
"A Component-Based C++ Communication
Middleware for an Autonomous Robotic

Sailboat"
Francisco J. Santana-Jorge, Antonio C. Domínguez-Brito and Jorge

Cabrera-Gámez
Instituto Universitario SIANI (www.roc.siani.es),

Departamento de Informática y Sistemas (www.dis.ulpgc.es)
Universidad de Las Palmas de Gran Canaria (www.ulpgc.es), Spain

in: Øvergård, Kjell Ivar (eds) Robotic Sailing 2017. Springer, Cham. DOI: 10.1007/978-3-319-72739-4_4

BIBTEX:
@inproceedings{santana_jorge_et_al_2018_irsc_2017,

author="Santana-Jorge, Francisco J.
and Dom{\’i}nguez-Brito, Antonio C.
and Cabrera-G{\’a}mez, Jorge",
editor="{\O}verg{\aa}rd, Kjell Ivar",
title="A Component-Based C++ Communication Middleware for an Autonomous Robotic Sailboat",
booktitle="Robotic Sailing 2017",
year="2018",
publisher="Springer International Publishing",
address="Cham",
pages="39--54",
abstract="The new C++ standard, C++11, and its upgrade, C++14, introduces new advances and features which make more affordable and easier the development of software for complex systems. Following this tenet we have designed and developed a component-based service-oriented C++ middleware, called ISE, for distributed systems using exclusively standard C++ and the quasi standard C++ Boost Libraries for keeping the middleware portable. The final aim of developing ISE has been to build the remote communication software infrastructure of an oceanic autonomous robotic sailboat called A-Tirma.",
isbn="978-3-319-72739-4",
doi="10.1007/978-3-319-72739-4_4"

}

Copyright © 2018, Springer International Publishing AG (www.springer.com)

document created on: 16th March 2020
created from file: irsc_2017_camera_ready.tex
cover page automatically created with CoverPage.sty
(available at your favourite CTAN mirror)

www.roc.siani.es
www.dis.ulpgc.es
www.ulpgc.es
https://doi.org/10.1007/978-3-319-72739-4_4
www.springer.com

A component-based C++ communication
middleware for an autonomous robotic sailboat

Francisco J. Santana-Jorge†, Antonio C. Domínguez-Brito†‡§ and Jorge
Cabrera-Gámez†‡

Abstract

The new C++ standard, C++11, and its upgrade, C++14, introduce new advances
and features which make more affordable and easier the development of soft-
ware for complex systems. Following this tenet we have designed and developed
a component-based service-oriented C++ middleware, called ISE, for distributed
systems using exclusively standard C++ and the quasi standard C++ Boost Librar-
ies for keeping the middleware portable. The final aim of developing ISE has been to
build the remote communication software infrastructure of an oceanic autonomous
robotic sailboat called A-Tirma.

1 Introduction

The development of an autonomous sailboat is a demanding endeavor that is not
circumscribed to the vessel. Normally, it implies also the development of a commu-
nication infrastructure which may consume a considerable amount of resources. The
complexity of this communication infrastructure is commonly overlooked but it is -
undoubtedly a central piece of the whole system, which may become quite complex
in terms of software engineering. In this paper we introduce ISE, a component-based
C++ middleware called ISE (Integrating Software Entities) we have developed spe-
cifically for building the communication software infrastructure for an autononom-
ous sailboat. We have used a CBSE (Component-Based Software Engineering)
paradigm [1] and a service-oriented architecture [2] to define a service-oriented
component model. In ISE, a robotic system is a distributed system [3] built up of
components, where each component provide and/or require services to/from others.
Moreover, it is possible to dynamically reconfigure a whole system, as ISE provides
support for on-demand dynamic component instantiation, and dynamic runtime type
information about a system and its components. As case application in a real scen-
ario, we have implemented using ISE first operative version of a distributed software
infrastructure for remote control and monitoring of the autonomous sail vessel A-
Tirma [4] developed at our laboratory. In the rest of the document we describe in
more detail the middleware, how we have applied it so far to our projet A-Tirma,
and the conclusions drawn from the work underdone.

