each type of inductor, the error
results of the model are in line with the ones obtained for the
EM simulations. Even though the relative errors of the quality
factor are greater for both the model and the EM simulation
of the inductors, some of this deviation may be due to process
variability.

After careful analysis of the discrepancies between the
measurements and the results of the model and the EM
simulation, it could be articulated that the model provides a
better estimation of the inductance and quality factor than
the EM simulation for most cases. In fact, the root mean
square (RMS) error of all samples for the inductance is
practically the same for the model (0.0565) than for the EM
simulation (0.0544). The RMS error of the quality factor of
all samples is a bit lower for the model (2.2727) than for
the EM simulation (2.4776). Based on these results, it could
be stated that this model could be utilised to estimate the
inductance and quality factor of an inductor manufactured
with the D01GH GaN process and, possibly, other processes,
both with and without high-resistivity substrates.

IV. CONCLUSION
This paper presents an accurate analytical model for tapered
and non-tapered square and octagonal inductors. In this case,
the model has been verified by applying it to OMMIC’s
D01GH GaN process, a novel process that has a high resis-
tivity substrate. A comparison between the measurements
of 17 manufactured inductors, their model and their EM
simulations was carried out to determine the validity of the
model. The results show that the model achieves low error
values when compared to the measurement results. These
errors are very similar to the ones obtained when comparing
the EM simulations and the measurements. This proves that
the model is valid and properly estimates the inductance and
quality factor of the manufactured inductors. In light of these
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TABLE 3. Quality factor, inductance and relative error results for the measurements, EM simulations and model of all inductors.

results, it can be stated that the developed model can be
applied for the estimation of the characteristics of an inductor
on a GaN on Si process like the D01GH process developed
by OMMIC. Further analyses on other technologies will be
performed in the future to check if this model can be extended
to other processes.
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