
Visualization of Large Point Cloud Models on Unity
J.M. Santana, A. Trujillo and S. Ortega

Large point cloud rendering has become a very relevant topic on 3D graphics as scanners and other sources of 3D point data are nowadays available to companies
and the general public. In this project, we propose an implementation of a point cloud viewer, designed for the full-detail visualization of virtually unlimited point
clouds for their inspection on short ranges. This work presents the data structure and the LoD technique to achieve a real-time rendering of the model, making
emphasis on the details of an initial prototype based on Unity.

� � � � � � � �� � � � � � � � �� � � � � � � � �

By considering the vertical screen resolution (W) and the camera �eld of view (FV) provided by Unity,
we establish the distance threshold at which the projected size of a NDM point equals one pixel. For
any given node we can compute the distance to the furthest and closest point of its bounding box,
which constrains the distance to any point within it.

Node 1 Node 2 Node 3

NDM FDM

Camera Distance

Distance-Based Material LoD Strategy
Blue nodes use the FDM, orange ones the NDM and red ones are rendered with both.

� � � � � � � � � �
[Fra17] FRAISS S. M.: Rendering large point clouds in unity, Sept.2017. URL:
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
[GM04] GOBBETTI E., MARTON F.: Layered point clouds: a simple ande�cient
multiresolution structure for distributing and rendering gigantic point-sampled models.
Computers & Graphics 28, 6 (2004), 815–826
[Sch16] SCHÜTZ M.: Potree: Rendering large point clouds in webbrowsers. Technische
Universität Wien, Wiede´n (2016)

 � � � � � � � � � �
The prototype has been tested with model up to ~56 million points,
achieving rendering times around 1 ms. on a desktop machine (Intel i5
Processor, Nvidia GTX 1060). The memory consumption and garbage
collection times are also bounded by using object pooling techniques.

 � � � � � � �� � � �
 � � � � �

The particular use case that motivated this project has been the visual inspection of airborne scans of
long power line corridors, from which automatic and manual classi�cation has been produced. The
longitude of these corridors varies within a range of 100 - 200 km., with an average width of ~100 m.
and a point density up to 50 p/m2. Hence, the multi-corridor models are usually encoded in several
LAS �les, adding up to hundreds of GBs. The �nal intention of the project is to accurately display the
point cloud within the range of view, enabling a seamless navigation across the model, while
allowing the inclusion of other 3D elements and the use of tools provided by the Unity framework.
The use case imposes a local but holistic rendering of the point cloud, facilitating the spotting of
undesired noise generated by the LiDAR scanner, as well as misclassi�ed points.Long power corridors are scanned by an airborned LiDAR scanner achieving a resolution of 50 p/m2

� � � � � � � � �	 �
 � � �� � �� � � � � � �� � � � � � � �

In order to keep a high-performance rendering without removing points from the visible area of the
model, a strategy for the rendering at di�erent distances was devised. At a short distance, the goal is
to show the points as rounded objects with a �xed physical size. At long distances, points must
preserve a minimum screen-space size to remain visible and to avoid undesirable aliasing problems.
However, Unity does not enable the user to establish a screen point size to preserve DirectX 11 as a
target platform. Our solution consists in using two di�erent materials, named Far Distance Material
(FDM) and Near Distance Material (NDM), that are interchanged depending on the distance of the
node to the viewer.

Far Distance Material

Near Distance Material

Points are rendered with a world-space size at a near distance and a screen pixel-size at far distances

Near Distance Material - Geometry Shader Computations

� � � � � � � � � � � � � � � �

The size of these models (hundreds of millions of points) imposes a hierarchical partitioning that
enables out-of-core rendering. The literature [Fra17, Sch16] covers a series of possible subdivisions of
the point cloud model in order to serve manageable chunks to the GPU. In this project, we have opted
to use a binary tree partition of the space, similar to the one proposed by Gobbetti and Marton
[GM04]. However, as our model must be rendered with all its points at any distance, no coarser levels
of detail have been generated in upper levels of the tree.

All the nodes of the tree are contained within a tight axis-aligned box, which is precomputed and
serves the LoD test and point-picking strategies. Dividing the nodes at the mean value along their
longest axis o�ered the best results, minimizing the overall bounding volume of the nodes. Leaf
nodes contain xyz point o�sets from the node center and clasi�cation data in single precision. In
Unity, the whole binary tree forms a hierarchy of GameObjects, and the LoD test uses the precomput-
ed bounding boxes (as Bounds instances). Principal Component Longest Axis Min Volume Axis Alternating Axis10-4

10-3

10-2

10-1

100

Po
in

t D
en

si
ty

 (P
/m

3)

Total Tree Density
Leaf Nodes Density

Space Bi-Partition Strategy (Splitting by mean value)

