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Abstract

Marine microplastic pollution is an issue of great concern nowadays since
high concentrations have been detected in the ocean, mainly in the subtrop-
ical gyres that accumulate this type of debris. The long-term effects of this
pollution on ecosystems and marine biota are still unknown. The aim of this
study is to quantify and characterise microplastics and neustonic zooplank-
ton in sub-surface waters of the Macaronesian region, an area that has been
little studied to date. Our results show a great variability in the concentra-
tion of microplastics with values between 15,283 items/Km? in Los Gigantes

(Tenerife, Canary Islands) and 1,007,872 items/Km? in Las Canteras (Gran
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Canaria, Canary Islands). The main types of debris found were plastic frag-
ments and fibres. The abundances of neustonic zooplankton were also very
variable between the different sampling areas, being the main components
copepods and eggs. Regarding the microplastics-zooplankton ratio, values
were obtained between 0.002 and 0.22. In Las Canteras, the highest accumu-
lation zone, was found twice as much microplastics as zooplankton for the
1-5mm fraction in dry weight. These values highlight the potential hazard of
microplastics - and its associated chemical contaminants - for marine biota,
especially for large filter feeders.

Keywords: marine debris, microdebris, plastic, zooplankton, manta net,

marine litter, North Atlantic

1. Introduction

Large-scale plastic production has continued to grow from its beginnings
in 1950 to the present day, reaching almost 350 million tonnes in 2017 (Plas-
ticsEurope, 2018). The accumulation of this plastic waste and its entry into
the ocean, estimated at 4.8 to 12.7 million metric tons per year (Jambeck

et al., 2015), is one of the major environmental problems of the present time.

The United Nations Environmental Programme (UNEP) defines marine
litter as ‘any persistent, manufactured or processed solid discarded material,
disposed of or abandoned in the marine and coastal environment” (UNEP,
2009), the great majority of these wastes are plastics, but glass, wood, tar,
metal, natural fibres, etc. can also be found (Kroon et al., 2018). Nowadays

there is no consensus on the size that defines microplastics and microdebris,
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in 2009 NOAA proposes a definition in which microplastics are considered as
all plastic particles with <5mm in diameter (Arthur et al., 2009), EU MSFD
WG-GES (MSDF Technical Subgroup on Marine Litter, 2013) proposes >20
and <5000um , and recently Hartmann et al. (2019) propose the size between
>1 and <1000pm to define microplastics. In the present study we use the
term microdebris to describe particles of anthropogenic origin with a size less

than Smm.

Pollution by microplastics is an issue of growing concern in the scientific
community, environmental policy authorities and society due to the potential
risk it may have for ecosystems, marine biota, human health and the econ-
omy. The topic is being widely studied at a global level, on the other hand,
in the Macaronesian region although results are known in beaches (Baztan
et al., 2014; Herrera et al., 2018; Alvarez-Herndndez et al., 2019; Gestoso
et al., 2019; Chambault et al., 2018; Rios et al., 2018), and there are some
studies on marine biota (Rodriguez et al., 2012; Rodriguez and Pham, 2017;
Pham et al., 2014; Herrera et al., 2019b), microplastic contamination in sub-

surface waters has been little studied.

The Macaronesia region is conformed by a group of islands located in
the Eastern Atlantic, which form a biogeographic region. It includes more
than 40 islands grouped into five archipelagos: Azores, Madeira, Selvagens,
Canary Islands and Cape Verde. In total they occupy an area of more than
14,600 Km?2. The Macaronesian region has great biodiversity and many en-

demic species, 211 Sites of Community Importance (SCIs) and more than 65
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Special Protection Areas (SPAs) have been declared (Sundseth, 2010). Due
to their oceanographic situation close to the North Atlantic subtropical gyre
(NASG), the islands are located at the flow of the Azores Current and the Ca-
nary Current, branches downstream of the Gulf Stream (Comas-Rodriguez,
2011). As a result, such oceanic islands are predicted to be particularly vul-

nerable to plastic pollution.

One approach of assess the potential risk of microplastics to marine or-
ganisms, particularly filter feeders, is to study the ratio between the amount
of neustonic microplastics and zooplankton Moore et al. (2001). This ratio
increases in areas of the ocean with low productivity where the number of or-

ganisms decreases and the amount of plastic accumulates, such as in oceanic

gyres.

