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Abstract: Binary Zr-Ti alloys spontaneously develop a tenacious and compact oxide layer when
their fresh surface is exposed either to air or to aqueous environments. Electrochemical impedance
spectroscopy (EIS) analysis of Zr-45Ti, Zr-25Ti, and Zr-5Ti exposed to simulated physiological
solutions at 37 ◦C evidences the formation of a non-sealing bilayer oxide film that accounts for the
corrosion resistance of the materials. Unfortunately, these oxide layers may undergo breakdown
and stable pitting corrosion regimes at anodic potentials within the range of those experienced
in the human body under stress and surgical conditions. Improved corrosion resistance has been
achieved by prior treatment of these alloys using thermal oxidation in air. EIS was employed to
measure the corrosion resistance of the Zr-Ti alloys in simulated physiological solutions of a wide
pH range (namely 3 ≤ pH ≤ 8) at 37 ◦C, and the best results were obtained for the alloys pre-treated
at 500 ◦C. The formation of the passivating oxide layers in simulated physiological solution was
monitored in situ using scanning electrochemical microscopy (SECM), finding a transition from an
electrochemically active surface, characteristic of the bare metal, to the heterogeneous formation of
oxide layers behaving as insulating surfaces towards electron transfer reactions.

Keywords: Zr-Ti binary alloys; biomaterial; surface modification; corrosion resistance;
electrochemical techniques

1. Introduction

Metallic biomaterials are used as prostheses in applications that require weight-bearing or to face
mechanical forces, as in the case of skeletal elements or dental applications [1]. However, pure metals
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do not have the strength, elasticity, ductility, and purity required by the different types of implants
currently used in traumatology and orthopedics. For this reason, the addition of one or more alloying
elements to the base metal is commonly conducted, thus modifying the crystalline structure, and
therefore its physical and mechanical properties.

Titanium and its alloys are of particular interest for biomedical applications due to their exceptional
biocompatibility and high resistance to corrosion [2–4]. In comparison with other metallic biomaterials
such as stainless steel and CoCr alloys, titanium-based materials exhibit similar strength, lower weight,
and reduced elastic modulus (55 to 100 GPa), closer to those found in bone tissues (<30 GPa) [4].
Osseointegration and enhanced biocompatibility have long been observed in Ti and Ti-based materials.
Ti stability in the human body is conferred by the formation of a surface layer of titanium oxides
(mainly TiO2) that passivates the material, protecting it from the attack of oxidizing agents [5,6].
Yet, concerns have been raised due to the nucleation of non-propagating pits on titanium exposed
to simulated physiological conditions, estimated in 60–120 metastable pits per second and square
centimeter [7]. Due to its improved anticorrosion resistance, the most common form of titanium used
in orthopedic and dental implants is the Ti-6Al-4V alloy in its extra-low interstitial form, in which
the oxygen concentration is kept very low to avoid its embrittlement and maximize its strength and
ductility. Despite the clinical evidence of the excellent biocompatibility of this alloy, concerns have
arisen about the release of cytotoxic elements such as vanadium [8,9] and possibly aluminum [10,11],
as they can cause local and systemic problems. These concerns have motivated the search of alternative
alloying elements, currently being investigated for titanium.

Although some binary Ti-Zr alloys -with Ti as the main component- have been adopted in the
last decade for dental clinical applications [12,13], the same has not happened with binary Zr-Ti
alloys, where Zr is the main component. Nonetheless, several studies correlated composition and
structure with mechanical properties [14–16], and other works reported interesting corrosion resistance
properties [17–22]. To date, the optimal ratio between Ti and Zr is still under investigation in order to
combine mechanical properties similar to the host tissue where it will be implanted, a greater resistance
against corrosion in the physiological environment, and good biological activity [23]. Upon contact
with the biological fluids, at the surface of the implantable devices, both in vivo and in vitro, there is a
sequence of physicochemical processes [24] that determine the structural and compositional changes
of the superficial layers.