† Instituto Universitario SIANI (www.roc.siani.es), Universidad de Las Palmas de Gran Canaria, Spain
‡ Departamento de Informática y Sistemas (www.dis.ulpgc.es), Universidad de Las Palmas de Gran Canaria, Spain
§ Correponding author’s e-mail: antonio.dominguez@ulpgc.es

1

www.roc.siani.es
www.dis.ulpgc.es
antonio.dominguez@ulpgc.es

2 F. Santana-Jorge, A. C. Domínguez-Brito and J. Cabrera-Gámez

2 ISE middleware

As main design principle

Communication System

C++ Standard Library &

Boost C++ Libraries

C++ Standard Library &

Boost C++ Libraries

Operating System

Services
Operating System

Services

ISE Layer 1:

Connection Manager

ISE Layer 1:

Connection Manager

ISE Layer 2:

Service Distpatcher

ISE Layer 2:

Service Distpatcher

ISE Components ISE Components

Node Node

Fig. 1: ISE layered architecture

for developing ISE we high-
light the use of standard and
portable C++ as implement-
ation language. C++ is a sys-
tems programming language
that offers good use of hard-
ware, effective abstraction and
allow for real time perform-
ance [5]. With the appear-
ance of new C++ standards
(C++11 and C++14, imple-
mented by most mainstream
compilers [6]), the language
has been modernized with ma-
ny new features (lambda func-
tions, move semantics, etc.
[7]) which makes C++ code simpler. In addition to guarantee portability, we have
also used Boost C++ libraries [8] given their “quasi-standard” status within the C++
community. Since software components, as composition units to integrate systems,
provide a higher level of encapsulation, abstraction decoupling and reuse for soft-
ware systems, a component based middleware [1][9][10] has been designed and
developed. Moreover, the middleware is service-oriented, that is, component’s ex-
ternal interfaces will be defined as services provided and/or required [2].

In Fig. 1 we can appreciate the distributed layered architecture of ISE, organ-
ized in two layers. The first layer, the connection manager, is responsible for man-
aging peer-to-peer connections amongst components, which isolates users and de-
velopers from the low level details for handling asynchronous connections using
both TCP and UDP protocols. The second layer, the service dispatcher, abstracts
the dispatching and housekeeping of all services provided by ISE components in
order to carry out their specific functionalities. Those two layers support the run-
time software infrastructure and the application programming interface (API) the
middleware provides to ISE software components, as we can see in the figure.

Software components (components for short) are distributed active objects [11],
in the sense that each of them has its own flow of execution, mapped as operating
system processes or threads in a distributed system. In ISE, the external interface of
a component is the enumeration of the services it provides (provided services), and
also of the potential services it might use or require from others (required services).
Therefore, any middleware interaction amongst components is abstracted by using
services, and, to keep things simple, there are only two generic types of services.
Namely, request-response and subscription services.

Request-response services. The sequence diagram of Fig. 2 illustrates how a
request-response service operates. A service is started with a request addressed to

A C++ communication middleware for an autonomous robotic sailboat 3

Fig. 2: Request-response service.

Fig. 3: Subscription service.

the provider by the requester. The provider answers with a response according to the
request received. Although not shown in the figure for clarification reasons, in ISE,
on the requester side, the component might do a blocking wait for the response.
In the provider side service requests are received and processed asynchronously,
usually associated to callbacks which are user-defined. This type of service put into
practice a pull model of communication.

Subscription services. Fig. 3 depicts the sequence diagram of a typical subscrip-
tion service in ISE [10]. It implements a publish/subscribe paradigm of communica-
tion. A service is initiated by the requester by sending a subscription request which.
Once subscribed, the provider will start sending subscriptions (published data) to
the requester, either periodically or in an asynchronous event basis. In normal con-
ditions, the provider will keep serving subscriptions until the requester explicitly
requests to get unsubscribed. Several callbacks are associated to both sides. On the
requester side, to subscriptions when received. On the provider side, to requests for
getting subscribed or unsubscribed, and to publish data periodically using timers or
events. Subscription services provide a push model of communication.