For the above mentioned reasons, the main objectives of this study are
to determine the abundance and characterize the floating microplastics in
different zones of the Macaronesian region, and to study the microplastics-

zooplankton ratio.

2. Materials and Methods

2.1. Samples collection

A total of 45 neustonic samples were collected during daylight (9:00-14:00
hs.), 24 in the Canary Islands archipelago, 12 in Madeira and 9 in the Azores

in the Macaronesian region (Fig. 1). Samples were collected in opportunistic
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samplings in different periods between 2015 and 2018. The collection dates
and locations of each sample are shown in table 1 of supplementary material.
In the Canary Islands and Madeira the neustonic samples were collected with
a manta net with a rectangular mouth opening of 25 x 60 cm, and a 200pum
mesh size. At each location 3 samples were taken, except in Taliarte where
only 2 samples were collected and in Los Gigantes where 4 samples were
collected. The manta net was trawled at a speed of ~3 knots, during periods
of 20 minutes. GPS coordinates were taken to measure the length of each
transect. The net trawls were towed at a horizontal angle of 45°with respect
to the ship’s trails. Kukulka et al. (2012) demonstrated that in strong wind
conditions the neuston net tends to collect less plastic particles because it
is distributed vertically in the mixed layer due to wind-induced mixing. For
this reason the sampling was only carried out under optimal sea conditions,
with a Beaufort Sea Scale between 0 and 2.

In the Azores, three parallel transects were carried out at each site using
200pm mesh bongo nets 50 cm in diameter. Each tows lasted 2min20 sec-
onds at a constant speed of ~2 knots. The volume of water filtered in the
tows was calculated using a flowmeter only in Azores archipelago. The start
and end coordinates were also recorded to determine the length of each tran-
sect.

Samples were collected and preserved in 4% of formaldehyde for later anal-

ysis.

2.2. Samples processing

All debris range from 0.2-bmm were identified and counting by visual

inspection under a binocular stereomicroscope (Leica S9i) with integrated

5
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CMOS camera, at 55x magnification. Microdebris were classified in different
categories regarding its typology; irregular plastic fragments (Fragments),
industrial pellets (Pellets), fibres (Fibres), films and sheets (Films), plastic
microbeads (Microbeads), EPS and XPS (Foams), fishing lines (Lines) and
others debris including glass, paint, aluminium foil and tar (Other) (Fig. 2).
Since FTIR was not available to identify the type of particles in the category
fibres are included synthetic, semi-synthetic and natural.

During the entire process in the laboratory cotton lab coats were worn and
all materials were carefully rinsed with bidistilled water to prevent contami-
nation of the samples. A petri dish with clean 50um mesh was placed near
the stereomicroscope during the visual inspection as contamination control.

No contamination was found in any of the controls.

Zooplankton neuston samples were separated in 200-500; 500-1000 and
>1000um fraction size. Then, an aliquot of 10 or 20ml, depending on plank-
ton concentration, were scanned in a high resolution scan (Epson V800 Pro)
and were counted and classified in large taxonomic groups using Zooprocess
software V7.30 and ECOTAXA V2.0 (Picheral et al., 2017), as described in
the protocol by Herrera et al. (2019a)

The microplastics and zooplankton (in number of units) collected were di-
vided by the total area of filtered water and the concentration was expressed
in items/Km?. The concentration was expressed in items/m3 only for the

Azores” samples.
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2.3. Statistical analysis

The data were analyzed and plotted using R statistical program V3.5.3
(R Core Team, 2019). To confirm normality, microplastics and zooplank-
ton abundance data were analyzed by the Shapiro Wilk test and the ho-
moscedasticity of the residuals was assessed graphically. Microplastics and
zooplankton data were not normal and statistical differences between areas

were tested using Kruskal-Wallis test and Conover posthoc test.

3. Results

3.1. Microplastics and zooplankton abundance

The maximum values of microplastics (items/Km?) were 1,007,872 in the
Canary Islands, 467,259 in the Azores and 124,190 in Madeira (Table 2).
However, no significant differences were found between the abundances of mi-
croplastics (items/Km?) among the archipelagos (p-value=0.35). The mean
values found at each locality expressed per Km? are summarized in table 1.
If we consider the values obtained in each locality, the maximum abundance
found was in Las Canteras (1,007,872 items/Km?) and the minimum in Los
Gigantes (15,482 items/Km?) both in the Canary archipelago (Figs. 3a and
4b ).

