First evaluation of neustonic microplastics in the Macaronesian region, NE Atlantic

A. Herrera^{a,*}, E. Raymond^a, I. Martínez^a, S. Álvarez^b, J. Canning-Clode^{b,d,e}, I. Gestoso^{b,d}, C.K. Pham^c, N. Ríos^c, Y. Rodríguez^c, M. Gómez^a

^aMarine Ecophysiology Group (EOMAR), IU- ECOAQUA. Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.

^bMARE-Marine and Environmental Sciences Centre, Agência Regional para o

Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal.

^cIMAR/OKEANOS - Universidade dos Açores, Departamento de Oceanografia e Pescas, 9901-862 Horta, Portugal

^dCentre of IMAR of the University of the Azores, Department of Oceanography and Fisheries, Azores, Portugal.

^eSmithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, U.S.A

Abstract

Marine microplastic pollution is an issue of great concern nowadays since high concentrations have been detected in the ocean, mainly in the subtropical gyres that accumulate this type of debris. The long-term effects of this pollution on ecosystems and marine biota are still unknown. The aim of this study is to quantify and characterise microplastics and neustonic zooplankton in sub-surface waters of the Macaronesian region, an area that has been little studied to date. Our results show a great variability in the concentration of microplastics with values between 15,283 items/Km² in Los Gigantes (Tenerife, Canary Islands) and 1,007,872 items/Km² in Las Canteras (Gran

^{*}Corresponding author. Tel.: +34 928 45 44 40; fax: +34 928 45 29 22

Email address: alicia.herrera@ulpgc.es (A. Herrera)

Canaria, Canary Islands). The main types of debris found were plastic fragments and fibres. The abundances of neustonic zooplankton were also very variable between the different sampling areas, being the main components copepods and eggs. Regarding the microplastics-zooplankton ratio, values were obtained between 0.002 and 0.22. In Las Canteras, the highest accumulation zone, was found twice as much microplastics as zooplankton for the 1-5mm fraction in dry weight. These values highlight the potential hazard of microplastics - and its associated chemical contaminants - for marine biota, especially for large filter feeders.

Keywords: marine debris, microdebris, plastic, zooplankton, manta net, marine litter, North Atlantic

1 1. Introduction

Large-scale plastic production has continued to grow from its beginnings
in 1950 to the present day, reaching almost 350 million tonnes in 2017 (PlasticsEurope, 2018). The accumulation of this plastic waste and its entry into
the ocean, estimated at 4.8 to 12.7 million metric tons per year (Jambeck et al., 2015), is one of the major environmental problems of the present time.

The United Nations Environmental Programme (UNEP) defines marine litter as 'any persistent, manufactured or processed solid discarded material, disposed of or abandoned in the marine and coastal environment" (UNEP, 2009), the great majority of these wastes are plastics, but glass, wood, tar, metal, natural fibres, etc. can also be found (Kroon et al., 2018). Nowadays there is no consensus on the size that defines microplastics and microdebris, ¹⁴ in 2009 NOAA proposes a definition in which microplastics are considered as ¹⁵ all plastic particles with <5mm in diameter (Arthur et al., 2009), EU MSFD ¹⁶ WG-GES (MSDF Technical Subgroup on Marine Litter, 2013) proposes >20 ¹⁷ and <5000 μ m, and recently Hartmann et al. (2019) propose the size between ¹⁸ >1 and <1000 μ m to define microplastics. In the present study we use the ¹⁹ term microdebris to describe particles of anthropogenic origin with a size less ²⁰ than 5mm.

21

Pollution by microplastics is an issue of growing concern in the scientific 22 community, environmental policy authorities and society due to the potential 23 risk it may have for ecosystems, marine biota, human health and the econ-24 omy. The topic is being widely studied at a global level, on the other hand, 25 in the Macaronesian region although results are known in beaches (Baztan 26 et al., 2014; Herrera et al., 2018; Álvarez-Hernández et al., 2019; Gestoso 27 et al., 2019; Chambault et al., 2018; Ríos et al., 2018), and there are some 28 studies on marine biota (Rodríguez et al., 2012; Rodríguez and Pham, 2017; 20 Pham et al., 2014; Herrera et al., 2019b), microplastic contamination in sub-30 surface waters has been little studied. 31

32

The Macaronesia region is conformed by a group of islands located in the Eastern Atlantic, which form a biogeographic region. It includes more than 40 islands grouped into five archipelagos: Azores, Madeira, Selvagens, Canary Islands and Cape Verde. In total they occupy an area of more than 14,600 Km². The Macaronesian region has great biodiversity and many endemic species, 211 Sites of Community Importance (SCIs) and more than 65 Special Protection Areas (SPAs) have been declared (Sundseth, 2010). Due to their oceanographic situation close to the North Atlantic subtropical gyre (NASG), the islands are located at the flow of the Azores Current and the Canary Current, branches downstream of the Gulf Stream (Comas-Rodríguez, 2011). As a result, such oceanic islands are predicted to be particularly vulnerable to plastic pollution.

45

One approach of assess the potential risk of microplastics to marine organisms, particularly filter feeders, is to study the ratio between the amount of neustonic microplastics and zooplankton Moore et al. (2001). This ratio increases in areas of the ocean with low productivity where the number of organisms decreases and the amount of plastic accumulates, such as in oceanic gyres.

52

For the above mentioned reasons, the main objectives of this study are to determine the abundance and characterize the floating microplastics in different zones of the Macaronesian region, and to study the microplasticszooplankton ratio.

57

58 2. Materials and Methods

59 2.1. Samples collection

A total of 45 neustonic samples were collected during daylight (9:00-14:00 hs.), 24 in the Canary Islands archipelago, 12 in Madeira and 9 in the Azores in the Macaronesian region (Fig. 1). Samples were collected in opportunistic

samplings in different periods between 2015 and 2018. The collection dates 63 and locations of each sample are shown in table 1 of supplementary material. 64 In the Canary Islands and Madeira the neustonic samples were collected with 65 a manta net with a rectangular mouth opening of 25 x 60 cm, and a $200 \mu m$ 66 mesh size. At each location 3 samples were taken, except in Taliarte where 67 only 2 samples were collected and in Los Gigantes where 4 samples were 68 collected. The manta net was trawled at a speed of ~3 knots, during periods 69 of 20 minutes. GPS coordinates were taken to measure the length of each 70 transect. The net trawls were towed at a horizontal angle of 45° with respect 71 to the ship's trails. Kukulka et al. (2012) demonstrated that in strong wind 72 conditions the neuston net tends to collect less plastic particles because it 73 is distributed vertically in the mixed layer due to wind-induced mixing. For 74 this reason the sampling was only carried out under optimal sea conditions, 75 with a Beaufort Sea Scale between 0 and 2. 76

⁷⁷ In the Azores, three parallel transects were carried out at each site using ⁷⁸ 200 μ m mesh bongo nets 50 cm in diameter. Each tows lasted 2min20 sec-⁷⁹ onds at a constant speed of ~2 knots. The volume of water filtered in the ⁸⁰ tows was calculated using a flowmeter only in Azores archipelago. The start ⁸¹ and end coordinates were also recorded to determine the length of each tran-⁸² sect.

Samples were collected and preserved in 4% of formaldehyde for later analysis.

85 2.2. Samples processing

All debris range from 0.2-5mm were identified and counting by visual inspection under a binocular stereomicroscope (Leica S9i) with integrated CMOS camera, at 55x magnification. Microdebris were classified in different categories regarding its typology; irregular plastic fragments (Fragments), industrial pellets (Pellets), fibres (Fibres), films and sheets (Films), plastic microbeads (Microbeads), EPS and XPS (Foams), fishing lines (Lines) and others debris including glass, paint, aluminium foil and tar (Other) (Fig. 2). Since FTIR was not available to identify the type of particles in the category fibres are included synthetic, semi-synthetic and natural.

⁹⁵ During the entire process in the laboratory cotton lab coats were worn and ⁹⁶ all materials were carefully rinsed with bidistilled water to prevent contami-⁹⁷ nation of the samples. A petri dish with clean 50μ m mesh was placed near ⁹⁸ the stereomicroscope during the visual inspection as contamination control. ⁹⁹ No contamination was found in any of the controls.

100

¹⁰¹ Zooplankton neuston samples were separated in 200-500; 500-1000 and ¹⁰² >1000 μ m fraction size. Then, an aliquot of 10 or 20ml, depending on plank-¹⁰³ ton concentration, were scanned in a high resolution scan (Epson V800 Pro) ¹⁰⁴ and were counted and classified in large taxonomic groups using Zooprocess ¹⁰⁵ software V7.30 and ECOTAXA V2.0 (Picheral et al., 2017), as described in ¹⁰⁶ the protocol by Herrera et al. (2019a)

107

The microplastics and zooplankton (in number of units) collected were divided by the total area of filtered water and the concentration was expressed in items/Km². The concentration was expressed in items/m³ only for the Azores' samples.