To implement both types of generic services in ISE we have made use of Boost
C++ library Boost.Asio [12], a library for network and low level I/O programming.
In particular, ISE services component interactions are carried out sending packets
through TCP connections or UDP datagrams between the components involved.

More specifically, in ISE, service interactions amongst components are done
transferring discrete units of information we name packets. Furthermore, the ser-
vices a component provides are defined by the type of packets each service uses.
To provide generality and complete freedom of implementation to component de-
velopers, component’s services and service type packets are all user-defined in ISE.
Thus, for response-request services two types of packets define a service: a request
packet and a response packet, shown in Fig. 2. Likewise, subscription services are

4 F. Santana-Jorge, A. C. Domínguez-Brito and J. Cabrera-Gámez

defined by five types of packets, namely: two packets for getting subscribed (request
and response), a packet for subscriptions, and two packets for getting unsubscribed
(request and response), all of them shown in Fig. 3.

ISE_DEFINE_PACKET_IN_NAMESPACE(
ADD_NAMESPACE(a_tirma_tools),
subscription_rq ,
ADD_MEMBER(bool, status)

)
ISE_DEFINE_PACKET(

subscription_rs ,
ADD_MEMBER(bool, status)
ADD_MEMBER(std::string , ticket)

)
ISE_DEFINE_PACKET_IN_NAMESPACE(

ADD_NAMESPACE(a_tirma_tools),
unsubscription_rq ,
ADD_MEMBER(std::string , ticket)

)
ISE_DEFINE_PACKET_IN_NAMESPACE(

ADD_NAMESPACE(a_tirma_tools),
unsubscription_rs ,
ADD_MEMBER(bool, status)

)
ISE_DEFINE_PACKET_IN_NAMESPACE(

ADD_NAMESPACE(a_tirma_tools),
xb_local_sb ,
ADD_MEMBER(int, power)
ADD_MEMBER(int, temperature)
ADD_MEMBER(int, rssi)
ADD_MEMBER(int, failing_deliveries)

)

Fig. 4: C++ Packet definitions for a
subscription service

namespace a_tirma_tools
{

...

ISE_PROVIDED_SERVICES(
a_tirma_xb_services_to_provide ,

... // rest of services

SUBSCRIPTION_PROVIDED_SERVICE(
subscription_rq ,
subscription_rs ,
unsubscription_rq ,
unsubscription_rs ,
xb_local_sb ,
xb_local // service

)
)

}

Fig. 5: C++ service definition for a sub-
scription service

ISE packets are easily defined directly in C++ code as Fig. 4 illustrates. Each type
of packet is mapped as a C++ class. Packet data members can be defined to have
any of the following types: C++ primitive types, std::string, any other ISE packet
type and the container type ise::packet::containers::vector. As to packet’s
marshaling and unmarshaling the serialization interface for packets has been imple-
mented using the Boost.Serialization Library [13]. Fig. 4 shows examples of packets
used in a real system. Concretely, packets subscription_rq, subscription_rs
, unsubscription_rq and unsubscription_rs are definitions shared by several
distinct subscription services. Services are defined in a similar manner. In Fig. 5
we show an example of a subscription service, xb_local, defined with the packets
of Fig. 4. ISE packets and services are usually defined in C++ header files, which
may be included wherever necessary. The complete code behind ISE packets and
services is generated using macros like the ones appearing in the previous figures,
which have been implemented using the Boost.Preprocessor Library [14]. The use
of this library has allowed to utilize C++ itself as IDL (Interface Definition Lan-
guage) for defining interfaces between ISE components, in contraposition to other
middlewares where usually IDL code must be compiled to generate its correspond-
ing code in the final implementation language, (C, C++, Java, Python, etc.). We
consider this an interesting simplification that facilitates middleware utilization and
reduces its learning curve.