Passive layers with more insulating characteristics towards electron transfer are developed at the
surface of the Zr-Ti alloys [19] compared to pure Zr, thus greatly reducing the greater susceptibility of
Zr to localized corrosion induced by chloride ions compared to Ti [25,26]. Yet, passive layer breakdown
in simulated physiological environment was reported for Zr-Ti alloys with titanium contents smaller
than 45 wt.%. [19], when subjected to anodic polarization at potential values that have been reported
to eventually develop in the human body [27]. The stability of passivating oxide layers on metals and
alloys can be greatly improved using surface modification treatments [28–30]. In particular, thermal
oxidation in air at elevated temperature has been shown to be effective in the case of Zr-Ti alloys [31–33].

The main aim of this study was to investigate in vitro the corrosion resistance of thermally-oxidized
Zr-Ti alloys as to optimize the processing conditions that lead to the development of a more stable and
corrosion resistant surface oxide layer in simulated physiological environments of varying pH. The pH
of the environment was modified as to encompass the pH range that can be experienced in the event of
inflammatory and surgical conditions [20]. Conventional electrochemical techniques were employed
to characterize the corrosion resistance of the surface films. In addition, a microelectrochemical
investigation was undertaken using the scanning electrochemical microscope (SECM) as to characterize
the insulating properties of the heterogeneous surface film formed on Zr-Ti alloys under the optimized
thermal oxidation treatment. The SECM technique in the feedback mode enables monitoring of
the evolution of the surface during the development of the insulating layer in the early stages of
in vitro immersion. Hence, information on the heterogeneously distributed electron exchange ability
of the biomaterials, previously treated using optimized surface processing procedures, is reported. In
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this way, spatially-resolved chemical monitoring of the surface films in the simulated physiological
environment was performed [34].

2. Materials and Methods

2.1. Materials and Sample Preparation

The primary substrates employed in this work were three Zr-Ti alloys with different titanium
contents up to ca. 45%, produced at ZIROM SA (Giurgiu, Romania) using an electron beam furnace.
The melting process was repeated for three times to homogenize the chemical compositions of ingots,
and their chemical compositions are presented in Table 1. The structural characterization, surface
composition and morphology of the as cast alloys have been reported elsewhere [18]. Cylindrical ingot
samples with 8 mm diameter and 8 mm height were ground to a 2000 grit finish with silicon carbide
paper (Struers, Cleveland, OH, USA), ultrasonically cleaned in ultrapure deionized water (Millipore,
Burlington, MA, USA; resistivity, 18.2 MΩ cm), degreased in ethanol, dried in air, and then oxidized in
air in a range of temperatures between 100 and 600 ◦C for 4 h. Neither significant roughening nor
enrichment in either of the metal constituents is expected, and only ZrO2 and TiO2 oxides are assumed
to be developed according to previous SEM-EDX and XRD observations [31].

Table 1. Chemical composition of the binary Zr-Ti alloys under investigation

Alloy/Element
(wt.%) Zr Ti Sn Mo Nb Fe Cr

Zr-5Ti 93.69 4.23 0.99 0.85 0.50 0.20 0.04
Zr-25Ti 75.55 22.12 0.81 0.82 0.45 0.20 0.05
Zr-45Ti 56.76 42.12 0.30 0.50 0.14 0.14 0.04

2.2. Corrosion Tests

Conventional electrochemical experiments were performed in modified phosphate buffered saline
(PBS) solution to cover the 3 ≤ pH ≤ 8 range. All reagents were supplied by Sigma-Aldrich (San Luis,
MO, USA). The actual PBS solution contained 8 g NaCl + 0.2 g KCl + 1.44 g Na2HPO4 + 0.24 g KH2PO4

dissolved in 800 mL ultrapure deionized H2O, the pH was adjusted to 7.4 with HCl, and ultrapure
deionized H2O was added to adjust the volume to 1L. pH adjustment was performed using controlled
additions of HCl or NaOH solution as required.