112

113 2.3. Statistical analysis

The data were analyzed and plotted using R statistical program V3.5.3 (R Core Team, 2019). To confirm normality, microplastics and zooplankton abundance data were analyzed by the Shapiro Wilk test and the homoscedasticity of the residuals was assessed graphically. Microplastics and zooplankton data were not normal and statistical differences between areas were tested using Kruskal-Wallis test and Conover posthoc test.

120 3. Results

¹²¹ 3.1. Microplastics and zooplankton abundance

The maximum values of microplastics (items/ Km^2) were 1,007,872 in the 122 Canary Islands, 467,259 in the Azores and 124,190 in Madeira (Table 2). 123 However, no significant differences were found between the abundances of mi-124 croplastics (items/ Km^2) among the archipelagos (p-value=0.35). The mean 125 values found at each locality expressed per Km^2 are summarized in table 1. 126 If we consider the values obtained in each locality, the maximum abundance 127 found was in Las Canteras $(1,007,872 \text{ items/Km}^2)$ and the minimum in Los 128 Gigantes $(15,482 \text{ items/Km}^2)$ both in the Canary archipelago (Figs. 3a and 120 4b). 130

Regarding the differences between localities within each archipelago, differences were only observed in the Canary Islands archipelago, being the values
in Las Canteras significantly higher than in San Andres, Los Gigantes, and
Famara as shown in figure 3a.

135

The maximum zooplankton abundance found were 288.9×10^6 ind/Km² in 136 Porto Pim, Azores; 73.4x10⁶ ind/Km² in Famara, Canary Islands; and 24x10⁶ 137 ind/Km² in Funchal, Madeira. Significant differences in zooplankton abun-138 dance were observed between the Azores and Madeira (p-value= 7.4×10^{-7}) 139 and between the Azores and the Canary Islands (p-value= 3.3×10^{-6}). The 140 mean abundances found in each locality expressed per Km² are summa-141 rized in table 1. Within the Canary Island archipelago, in Famara, there 142 was significantly higher abundance of zooplankton than in Taliarte and San 143 And res (p-values < 0.05). However, within the archipelagos of Madeira and 144 Azores no significant differences were observed between the locations (p-145 values>0.05)(Fig. 3b). 146

147

¹⁴⁸ 3.2. Composition of debris and zooplankton

In the samples collected in the Canary Islands and Azores archipelagos, 149 100% of the debris were microplastics and fibres (synthetic, semi-synthetic 150 or natural). In the Madeira archipelago, on the other hand, 16% were other 151 types of debris. Of the total microplastics collected in the Canary Islands 152 57.3% were fragments, 27.4% fibres, 9.9% lines and 5.3% films; in the Azores 153 archipelago 54% were fibres, 34.9% fragments, 6.3% lines and 4.8% films; 154 while in Madeira, from total debris 47.5% were fragments, 30% fibers, 4.6%155 styrofoam, 0.5% films, and 16.8% were other debris such as glass, paint, alu-156 minium foil and tar (Fig. 5). 157

Regarding particle size, in the Canary Islands 50.6% were between 0.2-1mm and the rest between 1-5mm in size; in Madeira 39.4% of the particles had a size between 1-5mm and the rest in the fraction between 0.2-1mm; while in the Azores, only 17.5% of the particles were of the fraction of 1-5mm, being
82.5% of a size between 0.2-1mm (Fig. 5).

Neustonic zooplankton were classified into large taxonomic groups, in terms 163 of abundance copepods were the dominant group, and the other major group 164 were fish eggs. In the Canary Islands the percentage of each group was 85%165 copepods, 12.5% eggs, 1% appendicularia, 0.5% salpidae and within the re-166 maining 1% were found amphipods, annelids, chaetognats, decapods and 167 euphausiids. Also in the Azores, the most abundant group were copepods 168 with 44%, eggs 29.5%, cirripedia larvae 17.2% and ostracods 9.4% (Fig. 6b). 169 In contrast, the neustonic zooplankton collected in Madeira were 60% eggs, 170 38.1% copepods, 1.2% appendicularia, and the remaining 1% were composed 171 by annelids, decapods, salpids and chaetognats (Fig. 6c). 172

173

174 3.3. Ratio Microplastics/Zooplankton

The average ratio of Microplastics/Zooplankton (Micro/Zoo) in each of 175 the archipelagos was 0.032 in the Canary Islands, 0.021 in Madeira and 0.002 176 in the Azores (Table 2). The mean values obtained in each locality are shown 177 in table 1. The highest Micro/Zoo ratios were found in the Canary Islands, in 178 the localities of Taliarte (0.22), Las Canteras (0.1) and Lambra (0.06) (Fig. 179 3c). In Madeira maximum values of 0.06 were found in Canical (Fig. 3c). In 180 the Azores archipelago the maximum values reached were 0.005 in Porto Pim 181 and Almoxarife (Fig. 3c). The Micro/Zoo ratio was significantly lower in 182 the Azores than in the Canary Islands and Madeira (p-values < 0.05). Within 183 each archipelagos, significant differences were only observed in the Canary 184 Islands, with significantly higher MP/Zoo ratios in Taliarte and Las Canteras 185

than in Famara and Los Gigantes (p-values < 0.05) (Fig. 3c).

The ratio of microplastics/zooplankton in dry weight was estimated only in the samples from Las Canteras for the fraction >1mm, as they were the only ones that contained enough microplastics to do that estimation. In the 3 samples collected within that fraction the Micro/Zoo dry weight ratio was 2.70, 2.67 and 0.50 respectively, being the average value 2.0 ± 1.3 .

193 4. Discussion

The mean values of MPs in items per Km^2 are in the range of those 194 found in other areas of the ocean (see review in table 2). The maximum 195 values found in Las Canteras are similar to those reported in areas of high 196 accumulations such as the North Pacific Central Gyre (Moore et al., 2001) 197 and the Mediterranean Sea (Collignon et al., 2012; Ruiz-Orejón et al., 2016); 198 but lower than those reported by Law et al. (2014) in the Eastern Pacific 199 accumulation zone, and Suaria et al. (2016) and Van Der Hal et al. (2017) 200 also for the Mediterranean. 201

202

192

High concentrations of microplastics were found in the three archipelagos, especially in the localities of Las Canteras in the Canary Islands, and Porto Pim in the Azores, both located in a semi-enclosed bays, acting as retention zones. Other authors have also reported high abundances of microplastics in bays of Tokyo and Brazil (Cheung et al., 2018; Figueiredo et al., 2018).

208

Las Canteras' sampling area is located within El Confital bay on the

northeast coast of Gran Canaria. According to the circulation model proposed in the study carried out by Mcknight (2016) in El Confital bay, N and NNW wind scenarios shows a recirculation pattern in the eastern-central of the bay. In contrast, with the NE and NNE winds -the predominant winds in the area- it shows a circulation pattern towards the west but intensified in the northeast cape, where the flux is directed towards the bay in southwest direction.

Mcknight (2016) analysed the relationship between near-shore surface cir-217 culation and marine debris deposition on the beach, but there are no studies 218 in the region that relate surface circulation to floating debris. It is probable 219 that the recirculation pattern observed under N and NNW wind conditions 220 may affect the transport of floating debris, determining the accumulation in 221 the central areas, which would explain the high values found at Las Canteras. 222 Further studies are needed to understand the effect of coastal hydrodynamics 223 on the accumulation of neustonic microplastics. 224

225

As can be observed in table 1, there is a great variability in the concen-226 trations found in the different sampling areas, even between nearby localities 227 such as Las Canteras and San Andres. Although significant differences were 228 observed between archipelagos, both in microplastics and zooplankton abun-229 dance, it is probable that these differences are due to the fact that sampling 230 was opportunistic, at different times and with different methods. Other au-231 thors have found that there are variability in the estimations of microplastics 232 according to the methodology used (Barrows et al., 2017; Eriksen et al., 2018; 233 Green et al., 2018) so we should be cautious when making this type of com-234

parison. Therefore, it is necessary to carry out a specific study in the area
in order to determine the spatial variability.

237

Our data show for the first time that this region is an area highly polluted by microplastics and other debris. The situation of the islands in the flow of the descending branches of the Gulf Stream is probably making them especially vulnerable to microplastic pollution, as demonstrated by studies on beaches in the region (Baztan et al., 2014; Herrera et al., 2018; Álvarez-Hernández et al., 2019; Gestoso et al., 2019) and marine organisms (Rodríguez et al., 2012; Herrera et al., 2019b; Pham et al., 2017).