A C++ communication middleware for an autonomous robotic sailboat 5

ISE provides a C++ class which embodies what is a component in the middle-
ware, class ise::component. Using this class, either through derivation or through
composition, we can define our own components endowed with its particular func-
tionalities. As illustrated in Figures 2 and 3, in a given component, the functionality
provided by a specific service is defined using callbacks, namely: function objects,
lambdas, function pointers, etc. And it is through services that we define the beha-
vior and functionality of an ISE component. Thence, for request-response services,
in the provider side we associate a callback for the request packet. And similarly,
for subscription services, in the provider side, we associate callbacks to requests for
getting subscribed or unsubscribed. Accordingly, in the requester side, we associate
a callback for the subscription packets it will receive when subscribed.

As general services, the middleware provides services for remote instantiation
and name resolution. More concretely, it is possible to instantiate remotely ISE
components using the services offered by a type of component provided by the
middleware itself (component instantiation_server). We have used Boost C++ lib-
rary Boost.Process [15] to implement ISE’s instantiation services. In addition, the
middleware also includes a type of component, called name server, which provides
name resolution services. In fact, name servers allow to register information related
to how to locate component instances, the services (and its packets) they provide,
and, if any, about the instantiation servers present in a system as well. They allow
also to define component namespaces, in order to organize logically a distributed
system. Furthermore, name servers are also part of the infrastructure which allows
to instantiate packets dynamically. Indeed, the Boost C++ library Boost.Any [16]
has been used to implement the dynamic type safe behavior of ISE packets.

3 A-Tirma’s Communication Infrastructure

We have designed and developed ISE for supporting the software communication
infrastructure of an oceanic autonomous sailboat [4], developed at our laboratory,
called A-Tirma (shown in Figures 6 and 7). Fig. 8 displays the deployment diagram
of the embedded system on-board A-Tirma. The hardware of the main controller
system is an Atmel ATSAM3X8E microcontroller based Arduino DUE prototyping
platform. This main controller is in charge of sailboat autonomous navigation and
short range communications via an XBee 868 Pro radio link[17]. The autonomous
navigation control software it executes runs on ChibiOS [18] (more details in [19]).
A second controller based on a Waspmote [20], an Atmel ATmega1281 microcon-
troller based prototyping board, is responsible for long-range communications and
last resource localization signaling in case of emergency. The communcation con-
troller acts as a gateway for sending and receiving, telemetry and remote telecom-
mands. It uses a 3G/GPRS module1 for data communications via the mobile phone
network, and a Rockblock 9602 transceiver2 for satellite communications utilizing

1 Waspmote GPRS + GPS Module (https://www.cooking-hacks.com/gprs-gps-module).
2 RockBLOCK Iridium SDB 9602 Transceiver (http://www.rock7mobile.com/
products-rockblock).

https://www.cooking-hacks.com/gprs-gps-module
http://www.rock7mobile.com/products-rockblock
http://www.rock7mobile.com/products-rockblock

6 F. Santana-Jorge, A. C. Domínguez-Brito and J. Cabrera-Gámez

Fig. 6: A-Tirma G2.

Fig. 7: A-Tirma in the water

the Iridium SBD (Short Burst Data) service 3. XBee radio communications are used
at short range (about 1-2 kms.) and real-time communication with the autonomous
vessel. GPRS mobile communications have been included to communicate with the
vessel at long range when situated in areas of mobile network communication cov-
erage, typically coastal areas. Finally, for oceanic long range communication where
mobile communications are not possible, the communication with the sailboat is
based on Iridium SBD satellite communications. In addition to those three types of
communications links, we can command directly the rudders and the sails of our
vessel using a remote-controlled device (through an RC receiver). This link is wired
at low level for direct control of the vessel’s actuators and usually it is used when the
sailboat is at sight. Mind, as well, that using GPRS and Iridium SBD links implies
paying for the communications, whether the mobile telephone network fee, or the
Iridium satellite access and data fees, being significantly more expensive the latter
ones.