Regarding the differences between localities within each archipelago, differ-
ences were only observed in the Canary Islands archipelago, being the values
in Las Canteras significantly higher than in San Andres, Los Gigantes, and

Famara as shown in figure 3a.
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The maximum zooplankton abundance found were 288.9x10° ind/Km? in
Porto Pim, Azores; 73.4x10° ind/Km? in Famara, Canary Islands; and 24x10°
ind/Km? in Funchal, Madeira. Significant differences in zooplankton abun-
dance were observed between the Azores and Madeira (p-value=7.4x10"7)
and between the Azores and the Canary Islands (p-value=3.3x1076). The
mean abundances found in each locality expressed per Km? are summa-
rized in table 1. Within the Canary Island archipelago, in Famara, there
was significantly higher abundance of zooplankton than in Taliarte and San
Andres (p-values<0.05). However, within the archipelagos of Madeira and
Azores no significant differences were observed between the locations (p-

values>0.05)(Fig. 3b).

3.2. Composition of debris and zooplankton

In the samples collected in the Canary Islands and Azores archipelagos,
100% of the debris were microplastics and fibres (synthetic, semi-synthetic
or natural). In the Madeira archipelago, on the other hand, 16% were other
types of debris. Of the total microplastics collected in the Canary Islands
57.3% were fragments, 27.4% fibres, 9.9% lines and 5.3% films; in the Azores
archipelago 54% were fibres, 34.9% fragments, 6.3% lines and 4.8% films;
while in Madeira, from total debris 47.5% were fragments, 30% fibers, 4.6%
styrofoam, 0.5% films, and 16.8% were other debris such as glass, paint, alu-
minium foil and tar (Fig. 5).

Regarding particle size, in the Canary Islands 50.6% were between 0.2-1mm
and the rest between 1-5mm in size; in Madeira 39.4% of the particles had a

size between 1-5mm and the rest in the fraction between 0.2-1mm; while in

8
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the Azores, only 17.5% of the particles were of the fraction of 1-5mm, being
82.5% of a size between 0.2-1mm (Fig. 5).

Neustonic zooplankton were classified into large taxonomic groups, in terms
of abundance copepods were the dominant group, and the other major group
were fish eggs. In the Canary Islands the percentage of each group was 85%
copepods, 12.5% eggs, 1% appendicularia, 0.5% salpidae and within the re-
maining 1% were found amphipods, annelids, chaetognats, decapods and
euphausiids. Also in the Azores, the most abundant group were copepods
with 44%, eggs 29.5%, cirripedia larvae 17.2% and ostracods 9.4% (Fig. 6b).
In contrast, the neustonic zooplankton collected in Madeira were 60% eggs ,
38.1% copepods, 1.2% appendicularia, and the remaining 1% were composed

by annelids, decapods, salpids and chaetognats (Fig. 6¢).

3.3. Ratio Microplastics/Zooplankton

The average ratio of Microplastics/Zooplankton (Micro/Zoo) in each of
the archipelagos was 0.032 in the Canary Islands, 0.021 in Madeira and 0.002
in the Azores (Table 2). The mean values obtained in each locality are shown
in table 1. The highest Micro/Zoo ratios were found in the Canary Islands, in
the localities of Taliarte (0.22), Las Canteras (0.1) and Lambra (0.06) (Fig.
3c). In Madeira maximum values of 0.06 were found in Canigal (Fig. 3c). In
the Azores archipelago the maximum values reached were 0.005 in Porto Pim
and Almoxarife (Fig. 3c). The Micro/Zoo ratio was significantly lower in
the Azores than in the Canary Islands and Madeira (p-values<0.05). Within
each archipelagos, significant differences were only observed in the Canary

Islands, with significantly higher MP /Zoo ratios in Taliarte and Las Canteras

9
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than in Famara and Los Gigantes (p-values<0.05)(Fig. 3c).

The ratio of microplastics/zooplankton in dry weight was estimated only in
the samples from Las Canteras for the fraction >1mm, as they were the only
ones that contained enough microplastics to do that estimation. In the 3
samples collected within that fraction the Micro/Zoo dry weight ratio was

2.70, 2.67 and 0.50 respectively, being the average value 2.0+1.3.