245

Regarding the categories, most of the microplastics were fragments and 246 fibres, these results agree with those reported worldwide (Aliabad et al., 247 2019; Cózar et al., 2015; Di Mauro et al., 2017; Eriksen et al., 2013; Faure 248 et al., 2015; Figueiredo et al., 2018; Gewert et al., 2017; Suaria et al., 2016), 240 and with the types of microplastics found in the stomach of Atlantic chub 250 mackerel (Scomber colias) collected in Canary Islands waters (Herrera et al., 251 2019b) and juvenile loggerhead turtles (Pham et al., 2017). However, the 252 percentages found in sub-surface waters off the beaches of Famara, Lambra 253 and Las Canteras do not correspond to those found in high tide line sedi-254 ments. In Famara almost 44.3% of the microplastic samples collected from 255 beaches were composed of pellets, however in the sub-surface water samples 256 no pellets were found. Something similar occurs in Lambra that presented a 257 35.6% of tar in the sand samples, but this type of waste did not appear in the 258 samples collected with the manta net. These results suggest that the pattern 259

of accumulation of different types of microplastics at the tide line differs from
that at the sea surface. This could be due to the fact that the different types,
either by their shape or composition, are deposited in different ways in the
sand.

264

In the present study, samples showed a high percentage of microplastics 265 with respect to zooplankton in abundance, especially in some areas such as 266 Taliarte, Las Canteras and Lambra. Microplastics reached values of 22% of 267 the zooplankton samples in Taliarte, this could explain the high incidence 268 of microplastics in the planktivorous fish Atlantic chub mackerel (Scomber 269 *colias*) collected in the Canary Islands according to the study carry out by 270 Herrera et al. (2019b). This Micro/Zoo ratio in abundance is similar to the 271 ones found by Moore et al. (2001) in the North Pacific Central Gyre and Frias 272 et al. (2014) on the Portuguese coast, and much higher than that reported 273 by other authors (see table 2). 274

275

In addition, the dry weight ratio for the 1-5mm fraction in the Las Can-276 teras area showed twice times much microplastics as zooplankton. Collignon 277 et al. (2012) found an average weight ratio of 0.5 and Moore et al. (2001)278 found 6 times more plastic than zooplankton in the area near the accumu-279 lation of the North Pacific Subtropical Gyre. Although the ratio is higher, 280 Moore et al. (2001) included the fraction greater than 5mm, whereas in the 281 present study the ratio of 2 was found taking into account only the fraction 282 of 1-5mm. 283

284

This high percentage of microplastics in the zooplankton samples could 285 have a great impact on the health of marine organisms, either because of the 286 physical danger of ingestion, the associated chemical contaminants or the 287 false sense of satiation that could affect the intake of nutrients, especially in 288 large filter feeders species. Fossi et al. (2017) demonstrated the overlap of 289 zones of microplastic accumulation with the feeding areas of fin whales in the 290 Pelagos Sanctuary in the Mediterranean, highlighting the high intake risk for 291 marine biota. 292

293

One of the main concerns of the scientific community is the effects that 294 microplastics can have on marine organisms and the food chain. Many stud-295 ies have demonstrated the ingestion of microplastics in invertebrates, fish, 296 seabirds and cetaceans. However, the risk associated with this ingestion is 297 still unknown. On the other hand, microplastics have been shown to possess 298 various types of associated chemical contaminants (Endo et al., 2005; Hirai 290 et al., 2011; Ogata et al., 2009; Rios et al., 2007; Camacho et al., 2019) and 300 these could affect the health of organisms (Rochman et al., 2013; Derraik, 301 2002; Teuten et al., 2009). 302

303

Also, the high microplastics-zooplankton ratio found in this study demonstrates the potential risk it may have for biota and marine ecosystems, especially if we consider that high levels of POP's and emerging chemical pollutants have already been reported by Camacho et al. (2019) in microplastic samples collected in the Canary Islands. The waters around Macaronesia are important feeding grounds for some large filter feeders, such as the whale

shark (*Rhincodon typus*), the basking shark (*Cetorhinus maximus*), several 310 species of manta rays of the genus Mobula (M. tarapacana, M. mobular, M. 311 birostris); and filter whales of the genus Balaenoptera (B. edeni, B. bryde, B. 312 physalus, B. borealis, B. musculus) (Carrillo et al., 2010; Espino et al., 2014; 313 Sobral and Afonso, 2014; Das and Afonso, 2017; Prieto et al., 2014, 2017; 314 Silva et al., 2014). According to our results, these species among others have 315 a high potential risk of ingestion of microplastics and associated chemical 316 contaminants. 317

318 5. Conclusions

³¹⁹ 1- High levels of contamination by neustonic microplastics (0.2-5mm)
<sup>were found in various areas of Macaronesia, reaching values of more than 1
<sup>million particles per square kilometre.
</sup></sup>

2- The microplastics-zooplankton abundance ratio was very variable in the
different zones, reaching values of 0.22.

³²⁴ 3- We found twice as much microplastics as zooplankton in dry weight for the 1-5mm fraction in the area of greatest accumulation in Las Canteras.

4- It is necessary to carry out more studies of floating microplastics abundance in order to understand the circulation and accumulation patterns in
the Macaronesian region.

5- In addition, studies on the abundance of neustonic microplastics and zooplankton and their impact at different levels of the food web are needed to assess possible risks to marine organisms.

332

333 Acknowledgements

This work was funded by projects PLASMAR (MAC/1.1a/030), with 334 the support of the European Union (EU) and co-financed by the Euro-335 pean Regional Development Fund (ERDF) and the INTERREG V-A Spain-336 Portugal MAC 2014-2020 (Madeira-Azores-Canarias) and MICROTROFIC 337 (ULPGC2015-04) awarded to A.H. Part of this work was performed in the 338 framework of the project LIXAZ (ACORES-01-0145-FEDER-00053), funded 339 through the operational program ACORES 2020 and also was partially funded 340 by Fundação para a Ciência e Tecnologia, I.P. (FCT), Portugal, with national 341 funds (FCT/MCTES, orçamento de Estado, project reference PTDC/MAR-342 PRO/1851/2014), and the European Regional Development Fund (ERDF) 343 through the COMPETE 2020 programme (POCI-01-0145-FEDER-016885) 344 through the project PLASTICGLOBAL Assessment of plastic-mediated chem-345 icals transfer in food webs of deep, coastal and estuarine ecosystems under 346 global change scenarios. The project PLASTICGLOBAL is also funded by 347 the Lisboa 2020 programme (LISBOA-01-0145-FEDER-016885). 348

A.H. was supported by a postdoctoral fellowship granted by Universidad 349 de Las Palmas de Gran Canaria (ULPGC-2014). S.A. was supported by a 350 Research fellowship for Graduates granted by Agência Regional para o De-351 senvolvimento da Investigação, Tecnologia e Inovação (ARDITI). I.G. was 352 financially supported by a post-doctoral grant in the framework of the 2015 353 ARDITI Grant Programme Madeira 14-20 (Project M1420-09-5369-FSE-354 000001). J. C.-C. was supported by a starting grant in the framework of 355 the 2014 FCT Investigator Programme (IF/01606/2014/CP1230/CT0001). 356 This study had the support of Fundação para a Ciência e Tecnologia (FCT), 357

through the strategic project UID/MAR/04292/2019 granted to MARE.

We would like to thank Captain Jorge Cáceres for his support during the sampling in La Graciosa Marine Reserve, and Carmen Meléndez from the Farfalle Project for her collaboration in the collection of samples at Los Gigantes.

363

364 6. References

Aliabad, M.K., Nassiri, М., Kor, K., 2019.Microplastics in 365 of Chabahar Bay, Gulf of Oman the surface seawaters (366 Makran Coasts). Marine Pollution Bulletin 143, 125 - 133.367 URL: https://doi.org/10.1016/j.marpolbul.2019.04.037, 368 doi:10.1016/j.marpolbul.2019.04.037. 369

Álvarez-Hernández, C., Cairós, C., López-Darias, J., Mazzetti, E., 370 Hernández-Sánchezc, C., González-Sálamo, J., Hernández-Borges, 371 J., 2019. Microplastic debris in beaches of Tenerife (Ca-372 nary Islands Spain). Marine Pollution Bulletin 146, 26 -, 373 32. URL: https://doi.org/10.1016/j.marpolbul.2019.05.064, 374 doi:10.1016/j.marpolbul.2019.05.064. 375

Arthur, C., Baker, J., Bamford, H., 2009. Proceedings of the International
Research Workshop on the Occurrence, Effects, and Fate of Microplastic
Marine Debris. Group, 530.

379 Aytan, U., Valente, A., Senturk, Y., Usta, R., Basak, F., Sahin, E., 380 Evren, R., Agirbas, E., 2016. First evaluation of neustonic microplastics in Black Sea waters. Marine Environmental Research 119,
 22-30. URL: http://dx.doi.org/10.1016/j.marenvres.2016.05.009,
 doi:10.1016/j.marenvres.2016.05.009.

