
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

11 . . . 15 June 2018, Glasgow, UK

PARALLEL OPTIMIZATION OF TETRAHEDRAL MESHES
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Abstract. We propose a new algorithm on distributed-memory parallel computers for
our simultaneous untangling and smoothing of tetrahedral meshes [9, 10]. A previous
parallel implementation on shared-memory computers is analyzed in [1]. The new par-
allel procedure takes ideas from Freitag et al. strategy [11]. The method is based on:
partitioning a mesh, optimizing interior vertices, optimizing boundary vertices of interior
partitions, and communicating updated coordinates of boundary vertices. This paper
presents performance evaluation results of our parallel algorithm. We apply the proce-
dure in the mesh generation of several 3-D objects by using the Meccano method [4].
High levels of speed-up are obtained in the mesh optimization step of this method. How-
ever, several bottlenecks may limit the parallelism. We provide some hypotheses about
the factors that cause more parallel overhead. The relative number of elements, that are
located at the interfaces of the sub-domains of the object, is one of the more important
aspects for the efficiency of the parallel mesh optimization.

1 INTRODUCTION

When a mesh is inverted, standard finite element simulation algorithms generally can-
not obtain an appropriate numerical approach of problems based on partial differential
equations (PDE). Thus, researchers recommend to untangle the mesh prior to analysis
using software packages for finite element analysis (FEA).

Mesh optimization techniques reduce the total time to solve the problem and they
improve the accuracy of results. Processing a mesh can spend up to 25% of the overall
running time of a PDE-based application [5]. So, for large meshes, it is important that the
operations of generation, warping, untangling and smoothing are performed in parallel.

There are several areas of research involving parallel processing of meshes. For example,
many mesh processing techniques have been developed to generate meshes in parallel
[7]. Additionally, parallel mesh warping algorithms have been developed which employ
numerical optimization methods for use in computational simulations with deforming
domains [15].
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Other parallel algorithms have been proposed for mesh optimization. For distributed-
memory architectures: Gorman et al. proposed a smoothing algorithm that maximizes
the quality of the worst element by relocating each free vertex [12], and Sastry and Shontz
proposed an algorithm that moves all mesh vertices to untangle the mesh and improve
the quality of the worst quality elements [16]. In these works, maximum speedups range
from 10×@12cores using OpenMP/MPI [12] to 50×@64cores using MPI [16].

For multi-core architectures, we proposed in [1] the first parallel mesh-untangling al-
gorithm that simultaneously improves the quality of all inverted and non-inverted mesh
elements. We achieved a maximum speedup of 67×@128cores for highly tangled tetra-
hedral meshes. For GPUs, Cheng et al. implemented a local optimization algorithm for
smoothing 3D meshes on a heterogeneous GPU/multicore system [6], and Zhao et al.
implemented a mesh optimization algorithm that improves the quality of 2D meshes by
changing the mesh connectivity [17]. In both cases, maximum speedups on GPUs range
from 21× [6] to 44× [17].

The main contributions of this paper are: (1) A new single-vertex optimization algo-
rithm for simultaneous mesh untangling and smoothing on distributed-memory parallel
computers is proposed in Section 2; (2) Section 3 shows that our parallel algorithm pro-
vides high performance for mesh optimization on two fixed tetrahedral meshes that are
highly tangled.

2 MESH UNTANGLING AND SMOOTHING ALGORITHM FOR
DISTRIBUTED-MEMORY PARALLEL COMPUTERS

Our technique [9] for simultaneous untangling and smoothing of tetrahedral meshes
consists of finding the new position (xv) of a free node (v) by optimizing only one objective
function (K). This function is based on a measurement of the quality of the local submesh
(Nv), which is constituted by the set of elements connected to the free node v. After
repeating this process several times for all free nodes of the mesh, quite satisfactory
results can be achieved. In our case, the objective function is constructed as the L1 norm
of the vector (η 1 , . . . , η n):

K =
n∑

i=1

ηi(xv) ηi(xv) =
||Si||2F
3 h2/3

i

hi = 1
2
(σi +

√
σ2
i + 4δ2) (1)

σi = det(Si) δ = max{10−3σ̄,Re(10
√
ε(ε− σmin))} σ̄ =

1

n

n∑
i=1

|σi|

σmin = min{σi}i∈{1,...,n} ε = 1011 DBL EPS

where ||Si||F is the Frobenius norm of matrix S associated to the affine map from
the ideal element (usually an equilateral tetrahedron or triangle) to the physical one.
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Specifically, the weighted Jacobian matrix S is defined as S = A W−1, being A = (x1 −
x0,x2 − x0,x3 − x0) the Jacobian matrix and xk, k = 0 . . . 3, the spatial coordinates
of the vertices of the tetrahedron. The constant matrix W is derived from the ideal
element. DBL EPS is upper bound on the relative error due to rounding in floating
point arithmetic. The measurement of element distortion given by equation 1 (η) is taken
as unified metric for both inverted and non-inverted elements. For more details, see [9, 10].