Electrochemical measurements were performed with a PARSTAT 4000 potentiostat (Princeton
Applied Research, Princeton, NJ, USA). A three-electrode cell configuration was adopted with the
Zr-Ti alloy samples as working electrodes, a saturated calomel electrode (SCE) as reference, and a
platinum mesh as auxiliary electrode. The temperature of the electrochemical cell was maintained at
37 ± 1 ◦C. The samples were left unpolarized in the test solutions to spontaneously attain their open
circuit potential (OCP). The impedance spectra were recorded using a perturbation AC amplitude
of ±10 mV (vs. OCP), and a frequency range from 100 kHz to 15 mHz. EIS data were analyzed and
fitted to an electrical equivalent circuit (EC) with ZSimpWin software (Princeton Applied Research,
Princeton, NJ, USA).

2.3. Scanning Electrochemical Microscopy (SECM)

The SECM experiments were performed using a Sensolytics instrument (Bochum, Germany)
controlled with a personal computer. The specimens were mounted horizontally facing upwards at the
bottom of a Sensolytics cell designed to control the temperature at 37 ± 1 ◦C. The cell was equipped
with an Ag/AgCl/KCl (3 M) reference electrode and a platinum auxiliary electrode. A 10 µm diameter
Pt microelectrode was employed as tip. The electrochemical cell was located inside a Faraday cage. Tip
microelectrodes were made from 10 µm platinum wires sealed in glass. 0.5 mM ferrocene-methanol
(Fc) was added to the Ringer′s solution (i.e., 0.147 M NaCl + 0.00432 M CaCl2 + 0.00404 M KCl
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acidified with added HCl) to act as electrochemical mediator at the tip. To enable the oxidation of the
ferrocene-methanol to ferrocenium ion (Fc+), the tip was kept at a constant potential of +0.50 V vs.
Ag/AgCl/(3 M) KCl. The micromanipulator stand of the SECM instrument was used to position the
microelectrode tip in relation to the sample. Measurements were performed vertically (Z-approach
curves) while approaching the Pt microelectrode towards the sample over 24 h, in order to monitor
the formation of the passive layer; and horizontally (2-D scans). The 2-D images were recorded at an
approximate tip-to-substrate distance of 15 µm covering an area of 500 × 500 µm2 at a scanning rate of
25 µm s−1 and 10 µm lateral resolution (total scan duration 16–18 min).

3. Results and Discussion

3.1. In Vitro Corrosion Testing of the Zr-Ti Alloys

The optimum pretreatment conditioning for the Zr-Ti alloys was selected using conventional
electrochemical characterization in terms of providing the highest corrosion resistance to the materials.
Electrochemical tests were done in phosphate buffer saline (PBS) at pH values ranging between 3 and 8
in order to simulate the full pH range that may occur in bone healing after implantation surgery [20],
as well as to optimize the thermal oxidation conditions in a typical simulated body fluid. The corrosion
resistance characteristics of the Zr-Ti alloys subjected to thermal oxidation in air at different processing
temperatures were quantified using electrochemical impedance spectroscopy (EIS) during exposure at
the various test electrolytes. Figure 1 illustrates the EIS Bode diagrams recorded after 1-day exposure in
non-modified PBS solution for the three Zr-Ti alloys thermally oxidized at 500 ◦C for 4 h. From a cursory
inspection of the spectra, the occurrence of two time-constants in the spectra can be observed, and
they could be satisfactorily fitted using the equivalent circuit shown in Figure 2 based on a two-layer
model for the surface film. The proposed EC is similar to that reported for titanium and titanium-based
alloys in previous studies [6,35–38], as well as for the three as-cast Zr-Ti alloys in Ringer’s solution [19].
Rsol relates to the resistance of the solution, Rct and QdL account for the reactions at the passive
layer/solution interface, and Rox and Qox to the properties of the oxide films formed on these alloys
behaving as compact layers. The constant phase elements QdL and Qox were employed instead of a
capacitor owing to dispersion effects arising from the microscopic roughness of the alloy surfaces.
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Figure 1. Bode plots acquired by EIS on binary Zr-Ti alloys (oxidized in air at 500 °C for 4 h) after 1-

day immersion in PBS at 37 °C. (A) Bode-amplitude, and (B) Bode-phase diagrams. 