Fig. 9 depicts the deployment diagram for the communication infrastructure we
have developed using ISE. Mind that the middleware has been not used on the sail-
boat, as the microcontroller platforms on-board are not computationally powerful
enough, specially for their lack of memory. Indeed, we have selected them mainly
for their low power consumption requirements ([21][4]). In fact, neither the main
controller nor the communication controller have support for the C++ Standard Lib-
rary, or the C++ Boost Libraries, which are necessary for running the middleware.
The figure shows a typical system deployment in a navigation mission. As we can
observe, in addition to the components provided by the middleware itself provid-
ing name and instantiation services, there are four types of nodes:the autonomous
sailboat itself, a short range communication node, a communication node for long

3 Iridium SBD (https://www.iridium.com/services/details/iridium-sbd).

https://www.iridium.com/services/details/iridium-sbd

A C++ communication middleware for an autonomous robotic sailboat 7

Fig. 8: A-Tirma’s embedded control system. Deployment diagram. Power connec-
tions between elements are shown as discontinued lines, for clarification reasons not
all of them are shown. For the same reasons, physical switches are also not shown
in the diagram.

Fig. 9: A-Tirma’s communication infrastructure. Deployment diagram. To keep the
diagram as clear as possible, connections between ISE components are not shown.
All ISE services are provided via TCP/UDP, so, implicitly, any component can ac-
cess any service provided by any component.

8 F. Santana-Jorge, A. C. Domínguez-Brito and J. Cabrera-Gámez

range communications and several user nodes. Tables 1 and 2 describe briefly the
ISE component and services building up the system. To keep Fig. 9 simple, ISE con-
nections between component are not shown. Note that all ISE services are provided
through TCP or UDP protocols (this is specified at component instantiation), com-
ponents implicitly connect to their service providers as specified in Tables 1 and
2.

Services
Service Type Provided by Description

telemetry subscription XBee, GPRS and
Iridium SBD

proxy
components

Provides periodically telemetry information to sub-
scriber components. Subscription telemetry packets are
sent to subscribers in raw format, as they come from the
boat, subscribers are responsible for parsing telemetry
packets. There are several telemetry types depending on
the information they transport (location, waypoints, con-
figuration parameters, etc.)

telecommand request-response XBee, GPRS and
Iridium SBD

proxy
components

Service provided to send telecommands to the sailboat.
Telecommand packets are also sent in raw format (the
one accepted by the sailboat). There are also distinct
types of telecommand packets which allow to control
many aspects during a sailboat navigation mission.

xb_local subscription XBee proxy
components

Provides periodically to subscribers information about
the XBee link. The data provided by xb_local packets
is in relation mainly to the quality of the signal with the
boat (RSSI, XBee packet retries, etc.).

xb_local_param request-response XBee proxy
components

Through this service is possible to change the power be-
havior (emission power) of the XBee link between the
sailboat and the XBee proxy component involved.

Table 1: A-Tirma communication system. ISE services.

As we can observe in Fig. 9, usually a short range communication node is de-
ployed in a typical mission scenario, specially if we will be supervising and mon-
itoring the navigation of the boat at short distance using the XBee radio link. The
hardware we usually utilize for deploying this node is a notebook under GNU/Linux
Ubuntu, or a Raspberry PI under Raspbian exporting its graphical interface via VNC
on a 10”-Android-based tablet. This node normally host a XBee proxy component
and a GUI client component. The communication node typically is deployed on a
personal computer under GNU/Linux Ubuntu in our lab, and usually host the proxy
component we need for long range communications, namely the GPRS proxy com-
ponent and the Iridium SBD proxy component. In addition, it ordinarily hosts also
a web server component which uses the services of all proxy communication com-
ponents (XBee, GPRS and Iridium SBD ones) for publishing the sailboat’s tracking
telemetry information through a web page. As to the user nodes appearing in Fig.
9, two of them host mainly a GUI client component instance. Those components
use the services provided by the proxy communication components running in the
communication nodes and implement a remote interface for monitoring and con-
trol of the sailboat. A snapshot of the interface provided by GUI client component
instances is shown in Fig. 10. They may be instantiated at different user nodes, so
several users may be remotely controlling and monitoring the vessel at any given