In this paper, we propose a new parallel algorithm for this simultaneous mesh untan-
gling and smoothing technique on distributed-memory parallel computers. This algorithm
is based on the idea from Freitag et al. [11]. The mesh is divided into a set of partitions.
Interior and boundary vertices of partitions are treated separately. Additionally, the
vertices that lie on the solid boundary are fixed during all the optimization process.

In each mesh sweep, the interior vertices of all partitions are optimized in parallel.
For partition boundaries, independent sets of non-fixed vertices are created; each of them
is optimized in parallel after all interior vertices have been optimized. Before another
independent set is optimized, a synchronization/communication phase between partitions
is required. These computation-synchronization-communication phases are repeated until
all partition boundary vertices have been optimized. If the exit conditions are not reached,
a new mesh sweep is done.

Algorithm 1 shows our parallel untangling and smoothing algorithm that includes one
serial and three parallel phases. The serial phase involves: (a) reading the vertex coor-
dinates and mesh elements (line 1), (b) dividing the mesh vertices into nC partitions Pi

(line 2) and (c) distributing the partition information to nC cores (line 3).
In each partition, vertices are classified as interior, boundary or fixed. Interior vertices

form elements whose all vertices belong to that partition. Boundary vertices form elements
where at least one vertex belongs to other partition. Interior and boundary vertices that
lie onto the solid boundary are fixed vertices, which are not optimized.

When boundary vertices are updated, the numerical kernel needs the spatial coordi-
nates of all connected vertices. Thus, each partition requires information of adjacent
vertices that resides in other partitions. This information is included in all partitions
as a special type of vertex called ghost. Interior and non-ghost boundary vertices are
optimized by the same processor.

For each partition Pi, the first parallel phase involves (lines 4 to 9): (a) coloring
the non-fixed boundary vertices (line 5) [2]: Ii = {Iij}, Iij⊂ Pi is an independent set
with color j, (b) finding the network of partitions that share boundary elements (line
5), (c) interchanging color information of boundary vertices with other partitions (line
6), (d) creating a list of boundary vertices that determines the order in which these
vertices are optimized or received from boundary partitions in later parallel phases (line
7), and (e) computing the initial minimum quality Qi of partition elements (line 8). Using
the message passing interface (MPI) function MPI Allreduce() at the end of parallel
phase 1, a synchronization barrier ensures all partitions have completed these steps before
continuing computation (line 9).

Parallel phases 2 and 3 use the same OptimizeNode() procedure that implement our
single-vertex optimization method (equation 1), but the exit conditions for each of them
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change (lines 10 to 26). Mesh is simultaneously untangled and smoothed in phase 2 (z =
untangling). It is finished when there is no invalid element (Qm > λuntangling > 0, Qm =
min{Qi}) or the number of iterations is larger than the input parameter NmaxIter,untangling.

Mesh smoothing is implemented in phase 3 (z = smoothing) only if the mesh is com-
pletely untangled. The exit condition for mesh smoothing depends on other two input
parameters: maximum number of iterations (NmaxIter,smoothing) or minimum quality of out-
put mesh (Qm > λsmoothing). After a variable number of mesh sweeps, the output of our
parallel algorithm provides untangled and smoothed mesh partitions.

Algorithm 1 - Parallel algorithm for simultaneous mesh untangling and smoothing.

1: Read the vertex and element information of a mesh (M) . Serial phase: begin

2: Pi ← Partition(M) . Nodes(M) = {Pi}i∈{1,...,nC}
3: Distribute each partition Pi . Serial phase: end
4: for Pi in parallel do . Parallel phase 1: begin
5: Ii ← Coloring(Pi) . It colors boundary vertices, Ii = {Iij}, and finds the communication graph

6: Send-Receive colors of vertices that belong to shared boundary elements to/from other partitions

7: Store the color-based order of boundary vertices

8: Qi ← Q(Pi) . Qm = min{Q(Pi), i ∈ (1, . . . , nC)}
9: Synchronization MPI Allreduce() . Parallel phase 1: end

10: for z = {untangling, smoothing} do
11: if z = smoothing & Qm ≤ λuntangling then