4. Discussion

The mean values of MPs in items per Km? are in the range of those
found in other areas of the ocean (see review in table 2). The maximum
values found in Las Canteras are similar to those reported in areas of high
accumulations such as the North Pacific Central Gyre (Moore et al., 2001)
and the Mediterranean Sea (Collignon et al., 2012; Ruiz-Orején et al., 2016);
but lower than those reported by Law et al. (2014) in the Eastern Pacific
accumulation zone, and Suaria et al. (2016) and Van Der Hal et al. (2017)

also for the Mediterranean.

High concentrations of microplastics were found in the three archipelagos,
especially in the localities of Las Canteras in the Canary Islands, and Porto
Pim in the Azores, both located in a semi-enclosed bays, acting as retention
zones. Other authors have also reported high abundances of microplastics in

bays of Tokyo and Brazil (Cheung et al., 2018; Figueiredo et al., 2018).

Las Canteras’ sampling area is located within El Confital bay on the

10
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northeast coast of Gran Canaria. According to the circulation model pro-
posed in the study carried out by Mcknight (2016) in El Confital bay, N and
NNW wind scenarios shows a recirculation pattern in the eastern-central of
the bay. In contrast, with the NE and NNE winds -the predominant winds
in the area- it shows a circulation pattern towards the west but intensified in
the northeast cape, where the flux is directed towards the bay in southwest
direction.

Mcknight (2016) analysed the relationship between near-shore surface cir-
culation and marine debris deposition on the beach, but there are no studies
in the region that relate surface circulation to floating debris. It is probable
that the recirculation pattern observed under N and NNW wind conditions
may affect the transport of floating debris, determining the accumulation in
the central areas, which would explain the high values found at Las Canteras.
Further studies are needed to understand the effect of coastal hydrodynamics

on the accumulation of neustonic microplastics.

As can be observed in table 1, there is a great variability in the concen-
trations found in the different sampling areas, even between nearby localities
such as Las Canteras and San Andres. Although significant differences were
observed between archipelagos, both in microplastics and zooplankton abun-
dance, it is probable that these differences are due to the fact that sampling
was opportunistic, at different times and with different methods. Other au-
thors have found that there are variability in the estimations of microplastics
according to the methodology used (Barrows et al., 2017; Eriksen et al., 2018;

Green et al., 2018) so we should be cautious when making this type of com-
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parison. Therefore, it is necessary to carry out a specific study in the area

in order to determine the spatial variability.

Our data show for the first time that this region is an area highly pol-
luted by microplastics and other debris. The situation of the islands in
the flow of the descending branches of the Gulf Stream is probably mak-
ing them especially vulnerable to microplastic pollution, as demonstrated by
studies on beaches in the region (Baztan et al., 2014; Herrera et al., 2018;
Alvarez-Herndndez et al., 2019; Gestoso et al., 2019) and marine organisms

(Rodriguez et al., 2012; Herrera et al., 2019b; Pham et al., 2017).

Regarding the categories, most of the microplastics were fragments and
fibres, these results agree with those reported worldwide (Aliabad et al.,
2019; Cozar et al., 2015; Di Mauro et al., 2017; Eriksen et al., 2013; Faure
et al., 2015; Figueiredo et al., 2018; Gewert et al., 2017; Suaria et al., 2016),
and with the types of microplastics found in the stomach of Atlantic chub
mackerel (Scomber colias) collected in Canary Islands waters (Herrera et al.,
2019b) and juvenile loggerhead turtles (Pham et al., 2017). However, the
percentages found in sub-surface waters off the beaches of Famara, Lambra
and Las Canteras do not correspond to those found in high tide line sedi-
ments. In Famara almost 44.3% of the microplastic samples collected from
beaches were composed of pellets, however in the sub-surface water samples
no pellets were found. Something similar occurs in Lambra that presented a
35.6% of tar in the sand samples, but this type of waste did not appear in the

samples collected with the manta net. These results suggest that the pattern
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of accumulation of different types of microplastics at the tide line differs from
that at the sea surface. This could be due to the fact that the different types,
either by their shape or composition, are deposited in different ways in the

sand.