- Barrows, A.P.W., Neumann, C.A., Berger, L., Shaw, S.D., 2017. Grab
 vs. neuston tow net: a microplastic sampling performance comparison and possible advances in the fiel. Anal. Methods 9, 1446–1453.
 doi:10.1039/C6AY02387H.
- Baztan, J., Carrasco, A., Chouinard, O., Cleaud, M., Gabaldon, J.E., 388 Huck, T., Jaffrès, L., Jorgensen, B., Miguelez, A., Paillard, C., 389 Vanderlinden, J.P., 2014. Protected areas in the Atlantic facing 390 the hazards of micro-plastic pollution: First diagnosis of three is-391 lands in the Canary Current. Marine Pollution Bulletin 80, 302– 392 311. URL: http://dx.doi.org/10.1016/j.marpolbul.2013.12.052, 393 doi:10.1016/j.marpolbul.2013.12.052. 394
- Beer, S., Garm, A., Huwer, B., Dierking, J., Gissel, T., 2018. Sci-395 ence of the Total Environment No increase in marine microplas-396 tic concentration over the last three decades A case study from 397 the Baltic Sea. Science of the Total Environment 621, 1272-398 1279.URL: https://doi.org/10.1016/j.scitotenv.2017.10.101, 399 doi:10.1016/j.scitotenv.2017.10.101. 400
- Camacho, M., Herrera, A., Gómez, M., Acosta-Dacal, A., Henríquez-401 Martínez, I., Pérez-Luzardo, O., 2019. Or-Hernández, L.A., 402 ganic pollutants in marine plastic debris from Canary Is-403 beaches . Science of the Total Environment 662, 22 lands 404

- 405 31. URL: https://doi.org/10.1016/j.scitotenv.2018.12.422,
 406 doi:10.1016/j.scitotenv.2018.12.422.
- Carrillo, M., Pérez-Vallazza, C., Álvarez-Vázquez, R., 2010. Cetacean diversity
 sity and distribution off Tenerife (Canary Islands). Marine Biodiversity
 Records, 3, 1–9. doi:10.1017/S1755267210000801.

⁴¹⁰ Chambault, P., Vandeperre, F., Machete, M., Carvalho, J., Kim,
⁴¹¹ C., 2018. Distribution and composition of fl oating macro lit⁴¹² ter off the Azores archipelago and Madeira (NE Atlantic) using
⁴¹³ opportunistic surveys. Marine Environmental Research 141, 225–
⁴¹⁴ 232. URL: https://doi.org/10.1016/j.marenvres.2018.09.015,
⁴¹⁵ doi:10.1016/j.marenvres.2018.09.015.

⁴¹⁶ Cheung, L.T., Lui, C.Y., Fok, L., 2018. Microplastic contamina⁴¹⁷ tion of wild and captive flathead grey mullet (Mugil cephalus). In⁴¹⁸ ternational Journal of Environmental Research and Public Health 15.
⁴¹⁹ doi:10.3390/ijerph15040597.

Collignon, А., J.H., Galgani, F., Collard, F., Gof-Hecq, 420 fart, A., 2014. Annual variation in neustonic microand 421 Calvi meso-plastic particles and zooplankton in the Bay of 422 Marine Pollution Bulletin 79, 293–298. (Mediterranean-Corsica). 423 URL: http://dx.doi.org/10.1016/j.marpolbul.2013.11.023, 424 doi:10.1016/j.marpolbul.2013.11.023. 425

426 Collignon, A., Hecq, J.H., Glagani, F., Voisin, P., Collard, F., Gof-427 fart, A., 2012. Neustonic microplastic and zooplankton in the North

- Western Mediterranean Sea. Marine Pollution Bulletin 64, 861–
 864. URL: http://dx.doi.org/10.1016/j.marpolbul.2012.01.011,
 doi:10.1016/j.marpolbul.2012.01.011.
- 431 Comas-Rodríguez, I., 2011. The Azores Current System and the Canary
 432 Current from CTD and ADCP data. Ph.D. thesis. Universidad de Las
 433 Palmas de Gran Canaria. URL: http://hdl.handle.net/10553/6250,
 434 doi:978-84-694-9558-2.
- Cózar, A., Sanz-Martín, M., Martí, E., González-gordillo, J.I., Ubeda, B.,
 Gálvez, J.Á., Irigoien, X., Duarte, C.M., 2015. Plastic Accumulation in
 the Mediterranean. PLoS ONE , 1–12doi:10.1371/journal.pone.0121762.
- ⁴³⁸ Das, D., Afonso, P., 2017. Review of the Diversity, Ecology, and Con⁴³⁹ servation of Elasmobranchs in the Azores Region, Mid-North Atlantic.
 ⁴⁴⁰ Frontiers in Marine Science 4, 1–19. doi:10.3389/fmars.2017.00354.
- ⁴⁴¹ De Lucia, A.G., Caliani, I., Marra, S., Camedda, A., Coppa, S., Alcaro, L.,
 ⁴⁴² Campani, T., Giannetti, M., Coppola, D., Maria, A., Panti, C., Baini,
 ⁴⁴³ M., Guerranti, C., Marsili, L., Massaro, G., Cristina, M., Matiddi, M.,
 ⁴⁴⁴ 2014. Amount and distribution of neustonic micro-plastic off the western
 ⁴⁴⁵ Sardinian coast (Central-Western Mediterranean Sea). Marine Environ⁴⁴⁶ mental Research 100, 10–16. doi:10.1016/j.marenvres.2014.03.017.
- ⁴⁴⁷ Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris. Marine Pollution Bulletin 44, 842–852. doi:10.1016/s0025⁴⁴⁹ 326x(02)00220-5.

⁴⁵⁰ Di Mauro, R., Kupchik, M.J., Ben, M.C., 2017. Abundant plankton-sized
⁴⁵¹ microplastic particles in shelf waters of the northern Gulf of Mexico *.
⁴⁵² Environmental Pollution 230, 798–809. doi:10.1016/j.envpol.2017.07.030.

- Doyle, M.J., Watson, W., Bowlin, N.M., Sheavly, S.B., 2011. 453 Plastic particles in pelagic ecosystems of the coastal North-454 east Pacific ocean. Marine Environmental Research 71, 41 - 52.455 URL: http://dx.doi.org/10.1016/j.marenvres.2010.10.001, 456 doi:10.1016/j.marenvres.2010.10.001. 457
- Endo, S., Takizawa, R., Okuda, K., Takada, H., Chiba, K., Kanehiro, H.,
 Ogi, H., Yamashita, R., Date, T., 2005. Concentration of polychlorinated
 biphenyls (PCBs) in beached resin pellets: Variability among individual
 particles and regional differences. Marine Pollution Bulletin 50, 1103–1114.
 doi:10.1016/j.marpolbul.2005.04.030.
- Eriksen, M., Liboiron, M., Kiessling, T., Charron, L., Alling, A., Lebreton, L., Richards, H., Roth, B., Ory, N.C., Hidalgo-Ruz, V.,
 Meerhoff, E., Box, C., Cummins, A., Thiel, M., 2018. Microplastic sampling with the AVANI trawl compared to two neuston trawls
 in the Bay of Bengal and South Pacific *. Environmental Pollution
 232, 430–439. URL: https://doi.org/10.1016/j.envpol.2017.09.058,
 doi:10.1016/j.envpol.2017.09.058.
- Eriksen, M., Maximenko, N., Thiel, M., Cummins, A., Lattin, G., Wilson,
 S., Hafner, J., Zellers, A., Rifman, S., 2013. Plastic pollution in the South
 Pacific subtropical gyre. Marine Pollution Bulletin 68, 71–76.

⁴⁷³ Espino, F., González, J., Boyra, A., Fernández, C., Tuya, F., Brito, A., 2014.
⁴⁷⁴ Diversity and biogeography of fishes in the Arinaga-Gando area, east coast
⁴⁷⁵ of Gran Canaria (Canary Islands). Rev. Acad. Canar. Cienc. XXVI, 9–25.