12: break . Mesh could not be untangled and algorithm finishes

13: for Pi in parallel do . Parallel phase 2: z=untangling; Parallel phase 3: z=smoothing

14: k ← 0
15: while Qi ≤ λz & k < NmaxIter,z do
16: for each interior free vertex v ∈ Pi do . Interior vertex processing: begin

17: x̂v ← OptimizeNode(xv, Nv)

18: Synchronization MPI Allreduce() . Interior vertex processing: end
19: for each boundary independent-set Iij ∈ Pi do . Boundary vertex processing: begin
20: for each boundary free vertex v ∈ Iij do

21: x̂v ← OptimizeNode(xv, Nv)

22: MPI Send-MPI Receive updated coordinates of vertices v ∈ Iij
23: Synchronization MPI Allreduce() . Boundary vertex processing: end

24: Qi ← Q(Pi) . Qm = min{Q(Pi), i ∈ (1, . . . , nC)}
25: Synchronization MPI Allreduce()

26: k ← k + 1

3 EXPERIMENTAL METHODOLOGY AND RESULTS

Our experiments were conducted on a cluster with 27 compute nodes that are organized
in 7 BullxR424E2 servers. They are interconnected with InfiniBand QDR 4× network.
Each node integrates two Intel Xeon E5645 sockets (6 cores each, 2.4 GHz), and 48 GB
of DDR3/1333 MHz RAM. So, up to 324 cores, 12 cores per compute node were used in
parallel experiments. We activated multiples of 12 cores to completely occupy different
numbers of compute nodes. Only one compute node was employed when less than 12
cores were occupied. Multiple runs were conducted on 1, 2, 4, 12, 24, 48, 96, 192, 216,
312, 324 cores.
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To compile our sequential and parallel programs on a Linux system, we used gcc 4.8.4
and Open MPI 1.6.5, respectively. The sequential version involves no locks, no synchro-
nization, no partitioning, and no extra overhead that is inherent in MPI parallel programs.
We also used O2 compilation flag, double-precision floating-point arithmetic and Mesquite
2.99 C++ library [3]. Mesquite was extended to support our sequential and parallel al-
gorithms that simultaneously perform mesh untangling and smoothing.

The sequential and parallel codes were applied on two tangled tetrahedral meshes called
Screwdriver and Egypt (see Figure 1). All meshes were obtained by using an automatic
strategy for adaptive tetrahedral mesh generation based on the Meccano method [4, 14].
Note in Figure 1 that input meshes are heavily tangled. The size of each input mesh was
fixed during all parallel experiments. We used Metis 5.1.0 to partition the meshes [13]
before the parallel optimization. So, the size of each partition generally decreases as the
number of partitions increases for the same fixed-size benchmark mesh.

(a) Screwdriver: input mesh, elements =
1.69 105, inverted elements: 49%.

(b) Egypt: input mesh, elements = 1.0 107,
inverted elements: 46%.

Figure 1: Tangled benchmark meshes
for 2-core experiments.

(a) Screwdriver: output optimized mesh.

(b) Egypt: output optimized mesh (left) and
a detail view (right).

Figure 2: Optimized meshes after
using Algorithm 1 and two partitions.
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Figure 3: Partitions 0 (up) and 1
(down) of the tangled Screwdriver

mesh for experiments with two cores.

Figure 4: Interior and ghost tetrahedra
of partitions 0 (up) and 1 (down) after

using Algorithm 1 and two cores.

Figure 1 shows tangled meshes divided into the two partitions that were used in exper-
iments with two cores. Figure 2 shows the output meshes after optimization. Figures 3
and 4 show more details of the two partitions for the Screwdriver mesh before and after
optimization, respectively.

Additionally, we chose the following termination criteria in order to measure parallel
performance: (a) untangling was stopped when all mesh elements were valid (λuntangling =
0), (b) ten mesh sweeps were completed after untangling to improve the average mesh
quality (NmaxIter,smoothing = 10). So, the total number of mesh sweeps in each experiment
was the number of iterations to completely untangle all partitions plus ten. The average
number of mesh sweeps was 20.3 and 13.1 for Screwdriver and Egypt meshes, respectively.
The quality of the mesh elements was obtained by using the mean ratio quality metric.
It takes value 1 for equilateral elements and 0 for tangled elements. The average and
minimum qualities of optimized meshes do not depend on the number of partitions. Final
average quality was 0.73 and 0.72, and final minimum quality was 0.16 and 0.20 for
Screwdriver and Egypt meshes, respectively.