A C++ communication middleware for an autonomous robotic sailboat 9

Components
Component Services provided Services used Description
XBee proxy
component

telemetry,
telecommand,
xb_local and

xb_local_params

none It is a proxy component to communicate with the sailboat
through an XBee 868 Pro radio link. Allows other com-
ponents to get subscribed for telemetry information, and
accepts telecommands addressed to the boat by requester
components.

GPRS proxy
component

telemetry and
telecommand

none Proxy component for communication with the boat
through a GPRS data link via TCP/UDP protocols. Al-
lows other components to get subscribed for telemetry
information, and accepts telecommands addressed to the
boat by requester components.

Iridium SBD
proxy component

telemetry and
telecommand

none Proxy component which communicates with the sailboat
through the Iridium Short Burst Data (SDB) service via
HTTP and email protocols. Allows other components
to get subscribed for telemetry information, and accepts
telecommands addressed to the boat by requester com-
ponents.

GUI client
component

none telemetry,
telecommand,
xb_local and

xb_local_params

This component does not provides any ISE services, and
can use any of the services provided by XBee, GPRS and
Iridium SBD proxy components. It is a subscriber and
requester of telemetry and telecommand (and xb_local
and xb_local_param) services, respectively.

Web server
component

none telemetry This component is a subscriber of telemetry services, and
provides a web page service with A-Tirma’s tracking and
telemetry information during a mission.

Name server ISE naming services Component which provides ISE naming services. Gen-
eric component provided by the middleware.

Instantiation
server

ISE remote instantiation services This is a generic component provided by the middleware
itself. It provides ISE remote instantiation services.

Table 2: A-Tirma communication system. ISE components.

moment. Using them we can monitor and control many aspects of the embedded
system onboard vessel A-Tirma. Thus, for example, it is possible to modify para-
meters affecting the sailboat behavior during autonomous navigation like time to
next tacking, forbidden angle range to navigate up and down wind, period of tele-
metry messages, whether activating leeway compensation or not, adding/removing
navigation waypoints, changing vessel’s navigation mode, etc. just to name a few.
The hardware we have ordinarily use for running user nodes is a typical personal
computer under GNU/Linux Ubuntu. Furthermore, using the web service provided
by the web server component hosted in the communication node, we can access a
tracking web page during a mission, using a typical personal computer, or a mobile
device like a smartphone or tablet (Fig. 11 shows a snapshop of this tracking web
page).

In order to test the communication infrastructure, amongst the different real on-
field tests we have carried out, in Fig. 12, we provide the tracking log of a 10-hour
stress test which took place in the bay of El Confital in Gran Canaria. In this stress
test A-Tirma kept navigating autonomously during about 9-10 hours of continuous
navigation following consecutively two sailing triangles. The objective of the test
was to verify the robustness of the embedded autonomous system on-board and of
the distributed communication software infrastructure built using ISE. Concretely,

10 F. Santana-Jorge, A. C. Domínguez-Brito and J. Cabrera-Gámez

Fig. 10: A-Tirma’s control and monitoring interface

Fig. 11: A-Tirma’s web tracking web page.

200 m

main

wind

direction

sailing

triangle

sailing

triangle

starting

point

Fig. 12: A-Tirma’s 10-hour stress test tracking log.

A C++ communication middleware for an autonomous robotic sailboat 11

in this 10-hour stress test, we deployed the system using a short range comunication
node, and two communication nodes running remotely in different machines in our
laboratory, where one of them was just a secondary node for backing the main one
in case it failed. As to user nodes, we deployed on-field two nodes running the GUI
component of Fig. 10 in two different notebooks under GNU/Linux.