- Faure, F., Demars, A.C., Wieser, A.O., Kunz, A.M., Felippe De Alencastro, L., 2015. Plastic pollution in Swiss surface waters: nature and
 concentrations, interaction with pollutants. Environmental Chemistry
 doi:10.1071/EN14218.
- Figueiredo, G.M., Moraes, T., Vianna, P., Bay, G., 2018. Suspended microplastics in a highly polluted bay : Abundance , size ,
 and availability for mesozooplankton. Marine Pollution Bulletin 135,
 256–265. URL: https://doi.org/10.1016/j.marpolbul.2018.07.020,
 doi:10.1016/j.marpolbul.2018.07.020.
- Fossi, M.C., Romero, T., Baini, M., Panti, C., Marsili, L., Campani, T.,
 Canese, S., Galgani, F., Druon, J.N., Airoldi, S., Taddei, S., Fattorini,
 M., Brandini, C., Lapucci, C., 2017. Plastic Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the Mediterranean Marine
 Protected Area Pelagos Sanctuary : A Modeling Approach. Frontiers in
 Marine Science 4, 1–15. doi:10.3389/fmars.2017.00167.
- Frère, L., Paul-Pont, I., Rinnert, E., Petton, S., Jaffré, J., Bihannic,
 I., Soudant, P., Lambert, C., Huvet, A., 2017. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay
 of Brest (Brittany, France). Environmental Pollution 225, 211–222.
 doi:10.1016/j.envpol.2017.03.023.

Frias, J.P.G.L., Otero, V., Sobral, P., 2014. Evidence of microplastics in
samples of zooplankton from Portuguese coastal waters. Marine Environmental Research 95, 89–95. doi:10.1016/j.marenvres.2014.01.001.

- J., Henry, M., Galgani, F., 2015. First observation on Gago, 500 in waters off NW Spain plastics (spring 2013 neustonic and 501 2014). Marine environmental research 111, 27 - 33.URL: 502 http://www.sciencedirect.com/science/article/pii/S0141113615300167, 503 doi:10.1016/j.marenvres.2015.07.009. 504
- Gestoso, I., Cacabelos, E., Ramalhosa, P., Canning-clode, J., 2019.
 Plasticrusts : A new potential threat in the Anthropocene 's
 rocky shores. Science of the Total Environment 687, 413–415.
 doi:10.1016/j.scitotenv.2019.06.123.
- Gewert, B., Ogonowski, M., Barth, A., Macleod, M., 2017. Abundance
 and composition of near surface microplastics and plastic debris in the
 Stockholm Archipelago, Baltic Sea. Marine Pollution Bulletin 120, 292–
 302. URL: http://dx.doi.org/10.1016/j.marpolbul.2017.04.062,
 doi:10.1016/j.marpolbul.2017.04.062.
- Gilfillan, L.R., Doyle, M., Ohman, M.D., Watson, W., 2009. Occurrence of
 plastic micro-debris in the southern California Current system. Technical
 Report Vol 50 CalCOFI Rep. Scripps Institution of Oceanography.
- Green, D.S., Kregting, L., Boots, B., Blockley, D.J., Brickle, P., Crowley, Q., 2018. A comparison of sampling methods for seawater microplastics and a fi rst report of the microplastic litter in coastal wa-

- ters of Ascension and Falkland Islands. Marine Pollution Bulletin 137,
- ⁵²¹ 695-701. URL: https://doi.org/10.1016/j.marpolbul.2018.11.004,
 doi:10.1016/j.marpolbul.2018.11.004.
- Hartmann, N.B., Hu, T., Thompson, R.C., Hassello, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling,
 M.P., Hess, M.C., Ivleva, N.P., Lusher, A.L., Wagner, M., 2019. Are We
 Speaking the Same Language ? Recommendations for a Definition and
 Categorization Framework for Plastic Debris. Environ. Sci. Technol 53,
 1039–1047. doi:10.1021/acs.est.8b05297.
- Herrera, A., Asensio, M., Martínez, I., Santana, A., Packard, T., Gómez,
 M., 2018. Microplastic and tar pollution on three Canary Islands
 beaches: An annual study. Marine Pollution Bulletin 129, 494–502.
 doi:10.1016/j.marpolbul.2017.10.020.
- Herrera, A., Martínez, I., Rapp, J., Raymond, E., Álvarez, S., Gestoso, I.,
 Canning-Clode, J., Gómez, M., 2019a. Sampling and Processing Microplastics from Surface Waters. Technical Report. PLASMAR Project. URL:
 http://hdl.handle.net/10553/56209.
- Herrera, A., Stindlová, A., Martínez, I., Rapp, J., Romero-Kutzner, V.,
 Samper, M.D., Montoto, T., Aguiar-González, B., Packard, T., Gómez,
 M., 2019b. Microplastic ingestion by Atlantic chub mackerel (Scomber
 colias) in the Canary Islands coast. Marine Pollution Bulletin 139,
 127–135. URL: https://doi.org/10.1016/j.marpolbul.2018.12.022,
 doi:10.1016/j.marpolbul.2018.12.022.

Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha,
M., Kwan, C., Moore, C., Gray, H., Laursen, D., Zettler, E.R., Farrington, J.W., Reddy, C.M., Peacock, E.E., Ward, M.W., 2011. Organic micropollutants in marine plastics debris from the open ocean
and remote and urban beaches. Marine Pollution Bulletin 62, 1683–
1692. URL: http://dx.doi.org/10.1016/j.marpolbul.2011.06.004,
doi:10.1016/j.marpolbul.2011.06.004.

Isobe, A., Uchida, K., Tokai, T., Iwasaki, S., 2015. East Asian seas : A
hot spot of pelagic microplastics. Marine Pollution Bulletin 101, 618–623.
doi:10.1016/j.marpolbul.2015.10.042.

Isobe, A., Uchiyama-Matsumoto, K., Uchida, K., Tokai, T., 2017.
 Microplastics in the Southern Ocean. MPB 114, 623–626.
 URL: http://dx.doi.org/10.1016/j.marpolbul.2016.09.037,
 doi:10.1016/j.marpolbul.2016.09.037.

Ivar do Sul, J.A., Costa, M.F., 2014. Microplastics in the pelagic environment
around oceanic islands of the Western Tropical Atlantic Ocean. Water, Air,
and Soil Pollution doi:10.1007/s11270-014-2004-z.

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347, 768–771. URL: http://www.sciencemag.org/cgi/doi/10.1126/science.1260352,

⁵⁶⁴ doi:10.1126/science.1260352.

565 Kang, J.h., Youn, O., Lee, K.w., Kyoung, Y., Joon, W.,

2015. microplastics around the Marine neustonic southeast-566 of Korea. Marine Pollution Bulletin 96. coast 304 - 312. ern 567 URL: http://dx.doi.org/10.1016/j.marpolbul.2015.04.054, 568 doi:10.1016/j.marpolbul.2015.04.054. 569

- Kanhai, L.D.K., Officer, R., Lyashevska, O., Thompson, R.C., O'Connor,
 I., 2017. Microplastic abundance, distribution and composition along a
 latitudinal gradient in the Atlantic Ocean. Marine Pollution Bulletin 115,
 307–314. doi:10.1016/j.marpolbul.2016.12.025.
- Kroon, F., Motti, C., Talbot, S., Sobral, P., Puotinen, M., 2018. A workflow for improving estimates of microplastic contamination in marine waters : A case study from North-Western Australia A work fl ow for improving estimates of microplastic contamination in marine waters : A
 case study from North-Western Australia *. Environmental Pollution
 238, 26–38. URL: https://doi.org/10.1016/j.envpol.2018.03.010,
 doi:10.1016/j.envpol.2018.03.010.
- Kukulka, T., Proskurowski, G., Meyer, D.W., Law, K.L., 2012. The effect
 of wind mixing on the vertical distribution of buoyant plastic debris. Geophysical Research Letters 39, 1–6. doi:10.1029/2012GL051116.
- Lattin, G.L., Moore, C.J., Zellers, A.F., Moore, S.L., Weisberg, S.B., 2004.
 A comparison of neustonic plastic and zooplankton at different depths
 near the southern California shore. Marine Pollution Bulletin 49, 291–294.
 doi:10.1016/j.marpolbul.2004.01.020.
- Law, K.L., More, S.E., Goodwin, D.S., Zettler, E.R., 2014. Distribution of

Surface Plastic Debris in the Eastern Paci fi c Ocean from an 11-Year Data
Set. Environmental Science & Technology doi:10.1021/es4053076.

Lima, Α., Costa, M.F., Barletta, М., 2014.Distribu-591 within the plankton of tion patterns of microplastics a 592 tropical Environmental Research 132,146 - 155.estuary. 593 http://dx.doi.org/10.1016/j.envres.2014.03.031, URL: 594 doi:10.1016/j.envres.2014.03.031. 595

Lusher, A.L., Burke, A., Connor, I.O., Officer, R., 2014. Microplastic pollution in the Northeast Atlantic Ocean : Validated and opportunistic sampling. Marine Pollution Bulletin .

Lusher, A.L., Tirelli, V., Connor, I.O., Officer, R., 2015. Microplastics in
Arctic polar waters : the first reported values of particles in surface and
sub-surface samples. Scientific Reports , 1–9doi:10.1038/srep14947.