In the present study, samples showed a high percentage of microplastics
with respect to zooplankton in abundance, especially in some areas such as
Taliarte, Las Canteras and Lambra. Microplastics reached values of 22% of
the zooplankton samples in Taliarte, this could explain the high incidence
of microplastics in the planktivorous fish Atlantic chub mackerel (Scomber
colias) collected in the Canary Islands according to the study carry out by
Herrera et al. (2019b). This Micro/Zoo ratio in abundance is similar to the
ones found by Moore et al. (2001) in the North Pacific Central Gyre and Frias
et al. (2014) on the Portuguese coast, and much higher than that reported
by other authors (see table 2).

In addition, the dry weight ratio for the 1-5mm fraction in the Las Can-
teras area showed twice times much microplastics as zooplankton. Collignon
et al. (2012) found an average weight ratio of 0.5 and Moore et al. (2001)
found 6 times more plastic than zooplankton in the area near the accumu-
lation of the North Pacific Subtropical Gyre. Although the ratio is higher,
Moore et al. (2001) included the fraction greater than 5mm, whereas in the
present study the ratio of 2 was found taking into account only the fraction

of 1-5mm.
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This high percentage of microplastics in the zooplankton samples could
have a great impact on the health of marine organisms, either because of the
physical danger of ingestion, the associated chemical contaminants or the
false sense of satiation that could affect the intake of nutrients, especially in
large filter feeders species. Fossi et al. (2017) demonstrated the overlap of
zones of microplastic accumulation with the feeding areas of fin whales in the
Pelagos Sanctuary in the Mediterranean, highlighting the high intake risk for

marine biota.

One of the main concerns of the scientific community is the effects that
microplastics can have on marine organisms and the food chain. Many stud-
ies have demonstrated the ingestion of microplastics in invertebrates, fish,
seabirds and cetaceans. However, the risk associated with this ingestion is
still unknown. On the other hand, microplastics have been shown to possess
various types of associated chemical contaminants (Endo et al., 2005; Hirai
et al., 2011; Ogata et al., 2009; Rios et al., 2007; Camacho et al., 2019) and
these could affect the health of organisms (Rochman et al., 2013; Derraik,
2002; Teuten et al., 2009).

Also, the high microplastics-zooplankton ratio found in this study demon-
strates the potential risk it may have for biota and marine ecosystems, espe-
cially if we consider that high levels of POP’s and emerging chemical pollu-
tants have already been reported by Camacho et al. (2019) in microplastic
samples collected in the Canary Islands. The waters around Macaronesia are

important feeding grounds for some large filter feeders, such as the whale
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shark (Rhincodon typus), the basking shark (Cetorhinus mazimus), several
species of manta rays of the genus Mobula (M. tarapacana, M. mobular, M.
birostris); and filter whales of the genus Balaenoptera (B. edeni, B. bryde, B.
physalus, B. borealis, B. musculus) (Carrillo et al., 2010; Espino et al., 2014;
Sobral and Afonso, 2014; Das and Afonso, 2017; Prieto et al., 2014, 2017,
Silva et al., 2014). According to our results, these species among others have
a high potential risk of ingestion of microplastics and associated chemical

contaminants.

5. Conclusions

1- High levels of contamination by neustonic microplastics (0.2-5mm)
were found in various areas of Macaronesia, reaching values of more than 1
million particles per square kilometre.

2- The microplastics-zooplankton abundance ratio was very variable in the
different zones, reaching values of 0.22.

3- We found twice as much microplastics as zooplankton in dry weight for
the 1-5mm fraction in the area of greatest accumulation in Las Canteras.

4- Tt is necessary to carry out more studies of floating microplastics abun-
dance in order to understand the circulation and accumulation patterns in
the Macaronesian region.

5- In addition, studies on the abundance of neustonic microplastics and zoo-
plankton and their impact at different levels of the food web are needed to

assess possible risks to marine organisms.
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Figure 1: Study area. The numbers inside the circles show the number of samples collected

at each site.
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Figure 2: Types of debris found. a) Irregular fragments (Fragments), scale bar=5mm.
b) Industrial pellets (Pellets), scale bar=5mm. c¢) Fibres, scale bar=2mm d) Microbeads,
scale bar=500um. e) EPS and XPS (Foams), scale bar=1mm. f) Films, scale bar=5mm.
g,h) Fishing lines (Lines), scale bar=5mm. i) Paint (Other), scale bar=2mm.
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Figure 3: (a) Abundance of microplastics (0.2-5mm) in items by Km? at each location. The
central thick line of each box designates the median, the box height shows the interquartile
range, and the whiskers indicate the lowest and the highest values. Significant differences

between locations within each archipelago are shown ** (p<0.05), * (p<0.01).
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Figure 3: (b) Neustonic zooplankton in individuals by Km? at each location. Y axis was
log2 transformed in order to improve data visualization. Significant differences between

locations within each archipelago are shown ** (p<0.05), * (p<0.01).