4 Conclusions

In this paper we have outlined the design and development of a distributed compo-
nent based and service-oriented C++ middleware called ISE, designed and de-
veloped to build the communication software infrastructure of an oceanic autonom-
ous sailing vessel called A-Tirma. One of the main objective of developing ISE was
to try to take advantage of the new C++ standard, C++11, and its upgrade, C++14,
for developing software for distributed complex systems. Furthermore, we have
used exclusively standard C++ and the highly portable and quasi standard Boost
C++ Libraries to keep the middleware portable, taking advantage of the important
metaprogramming features available in this new standards. As an interesting point
of simplification of use, we have made an important effort to avoid the use of an
specific Interface Definition Language (IDL), in ISE the IDL is C++ itself. This is
quite common in other tools for developing distributed software, as CORBA [22], in
general, and ROS [23] in the particular area of robotics, as paradigmatic examples.
Finally, we have deployed and tested this infrastructure in a real experimental setup
to assess its continuous operation during a significant interval of time in terms of
system robustness and reliability with satisfactory results.

Acknowledgements

The authors are sincerely grateful to Solumatica Canarias for providing financial
support for building the A-TIRMA G2 prototype, and to the Real Club Náutico
de Gran Canaria and to the Real Club Victoria for the access they granted to their
facilities, and for the logistical support during the development of this project.

References

1. T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota Silveira Neto, Y. C. Cavalcanti,
and S. R. de Lemos Meira, “Twenty-eight years of component-based software engineering,”
Journal of Systems and Software, vol. 111, pp. 128 – 148, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215002095

2. L. B. R. Oliveira, F. S. Osório, and E. Y. Nakagawa, “An investigation into the development
of service-oriented robotic systems,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, ser. SAC ’13. New York, NY, USA: ACM, 2013, pp. 223–228.
[Online]. Available: http://doi.acm.org/10.1145/2480362.2480410

http://www.sciencedirect.com/science/article/pii/S0164121215002095
http://doi.acm.org/10.1145/2480362.2480410

12 F. Santana-Jorge, A. C. Domínguez-Brito and J. Cabrera-Gámez

3. G. J. D. T. K. G. B. Coulouris, Distributed Systems: Concepts and Design (5th Edition), 5th ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2011.

4. A. C. Domínguez-Brito, B. Valle-Fernández, J. Cabrera-Gámez, A. Ramos-de Miguel, and
J. C. García, A-TIRMA G2: An Oceanic Autonomous Sailboat. Cham: Springer International
Publishing, 2016, ch. A-TIRMA G2: An Oceanic Autonomous Sailboat, pp. 3–13. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-23335-2_1

5. B. Stroustrup, Abstraction and the C++ Machine Model. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 1–13. [Online]. Available: http://dx.doi.org/10.1007/11535409_1

6. isocpp.org. (2018) C++ Super FAQ. When will compilers implement C++14? [Online].
Available: https://isocpp.org/wiki/faq/cpp14#cpp14-compilers

7. B. Stroustrup, The C++ Programming Language, 4th Edition. Addison-Wesley Professional,
2013. [Online]. Available: http://www.stroustrup.com/4th.html

8. Boost.org. (2018) Boost C++ Libraries. [Online]. Available: http://www.boost.org
9. D. Brugali and P. Scandurra, “Component-based robotic engineering (part i) [tutorial],”

IEEE Robotics Automation Magazine, vol. 16, no. 4, pp. 84–96, December 2009. [Online].
Available: http://www.doi.org/10.1109/MRA.2009.934837

10. D. Brugali and A. Shakhimardanov, “Component-based robotic engineering (part ii),” IEEE
Robotics Automation Magazine, vol. 17, no. 1, pp. 100–112, March 2010. [Online]. Available:
http://www.doi.org/10.1109/MRA.2010.935798

11. C. Ellis and S. Gibbs, Object-Oriented Concepts, Databases, and Applications. ACM Press,
Addison-Wesley, 1989, ch. Active Objects: Realities and Possibilities.