Maes, T., Meulen, M.D.V.D., Devriese, L.I., Leslie, H.A., Huvet, A., Frère,
L., Robbens, J., Vethaak, A.D., 2017. Microplastics Baseline Surveys at
the Water Surface and in Sediments of the North-East Atlantic. Frontiers
in Marine Science 4, 1–13. doi:10.3389/fmars.2017.00135.

Mcknight, L., 2016. Nearshore circulation in the Confital bay Implications
on marine debris transport and deposition at Las Canteras Beach. Master
thesis. Universidad de Las Palmas de Gran Canaria.

Moore, C.J., Moore, S.L., Leecaster, M.K., Weisberg, S.B., 2001. A comparison of plastic and plankton in the North Pacific Central Gyre. Marine

611 Pollution Bulletin 42, 1297–1300. doi:10.1016/S0025-326X(01)00114-X.

Moore, C.J., Moore, S.L., Weisberg, S.B., Lattin, G.L., Zellers, a.F., 2002.
A comparison of neustonic plastic and zooplankton abundance in southern California's coastal waters. Marine Pollution Bulletin 44, 1035–1038.
doi:10.1016/S0025-326X(02)00150-9.

- MSDF Technical Subgroup on Marine Litter, 2013. Guidance on Monitoring of Marine Litter in European Seas. Technical Report. European Commission. URL: papers3://publication/doi/10.2788/99475,
 doi:10.2788/99475.
- Ogata, Y., Takada, H., Mizukawa, K., Hirai, H., Iwasa, S., Endo, S., 620 Mato, Y., Saha, M., Okuda, K., Nakashima, A., Murakami, M., Zurcher, 621 N., Booyatumanondo, R., Zakaria, M.P., Dung, L.Q., Gordon, M., 622 Miguez, C., Suzuki, S., Moore, C., Karapanagioti, H.K., Weerts, S., 623 McClurg, T., Burres, E., Smith, W., Van Velkenburg, M., Lang, J.S., 624 Lang, R.C., Laursen, D., Danner, B., Stewardson, N., Thompson, 625 R.C., 2009. International Pellet Watch: global monitoring of persistent 626 organic pollutants (POPs) in coastal waters. 1. Initial phase data on 627 PCBs, DDTs, and HCHs. Marine pollution bulletin 58, 1437–46. URL: 628 http://www.sciencedirect.com/science/article/pii/S0025326X09002690, 629 doi:10.1016/j.marpolbul.2009.06.014. 630
- Pedrotti, M.L., Petit, S., Elineau, A., Bruzaud, S., 2016. Changes in the
 Floating Plastic Pollution of the Mediterranean Sea in Relation to the
 Distance to Land. PLoS ONE 11, 1–14. doi:10.1371/journal.pone.0161581.
- ⁶³⁴ Pham, C.K., Ramirez-Ilodra, E., Alt, C.H.S., Amaro, T., Bergmann, M.,
- ⁶³⁵ Canals, M., Company, J.B., Davies, J., Duineveld, G., Howell, K.L.,

Huvenne, V.A.I., Isidro, E., Jones, D.O.B., Lastras, G., Gomes-pereira,
N., Purser, A., Stewart, H., Morato, T., Tubau, X., Rooij, D.V.,
Tyler, P.A., 2014. Marine Litter Distribution and Density in European Seas , from the Shelves to Deep Basins. PLoS ONE 9, 1–13.
doi:10.1371/journal.pone.0095839.

Pham, С.К., Rodríguez, Y., Dauphin, А., Carriço, R., Frias, 641 J.P.G.L., Vandeperre, F., Otero, V., Santos, M.R., Martins, H.R., 642 Bolten, A.B., Bjorndal, K.A., 2017. Plastic ingestion in oceanic-643 stage loggerhead sea turtles (Caretta caretta) off the North At-644 lantic subtropical gyre. Marine Pollution Bulletin 121, 222 -645 229. URL: http://dx.doi.org/10.1016/j.marpolbul.2017.06.008, 646 doi:10.1016/j.marpolbul.2017.06.008. 647

Picheral, M., Colin, S., Irisson, J.O., 2017. EcoTaxa, a tool for the taxonomic
classification of images.

PlasticsEurope, 2018. Plastics the Facts 2018. Technical Re port. Plastics Europe-Association of Plastics Manufacturers. URL:
 www.plasticseurope.org.

Prieto, R., Silva, M.A., Waring, G.T., Gonçalves, J.M.A., 2014.
Sei whale movements and behaviour in the North Atlantic inferred
from satellite telemetry. Endangered Species Research 26, 103–113.
doi:10.3354/esr00630.

⁶⁵⁷ Prieto, R., Tobeña, M., Silva, M.A., 2017. Habitat preferences of
⁶⁵⁸ baleen whales in a mid-latitude habitat. Deep-Sea Research Part II

- ⁶⁵⁹ 141, 155–167. URL: http://dx.doi.org/10.1016/j.dsr2.2016.07.015,
 doi:10.1016/j.dsr2.2016.07.015.
- R Core Team, 2019. R: A Language and Environment for Statistical Com puting. URL: https://www.r-project.org/.
- Rios, L.M., Moore, C., Jones, P.R., 2007. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution
 Bulletin 54, 1230–1237. doi:10.1016/j.marpolbul.2007.03.022.
- Ríos, N., Frias, J.P.G.L., Rodríguez, Y., Carriço, R., Garcia, M., 2018.
 Spatio-temporal variability of beached macro-litter on remote islands of
 the North Atlantic. Marine Pollution Bulletin 133, 304–311.
- Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J., 2013. Ingested plastic
 transfers hazardous chemicals to fish and induces hepatic stress. Scientific
 Reports 3, 3263. URL: http://www.nature.com/articles/srep03263,
 doi:10.1038/srep03263.
- ⁶⁷³ Rodríguez, A., Rodríguez, B., Nazaret Carrasco, M., 2012. High
 ⁶⁷⁴ prevalence of parental delivery of plastic debris in Cory's shearwa⁶⁷⁵ ters (Calonectris diomedea). Marine Pollution Bulletin 64, 2219–2223.
 ⁶⁷⁶ doi:10.1016/j.marpolbul.2012.06.011.
- Rodríguez, Y., Pham, C.K., 2017. Marine litter on the sea fl oor of the FaialPico Passage, Azores Archipelago. Marine Pollution Bulletin 116, 448–
 453. URL: http://dx.doi.org/10.1016/j.marpolbul.2017.01.018,
 doi:10.1016/j.marpolbul.2017.01.018.

- Ruiz-Orejón, L.F., Sard, R., Ramis-pujol, J., 2016. Floating plastic debris
 in the Central and Western Mediterranean Sea. Marine Environmental
 Research 120, 136–144. doi:10.1016/j.marenvres.2016.08.001.
- Silva, M.A., Prieto, R., Cascão, I., Seabra, M.I., Machete, M., Baumgartner,
 M.F., Santos, R.S., Silva, M.A., Prieto, R., Cascão, I., Seabra, M.I., Machete, M., 2014. Spatial and temporal distribution of cetaceans in the
 mid-Atlantic waters around the Azores. Marine Biology Research 10,
 123–137. URL: http://dx.doi.org/10.1080/17451000.2013.793814,
 doi:10.1080/17451000.2013.793814.
- Sobral, A.F., Afonso, P., 2014. Occurrence of mobulids in the Azores, central
 North Atlantic. Journal of the Marine Biological Association of the United
 Kingdom 94, 1671–1675. doi:10.1017/S0025315414000964.
- Song, Y.K., Hong, S.H., Jang, M., Kang, J.H., Kwon, O.Y., Han, G.M.,
 Shim, W.J., 2014. Large accumulation of micro-sized synthetic polymer
 particles in the sea surface microlayer. Environmental Science and Technology 48, 9014–9021. doi:10.1021/es501757s.
- Suaria, G., Avio, C.G., Mineo, A., Lattin, G.L., Magaldi, M.G., Belmonte,
 G., Moore, C.J., Regoli, F., Aliani, S., 2016. The Mediterranean Plastic
 Soup : synthetic polymers in Mediterranean surface waters. Scientific
 Reports , 1–10doi:10.1038/srep37551.
- Sundseth, K., 2010. Natura 2000 en la región macaronésica. Technical Re port. Unión Europea. Luxemburgo. doi:10.2779/70730.