Figure 3: (c) Ratio Microplastics/Zooplankton abundance. Significant differences between

locations within each archipelago are shown ** (p<0.05), * (p<0.01).

36



Figure 4: (a) Abundance of microplastics in items/Km? in coastal waters of Lanzarote

and La Graciosa Islands, Canary Islands archipelago

Figure 4: (b) Abundance of microplastics in items/Km? in coastal waters of Gran Canaria

Island, Canary Islands archipleago
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Figure 4: (c) Abundance of microplastics in items/Km? in coastal waters of Tenerife

Island, Canary Islands archipelago

Figure 4: (d) Abundance of microplastics in items/Km? in coastal waters of Madeira

Island, Madeira archipelago.
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Figure 4: (e) Abundance of microplastics in items/Km? in coastal waters of Faial Island,

Azores archipelago.
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Figure 5: Percentage of type and size of debris found at each archipelago. (a) Canary
Islands archipelago. (b) Madeira archipelago. (c¢) Azores archipelago. Category “Other”

include glass, paint, aluminum foil and tar



()

Figure 6: Percentage of taxonomic groups #bm total neustonic zooplankton collected at
each archipelago. (a) Canary Islands archipelago. (b) Madeira archipelago. (c) Azores

archipelago.



croplastics/number of zooplankton at each sampling location.

Table 1: Mean abundance of microplastics and zooplankton, and ratio of items of mi-

Location Archipelago Micro (items/Km? ) Zoo (ind/Km?) Micro/Zoo

mean+SD  mean+SD(x10%) items ratio
Lambra Canary Islands 153,304+95,348 5.7+2.2 0.032
Arrecife Canary Islands 157,102+96,840 5.1+1.9 0.030
Famara Canary Islands 68,020+75,654 38.0+31.2 0.002
Taliarte Canary Islands 154,570+9,217 1.4+1.1 0.147
Las Canteras Canary Islands 894,069+98,951 15.7+£13.1 0.08
Gando Canary Islands 125,949+61,630 22.6+18.4 0.008
San Andres Canary Islands 21,326+6,281 3.1+0.9 0.007
Los Gigantes Canary Islands 27,593 +8,895 14.4+4.1 0.002
Canigal Madeira 87,538+12,223 5.3+4.0 0.028
Funchal Madeira 40,054 +4,711 9.5+£12.5 0.013
Desertas Madeira 66,568+19,379 7.3+4.8 0.021
Canigo Madeira 84,343+39,828 5.1+£3.2 0.024
Praia do Norte  Azores 77,223+40,279 140.7+£75.2 0.0007
Almoxarife Azores 143,858+143,033 95.0+32.4 0.002
Porto Pim Azores 300,352+164,345 177.9+98.7 0.002
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Supplementary material

Table 3: Sampling dates (mm/dd/yy), locations, distances to the coast in meters and type

of net used.