We measured the CPU times taken to execute the sequential and parallel codes. The
execution time included the time to completely met the previously mentioned termina-
tion criteria. The sequential CPU time was 8.7 minutes and 6.4 hours for Screwdriver
and Egypt meshes, respectively. Parallel Speedup (S) and Parallel Efficiency (E) were
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obtained as follows [8]:

S =
ts
tp

E = 100%
ts

nC tp
(2)

where tp is the time taken for nC cores to complete the execution of Algorithm 1, and
ts is the time taken to complete the execution of the pure sequential algorithm using the
natural vertex ordering of input meshes (see Figure 5).

In a previous study on shared-memory computers [1], we obtained greater parallel
efficiency for the same number of cores and mesh. For example, taking Screwdriver mesh
and 128 cores, parallel efficiency (E ) was 52% and 35% using shared- and distributed-
memory architectures, respectively.

In general, we have observed that lower temporal overheads are produced in OpenMP
than MPI for the same mesh and number of cores. However, higher speedup can be
achieved for mesh optimization on distributed-memory architectures due to larger number
of available cores. In this paper, we report a maximum speedup (S ) of 186× using
the Egypt mesh (see Figure 5). This result improves our previous study on parallel
optimization when applied to tangled meshes. Comparing our performance results to
previous studies on parallel mesh optimization using MPI, it can be observed that for
similar meshes of approximately 107 elements and occupying 64 cores, we achieved a
speedup of 51× that is similar to the results reported in [16].

As the number of partitions is increased, the speedup of our algorithm also increases for
all benchmark meshes only up to 312 cores. However, for 324 cores, our algorithm exhibits
lower speedups than using 312 cores for Screwdriver and Egypt meshes (see Figure 5).
Several bottlenecks may limit the parallelism.

Our hypothesis states that one of them is caused by wait times originated from the
ordering of vertex updating of partition boundaries. Two partitions can start processing
their non-fixed boundary vertices in parallel. In any case, the ordered list of boundary
vertices of a partition may indicate that should wait for updated boundary vertices from
other partitions before optimization continues (Algorithm 1, line 22). During this waiting
time, the vertex processing is interrupted at that partition.

Load imbalance is another performance bottleneck that includes the execution time due
to processor overload when the concurrent vertex updating is not well balanced among
partitions. In our parallel algorithm, this bottleneck is influenced by both the number of
partitions and the ratio of function and gradient evaluations (FGE) between boundary
and interior vertex processing. For example, the ratios of FGE for 324 cores are 0.17 for
Egypt and 0.46 for Screwdriver. Consequently, parallel efficiency (E ) drops at 324 cores
from 51% for Egypt to 17% for Screwdriver.

Communications is another performance bottleneck caused by the transmission of up-
dated coordinates of boundary vertices. Our hypothesis states that this bottleneck pro-
vides the lowest overhead time. For a given number of partitions, this overhead is caused
by the dependence of communication time on the number of boundary vertices, mesh
sweeps and interconnection bandwidth, in contrast to mesh optimization time that is
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Figure 5: Parallel performance for Screwdriver and Egypt input meshes. Up: execution
time. Center, down: speedup and parallel efficiency.
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dependent on the number of FGE, number of elements per patch and tetrahedra process-
ing rate. For example, for 324 partitions of Egypt mesh, 14% of vertices were partition
boundary vertices, the total communication time was 0.2 s and the total execution time
was 140.6 s.

The irregular number of FGE evaluations, when a fixed-size mesh is optimized in
parallel, is another cause of performance deterioration. This occurs when the workload
with larger number of partitions requires larger FGE. For example, using Egypt mesh,
FGE is 2.00 109 and 2.12 109 for 312 and 324 partitions, respectively. This effect is
due to the influence of the vertex processing order on the workload needed for the mesh
optimization algorithm to converge. Note that a different number of partitions for parallel
processing implies a different vertex processing order.

4 CONCLUSIONS AND FUTURE WORK

We proposed a new single-vertex parallel algorithm that simultaneously performs mesh
untangling and smoothing on distributed-memory computers. In this paper, we obtain
greater speedup than previous published works on parallel mesh optimization. In order to
improve parallel performance, it is important to minimize the number of boundary vertices
of partitions. One of our research goals is to study the influence of boundary vertices on
parallel performance and bottlenecks when other domain partitioning methods and the
Meccano parametric mesh [14] are used.
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[4] J.M. Cascón, E. Rodŕıguez, J.M. Escobar, R. Montenegro; Comparison of the mec-
cano method with standard mesh generation techniques, Engineering with Com-
puters, Vol. 31, pp. 161-174, 2015.

9
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[9] J.M. Escobar, E. Rodŕıguez, R. Montenegro, G. Montero, J.M. González-Yuste; Si-
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