703	Teuten, E.L., Saquing, J.M., Knappe, D.R.U., Barlaz, M.a., Jonsson, S.,
704	Björn, A., Rowland, S.J., Thompson, R.C., Galloway, T.S., Yamashita, R.,
705	Ochi, D., Watanuki, Y., Moore, C., Viet, P.H., Tana, T.S., Prudente, M.,
706	Boonyatumanond, R., Zakaria, M.P., Akkhavong, K., Ogata, Y., Hirai, H.,
707	Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., Takada, H.,
708	2009. Transport and release of chemicals from plastics to the environment
709	and to wildlife. Philosophical transactions of the Royal Society of London.
710	Series B, Biological sciences 364, 2027–2045. doi:10.1098/rstb.2008.0284.
711	UNEP, 2009. Marine Litter : A Global Challenge Marine Litter : A Global
712	Challenge. Technical Report. United Nations Environment Programme.
713	Van Der Hal, N., Ariel, A., Angel, D.L., 2017. Exception-
714	ally high abundances of microplastics in the oligotrophic Israeli
715	Mediterranean coastal waters. Marine Pollution Bulletin 116, $151-$
716	155. URL: http://dx.doi.org/10.1016/j.marpolbul.2016.12.052,

⁷¹⁷ doi:10.1016/j.marpolbul.2016.12.052.

718 7. Figures and Tables

Figure 1: Study area. The numbers inside the circles show the number of samples collected at each site.

Figure 2: Types of debris found. a) Irregular fragments (Fragments), scale bar=5mm.
b) Industrial pellets (Pellets), scale bar=5mm. c) Fibres, scale bar=2mm d) Microbeads, scale bar=500μm. e) EPS and XPS (Foams), scale bar=1mm. f) Films, scale bar=5mm.
g,h) Fishing lines (Lines), scale bar=5mm. i) Paint (Other), scale bar=2mm.

Figure 3: (a) Abundance of microplastics (0.2-5mm) in items by Km^2 at each location. The central thick line of each box designates the median, the box height shows the interquartile range, and the whiskers indicate the lowest and the highest values. Significant differences between locations within each archipelago are shown ** (p<0.05), * (p<0.01).

Figure 3: (b) Neustonic zooplankton in individuals by Km^2 at each location. Y axis was log2 transformed in order to improve data visualization. Significant differences between locations within each archipelago are shown ** (p<0.05), * (p<0.01).

Figure 3: (c) Ratio Microplastics/Zooplankton abundance. Significant differences between locations within each archipelago are shown ** (p<0.05), * (p<0.01).

Figure 4: (a) Abundance of microplastics in items/Km² in coastal waters of Lanzarote and La Graciosa Islands, Canary Islands archipelago

Figure 4: (b) Abundance of microplastics in items/Km² in coastal waters of Gran Canaria Island, Canary Islands archipleago

Figure 4: (c) Abundance of microplastics in items/Km² in coastal waters of Tenerife Island, Canary Islands archipelago

Figure 4: (d) Abundance of microplastics in items/Km² in coastal waters of Madeira Island, Madeira archipelago.

Figure 4: (e) Abundance of microplastics in items/Km² in coastal waters of Faial Island, Azores archipelago.

Figure 5: Percentage of type and size of debris found at each archipelago. (a) Canary Islands archipelago. (b) Madeira archipelago. (c) Azores archipelago. Category "Other" include glass, paint, aluminum foil and tar

Figure 6: Percentage of taxonomic groups **4** m total neustonic zooplankton collected at each archipelago. (a) Canary Islands archipelago. (b) Madeira archipelago. (c) Azores archipelago.

Location	Archipelago	Micro (items/ Km^2)	$Zoo (ind/Km^2)$	Micro/Zoo
		$\mathrm{mean}\pm\mathrm{SD}$	$mean \pm SD(x10^6)$	items ratio
Lambra	Canary Islands	$153,304 \pm 95,348$	5.7 ± 2.2	0.032
Arrecife	Canary Islands	$157,102 \pm 96,840$	5.1 ± 1.9	0.030
Famara	Canary Islands	$68,020 \pm 75,654$	38.0 ± 31.2	0.002
Taliarte	Canary Islands	$154,570 \pm 9,217$	$1.4{\pm}1.1$	0.147
Las Canteras	Canary Islands	$894,069 \pm 98,951$	15.7 ± 13.1	0.08
Gando	Canary Islands	$125,949 \pm 61,630$	22.6 ± 18.4	0.008
San Andres	Canary Islands	$21,326\pm6,281$	3.1 ± 0.9	0.007
Los Gigantes	Canary Islands	$27,593 \pm 8,895$	14.4 ± 4.1	0.002
Caniçal	Madeira	$87,538 \pm 12,223$	5.3 ± 4.0	0.028
Funchal	Madeira	$40,054 \pm 4,711$	9.5 ± 12.5	0.013
Desertas	Madeira	$66,568 \pm 19,379$	7.3 ± 4.8	0.021
Caniço	Madeira	$84,343\pm39,828$	5.1 ± 3.2	0.024
Praia do Norte	Azores	$77,223 \pm 40,279$	140.7 ± 75.2	0.0007
Almoxarife	Azores	$143,858 \pm 143,033$	95.0 ± 32.4	0.002
Porto Pim	Azores	$300,352 \pm 164,345$	177.9 ± 98.7	0.002

Table 1: Mean abundance of microplastics and zooplankton, and ratio of items of microplastics/number of zooplankton at each sampling location.

Sampling area	Net	Mean MP	Max MP	Mean MP	Max MP	MP/zoo	\mathbf{R} eference
	mesh size μm	$\mathrm{items}/\mathrm{Km}^2$	$\mathrm{items}/\mathrm{Km}^2$	$\mathrm{items/m^3}$	$\mathrm{items/m^3}$	ratio items	
Chabahar Bay, Gulf of Oman	neuston 333			0.49	1.14		Aliabad et al. (2019)
Black Sea	WP2 200			0.0012			Aytan et al. (2016)
Bornholm Basin, Baltic Sea	Bongo 150			0.21	0.28		Beer et al. (2018)
Pearl River estuary, Hong Kong waters	manta 333	334,780	1,675,982	3.97	29697		Cheung et al. (2018)
North Western Mediterranean Sea	manta 333	116,000	892,000				Collignon et al. (2012)
Bay of Calvi, Mediterranean Sea	manta 333	62,000	688,000			0.0006	Collignon et al. (2014)
Sardinian Sea, Western Mediterranean	manta 500			0.15	0.35		De Lucia et al. (2014)
Northern Gulf of Mexico	neuston 335			13	21.6	0.0058	Di Mauro et al. (2017)
Northeast Bering Sea, Pacific Ocean	Sameoto 505			0.017 - 0.072	0.072		Doyle et al. (2011)
Southern California, Pacific Ocean	Manta 505			0.004 - 0.19	0.19		Doyle et al. (2011)
South Pacific subtropical gyre	Manta 333	26,988	396, 342				Eriksen et al. (2013)
Western Mediterranean Sea	Manta 333	129,682	420,000				Faure et al. (2015)
Guanabara Bay, Southeastern Brazil	neuston 64	900,000	1,900,000	4.8	11		Figueiredo et al. (2018)
Pelagos Sanctuary, Western Mediterranean Sea	mantan 333	82,000	264,000				Fossi et al. (2017)
Bay of Brest, France	manta 335			0.24	1.43		Frère et al. (2017)
Portuguese coastal waters, Aveiro	neuston 280-335			0.002		0.04	Frias et al. (2014)
Portuguese coastal waters, Lisboa	neuston 280-335			0.033		0.12	Frias et al. (2014)
Portuguese coastal waters, Costa Vicentina	neuston $280-335$			0.036		0.14	Frias et al. (2014)
Portuguese coastal waters, Algarve	neuston $280-335$			0.014		0.005	Frias et al. (2014)
Spanish northwest coast	manta 335	34,000					Gago et al. (2015)
Spanish northwest coast	manta 335	176,000					Gago et al. (2015)
Continued on next page							

Table 2: Bibliographic search in Web of Science by terms *debris and *neustonic from 1900 to 2019 showed 48 results. From these results we selected the articles that report data of neustonic microplastics or debris in the oceans.