Location Island Archipelago Date Longitud Latitud Distance Net

Canigal Madeira Madeira 8/11/17 -16.7084 32.7143 2503 Manta (200pm)
Canigal Madeira Madeira 8/11/17 -16.7317 32.7132 2995 Manta (200pm)
Canigal Madeira Madeira 8/11/17 -16.7496 32.6984 2332 Manta (200pm)
Funchal Madeira Madeira 8/11/17 -16.8393 32.6305 915 Manta (200pm)
Funchal Madeira Madeira 8/11/17 -16.8624 32.6329 1017 Manta (200pm)
Funchal Madeira Madeira 8/11/17 -16.8736 32.6156 1073 Manta (200um)
Desertas Madeira Madeira 8/12/17 -16.6819 32.6751 5563 Manta (200pm)
Desertas Madeira Madeira 8/12/17 -16.7076 32.6666 7497 Manta (200pm)
Desertas Madeira Madeira 8/12/17 -16.7310 32.6573 6610 Manta (200pm)
Canico Madeira Madeira 8/12/17 -16.7577 32.6780 2470 Manta (200pm)
Canigo Madeira Madeira 8/12/17 -16.7710 32.6623 2251 Manta (200pm)
Canigo Madeira Madeira 8/12/17 -16.7884 32.6482 2723 Manta (200pm)
Lambra La Graciosa Canary Islands 11/6/15 -13.4883 29.2962 1680 Manta (200um)
Lambra La Graciosa Canary Islands 11/6/15 -13.5303 29.3297 2245 Manta (200pm)
Lambra La Graciosa Canary Islands 11/6/15 -13.4489 29.2623 2287 Manta (200pm)
Arrecife Lanzarote Canary Islands  12/3/15 -13.5263 28.9606 834 Manta (200pm)
Arrecife Lanzarote Canary Islands  12/3/15 -13.5411 28.9553 659 Manta (200pm)
Arrecife Lanzarote Canary Islands  12/3/15 -13.5201 28.9549 1774 Manta (200pm)
Famara Lanzarote Canary Islands 3/4/16 -13.5434 29.1479 1682 Manta (200pm)
Famara Lanzarote Canary Islands 3/4/16 -13.5734 29.1372 978 Manta (200pm)
Famara Lanzarote Canary Islands 3/4/16 -13.5852 29.1533 2103 Manta (200pm)
Taliarte Gran Canaria  Canary Islands 6/8/18 -15.3666 28.0140 856 Manta (200pm)
Taliarte Gran Canaria  Canary Islands 6/8/18 -15.3622 27.9897 520 Manta (200pm)
Las Canteras Gran Canaria  Canary Islands 6/26/18 -15.4689 28.1327 395 Manta (200pm)
Las Canteras Gran Canaria  Canary Islands  6/26/18 -15.4533 28.1355 745 Manta (200pm)
Las Canteras Gran Canaria  Canary Islands  6/26/18 -15.4402 28.1469 730 Manta (200um)
Gando Gran Canaria  Canary Islands  9/18/18 -15.3733 27.9511 713 Manta (200pm)
Gando Gran Canaria  Canary Islands  9/18/18 -15.3736 27.9657 510 Manta (200pm)
Gando Gran Canaria  Canary Islands 9/18/18 -15.3688 27.9797 648 Manta (200pm)
San Andres Gran Canaria  Canary Islands 10/3/18 -15.5415 28.1583 915 Manta (200pm)
San Andres Gran Canaria  Canary Islands 10/3/18 -15.5235 28.1593 710 Manta (200pm)
San Andres Gran Canaria  Canary Islands 10/3/18 -15.5047 28.1607 1446 Manta (200um)

Continued on next page
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Location Island Archipelago Date Longitud Latitud Distance Net

Los Gigantes Tenerife Canary Islands  10/4/18 -16.8506 28.2377 1107 Manta (200pm)
Los Gigantes Tenerife Canary Islands  10/4/18 -16.8511 28.2224 1171 Manta (200um)
Los Gigantes Tenerife Canary Islands  10/4/18 -16.8463 28.2065 1184 Manta (200pm)
Los Gigantes Tenerife Canary Islands  10/4/18 -16.8465 28.2479 1178 Manta (200pm)
Praia do Norte Faial Azores 7/10/18 -28.7570 38.6132 172 Bongo (200pm)
Praia do Norte Faial Azores 7/10/18 -28.7571 38.6131 308 Bongo (200pm)
Praia do Norte Faial Azores 7/10/18 -28.7559 38.6139 303 Bongo (200pm)
Almoxarife Faial Azores 7/10/18 -28.6076 38.5559 116 Bongo (200pm)
Almoxarife Faial Azores 7/10/18 -28.6079 38.5547 139 Bongo (200pm)
Almoxarife Faial Azores 7/10/18 -28.6078 38.55646 133 Bongo (200pm)
Porto Pim Faial Azores 7/10/18 -28.6290 38.5241 78 Bongo (200pm)
Porto Pim Faial Azores 7/10/18 -28.6286 38.5231 101 Bongo (200pm)
Porto Pim Faial Azores 7/10/18 -28.6289 38.5240 83 Bongo (200pm)
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