12. C. Kohlhoff. (2018) Boost.Asio. Boost C++ Libraries. [Online]. Available: http:
//www.boost.org/doc/libs/release/libs/asio/

13. R. Ramey. (2018) The Boost Serialization Library. Boost C++ Libraries. [Online]. Available:
http://www.boost.org/doc/libs/release/libs/serialization/

14. V. Karvonen and P. Mensonides. The Boost Preprocessor Library. Boost C++ Libraries.
15. K. D. Morgenstern. (2017) The Boost Process Library. Boost C++ Libraries. [Online].

Available: http://www.boost.org/doc/libs/release/libs/process/
16. K. Henney. (2017) The Boost.Any Library. Boost C++ Libraries. [Online]. Available:

http://www.boost.org/doc/libs/release/libs/any
17. Digi. (2018) XBee/XBee Pro. 868 RF Module. User Guide. [Online]. Available:

https://www.digi.com/resources/documentation/digidocs/pdfs/90001020.pdf
18. Giovanni Di Sirio. (2017) ChibiOS free embedded RTOS. [Online]. Available: http:

//www.chibios.org
19. J. Cabrera-Gámez, A. Ramos-de Miguel, A. C. Domínguez-Brito, J. D. Hernández-Sosa,

J. Isern-González, and L. Adler, “A real-time sailboat controller based on chibios,” in
Proceedings of the 7th International Robotic Sailing Conference. Robotic Sailing 2014,
F. Morgan and D. Tynan, Eds. Springer International Publishing, 2014, pp. 77–85. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-10076-0_7

20. Libelium. (2017) Waspmote - Open Source Sensor Node for the Internet of Things. [Online].
Available: http://www.libelium.com/products/waspmote

21. J. Cabrera-Gámez, A. Ramos-de Miguel, A. Domínguez-Brito, J. Hernández-Sosa, J. Isern-
González, and E. Fernández-Perdomo, “An embedded low-power control system for
autonomous sailboats,” in Proceedings of the 6th International Robotic Sailing Conference.
Robotic Sailing 2013, F. L. Bars and L. Jaulin, Eds. Springer International Publishing, 2013,
pp. 67–79. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-02276-5_6

22. M. Henning and S. Vinoski, Advanced CORBA Programming with C++, ser. Addison-Wesley
Professional Computing Series. Addison-Wesley, 1999.

23. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop
on open source software, vol. 3, no. 3.2, 2009, p. 5. [Online]. Available: http:
//www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf

http://dx.doi.org/10.1007/978-3-319-23335-2_1
http://dx.doi.org/10.1007/11535409_1
https://isocpp.org/wiki/faq/cpp14#cpp14-compilers
http://www.stroustrup.com/4th.html
http://www.boost.org
http://www.doi.org/10.1109/MRA.2009.934837
http://www.doi.org/10.1109/MRA.2010.935798
http://www.boost.org/doc/libs/release/libs/asio/
http://www.boost.org/doc/libs/release/libs/asio/
http://www.boost.org/doc/libs/release/libs/serialization/
http://www.boost.org/doc/libs/release/libs/process/
http://www.boost.org/doc/libs/release/libs/any
https://www.digi.com/resources/documentation/digidocs/pdfs/90001020.pdf
http://www.chibios.org
http://www.chibios.org
http://dx.doi.org/10.1007/978-3-319-10076-0_7
http://www.libelium.com/products/waspmote
http://dx.doi.org/10.1007/978-3-319-02276-5_6
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf

	A component-based C++ communication middleware for an autonomous robotic sailboat
	 Francisco J. Santana-Jorge†, Antonio C. Domínguez-Brito†‡§ and Jorge Cabrera-Gámez†‡
	Introduction
	ISE middleware
	A-Tirma's Communication Infrastructure
	Conclusions
	References