Sampling area	\mathbf{Net}	Mean MP	Max MP	Mean MP	Max MP	MP/zoo	Reference
	mesh size μm	$\mathrm{items}/\mathrm{Km}^2$	$\mathrm{items/Km^2}$)	$\mathrm{items}/\mathrm{m}^3$	$\mathrm{items/m}^3$	ratio items	
Stockholm Archipelago, Baltic Sea	manta 335	110,000	618,000	1.37	7.73		Gewert et al. (2017)
Southern California Current, Pacific Ocean	manta 505			0.011			Gilfillan et al. (2009)
Southern California Current, Pacific Ocean	manta 505			0.033			Gilfillan et al. (2009)
Southern California Current, Pacific Ocean	manta 505			0.016			Gilfillan et al. (2009)
East Asian Seas, Japan	neuston 350		172,0000	3.74	491		Isobe et al. (2015)
Southern Ocean, Antartica	manta 350	100,000		0.031	0.099		Isobe et al. (2017)
Western Tropical Atlantic, Abrolhos	manta 300			0.04			Ivar do Sul and Costa (201
Western Tropical Atlantic, Fernando de Noronha	manta 300			0.015			Ivar do Sul and Costa (201
Western Tropical Atlantic, Trinidade	manta 300			0.025	0.13		Ivar do Sul and Costa (201
Western Tropical Atlantic Ocean	manta 300			0.03			Ivar do Sul and Costa (201
Atlantic Ocean	pump 250			1.15	8.5		Kanhai et al. (2017)
South East Sea of Korea	manta 330			1.92 - 5.51			Kang et al. (2015)
South East Sea of Korea	manta 330			2.30 - 38.77			Kang et al. (2015)
North Western Australia, Indian Ocean	manta 355			0.01 - 0.41			Kroon et al. (2018)
North Western Australia, Indian Ocean	plankton			0.00-0.09			Kroon et al. (2018)
Santa Monica Bay, California	manta 333			3.92			Lattin et al. (2004)
Eastern Pacific Ocean (accumulation zone)	neuston 333	156,800	12, 340, 000				Law et al. (2014)
Eastern Pacific Ocean (outside)	neuston 333	1,864					Law et al. (2014)
Goiana Estuary, Northeast coast of Brazil	plankton 300			0.26		0.0019	Lima et al. (2014)
Northeast Altantic Ocean	pump 250			2.46	22.5		Lusher et al. (2014)
Artic waters, Norway	manta 333	28,000		0.34	1.31		Lusher et al. (2015)
Artic waters, Norway	pump 250			2.68	11.5		Lusher et al. (2015)
North-East Altantic	manta 333	36,623	375,854	0.15	1.5		Maes et al. (2017)
North Pacific Central Gyre	manta 330	334, 271	969, 777	2.23		0.1819	Moore et al. (2001)

Sampling area	Net	Mean MP	Max MP	Mean MP	Max MP	MP/zoo	${f Reference}$
	mesh size μm	${ m items/Km^2}$	$({ m items}/{ m Km}^2)$	$\mathrm{items}/\mathrm{m}^3$	$\mathrm{items/m}^3$	ratio items	
Southern California coastal waters	manta 333			7.25			Moore et al. (2002)
Mediterranean Sea, near coast	manta 333	158,000	578,000			0.03	Pedrotti et al. (2016)
Mediterranean Sea, >10Km from coast	manta 333	370,000				0.006	Pedrotti et al. (2016)
Central and Western Mediterranean Sea	manta 333	147,500	1,164,403				Ruiz-Orejón et al. (2016)
Southern coast Korea	manta 333			43			Song et al. (2014)
Mediterranean Sea	neuston 200	400,000	4,520,000	1	11.3		Suaria et al. (2016)
Israeli Mediterranean coast	manta 333	1,518,384	64, 812, 600	7.68	324		Van Der Hal et al. (2017)
Mediterranean Sea	manta 200	24,3853					Cózar et al. (2015)
North Atlantic Ocean, Azores	manta 200	173,811	467,260	0.44	1.19	0.002	present work
North Atlantic Ocean, Madeira	manta 200	69,626	124, 190			0.021	present work
North Atlantic Ocean, Canary Islands	manta 200	194,951	1,007,872			0.032	present work

Supplementary material

Table 3: Sampling dates (mm/dd/yy), locations, distances to the coast in meters and type of net used.

Location	Island	Archipelago	Date	Longitud	Latitud	Distance	Net
Caniçal	Madeira	Madeira	8/11/17	-16.7084	32.7143	2503	Manta $(200 \mu m)$
Caniçal	Madeira	Madeira	8/11/17	-16.7317	32.7132	2995	Manta (200 μ m)
Caniçal	Madeira	Madeira	8/11/17	-16.7496	32.6984	2332	Manta (200 μ m)
Funchal	Madeira	Madeira	8/11/17	-16.8393	32.6305	915	Manta (200 μ m)
Funchal	Madeira	Madeira	8/11/17	-16.8624	32.6329	1017	Manta (200 μ m)
Funchal	Madeira	Madeira	8/11/17	-16.8736	32.6156	1073	Manta (200 μ m)
Desertas	Madeira	Madeira	8/12/17	-16.6819	32.6751	5563	Manta (200 μ m)
Desertas	Madeira	Madeira	8/12/17	-16.7076	32.6666	7497	Manta (200 μ m)
Desertas	Madeira	Madeira	8/12/17	-16.7310	32.6573	6610	Manta (200 μ m)
Caniço	Madeira	Madeira	8/12/17	-16.7577	32.6780	2470	Manta (200 μ m)
Caniço	Madeira	Madeira	8/12/17	-16.7710	32.6623	2251	Manta (200 μ m)
Caniço	Madeira	Madeira	8/12/17	-16.7884	32.6482	2723	Manta (200 μ m)
Lambra	La Graciosa	Canary Islands	11/6/15	-13.4883	29.2962	1680	Manta (200 μ m)
Lambra	La Graciosa	Canary Islands	11/6/15	-13.5303	29.3297	2245	Manta (200 μ m)
Lambra	La Graciosa	Canary Islands	11/6/15	-13.4489	29.2623	2287	Manta (200 μ m)
Arrecife	Lanzarote	Canary Islands	12/3/15	-13.5263	28.9606	834	Manta (200 μ m)
Arrecife	Lanzarote	Canary Islands	12/3/15	-13.5411	28.9553	659	Manta (200 μ m)
Arrecife	Lanzarote	Canary Islands	12/3/15	-13.5201	28.9549	1774	Manta (200 μ m)
Famara	Lanzarote	Canary Islands	3/4/16	-13.5434	29.1479	1682	Manta (200 μ m)
Famara	Lanzarote	Canary Islands	3/4/16	-13.5734	29.1372	978	Manta (200 μ m)
Famara	Lanzarote	Canary Islands	3/4/16	-13.5852	29.1533	2103	Manta (200 μ m)
Taliarte	Gran Canaria	Canary Islands	6/8/18	-15.3666	28.0140	856	Manta (200 μ m)
Taliarte	Gran Canaria	Canary Islands	6/8/18	-15.3622	27.9897	520	Manta (200 μ m)
Las Canteras	Gran Canaria	Canary Islands	6/26/18	-15.4689	28.1327	395	Manta (200 μ m)
Las Canteras	Gran Canaria	Canary Islands	6/26/18	-15.4533	28.1355	745	Manta (200 μ m)
Las Canteras	Gran Canaria	Canary Islands	6/26/18	-15.4402	28.1469	730	Manta (200 μ m)
Gando	Gran Canaria	Canary Islands	9/18/18	-15.3733	27.9511	713	Manta (200 μ m)
Gando	Gran Canaria	Canary Islands	9/18/18	-15.3736	27.9657	510	Manta (200 μ m)
Gando	Gran Canaria	Canary Islands	9/18/18	-15.3688	27.9797	648	Manta (200 μ m)
San Andres	Gran Canaria	Canary Islands	10/3/18	-15.5415	28.1583	915	Manta (200 μ m)
San Andres	Gran Canaria	Canary Islands	10/3/18	-15.5235	28.1593	710	Manta (200 μ m)
San Andres	Gran Canaria	Canary Islands	10/3/18	-15.5047	28.1607	1446	Manta $(200 \mu m)$

Continued on next page

Location	Island	Archipelago	Date	Longitud	Latitud	Distance	Net
Los Gigantes	Tenerife	Canary Islands	10/4/18	-16.8506	28.2377	1107	Manta (200 μ m)
Los Gigantes	Tenerife	Canary Islands	10/4/18	-16.8511	28.2224	1171	Manta (200 μ m)
Los Gigantes	Tenerife	Canary Islands	10/4/18	-16.8463	28.2065	1184	Manta (200 μ m)
Los Gigantes	Tenerife	Canary Islands	10/4/18	-16.8465	28.2479	1178	Manta (200 μ m)
Praia do Norte	Faial	Azores	7/10/18	-28.7570	38.6132	172	Bongo (200 μ m)
Praia do Norte	Faial	Azores	7/10/18	-28.7571	38.6131	308	Bongo (200 μ m)
Praia do Norte	Faial	Azores	7/10/18	-28.7559	38.6139	303	Bongo (200 μ m)
Almoxarife	Faial	Azores	7/10/18	-28.6076	38.5559	116	Bongo (200 μ m)
Almoxarife	Faial	Azores	7/10/18	-28.6079	38.5547	139	Bongo (200 μ m)
Almoxarife	Faial	Azores	7/10/18	-28.6078	38.5546	133	Bongo (200 μ m)
Porto Pim	Faial	Azores	7/10/18	-28.6290	38.5241	78	Bongo (200 μ m)
Porto Pim	Faial	Azores	7/10/18	-28.6286	38.5231	101	Bongo (200 μ m)
Porto Pim	Faial	Azores	7/10/18	-28.6289	38.5240	83	Bongo (200 μ m)