 

Figure 2. Equivalent electric circuit employed to fit the experimental EIS spectra. 

Figure 1. Bode plots acquired by EIS on binary Zr-Ti alloys (oxidized in air at 500 ◦C for 4 h) after 1-day
immersion in PBS at 37 ◦C. (A) Bode-amplitude, and (B) Bode-phase diagrams.
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Figure 1. Bode plots acquired by EIS on binary Zr-Ti alloys (oxidized in air at 500 °C for 4 h) after 1-

day immersion in PBS at 37 °C. (A) Bode-amplitude, and (B) Bode-phase diagrams. 
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For the sake of easier inter-comparison, a single parameter related to the corrosion resistance of the
samples can be derived from the EIS data, namely the polarization resistance, Rp. For the equivalent
circuit in Figure 2, Rp can be calculated using the equation

1
Rp
�

1
Rct

+
1

Rox
(1)

Average Rp values recorded for the three Zr-Ti alloys immersed in modified PBS solutions within
the 3 ≤ pH ≤ 8 range and for thermal oxidation temperatures between 100 and 600 ◦C are listed in
Tables 2–7. Variations in the corrosion resistance of the Zr-Ti alloys can be derived as a function of the
alloy composition, the temperature of the thermal oxidation process, and the acidity of the simulated
physiological environment. In general, the binary alloy showing the highest corrosion resistance was
Zr-45Ti regardless the pH of the environment for a given surface modification condition. This feature
confirmed the beneficial effect of titanium addition to zirconium for the formation of more compact and
tenacious oxide films on the surface of the material, as it was previously observed for the as cast Zr-Ti
alloys [19]. Although Zr-5Ti exhibited the lowest Rp values, surface modification by thermal oxidation
in air was found to greatly improve the electrochemical characteristics of this material as well.

Table 2. Values of the polarization resistance (in MΩ·cm2) as a function of immersion time of thermally
oxidized Zr-Ti alloys in phosphate buffered saline solution acidified at pH = 3.0 ± 0.1

Immersion Time/h Oxidation Temperature/◦C
100 200 300 400 500 600

Zr-5Ti

1 0.20 0.24 0.24 0.31 0.31 0.069
2 0.19 0.22 0.22 0.33 0.29 0.067
10 0.17 0.20 0.22 0.34 0.28 0.066

Zr-25Ti

1 0.22 0.25 0.26 0.32 0.30 0.074
2 0.21 0.24 0.25 0.33 0.28 0.072
10 0.21 0.22 0.25 0.35 0.28 0.070

Zr-45Ti

1 0.27 0.32 0.33 0.37 0.30 0.079
2 0.25 0.30 0.31 0.39 0.29 0.077
10 0.24 0.30 0.30 0.40 0.28 0.075
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Table 3. Values of the polarization resistance (in MΩ·cm2) as a function of immersion time of thermally
oxidized Zr-Ti alloys in phosphate buffered saline solution acidified at pH = 4.1 ± 0.1

Immersion Time/h Oxidation Temperature/◦C
100 200 300 400 500 600

Zr-5Ti

1 0.22 0.25 0.25 0.32 0.31 0.072
2 0.21 0.23 0.24 0.34 0.30 0.070

10 0.19 0.22 0.22 0.34 0.28 0.067

Zr-25Ti

1 0.24 0.27 0.28 0.32 0.31 0.076
2 0.24 0.26 0.28 0.34 0.29 0.074

10 0.23 0.26 0.27 0.35 0.29 0.071

Zr-45Ti

1 0.29 0.34 0.35 0.39 0.31 0.082
2 0.28 0.32 0.34 0.41 0.30 0.080

10 0.27 0.31 0.33 0.43 0.30 0.079

Table 4. Values of the polarization resistance (in MΩ·cm2) as a function of immersion time of thermally
oxidized Zr-Ti alloys in phosphate buffered saline solution acidified at pH = 5.0 ± 0.1

Immersion Time/h Oxidation Temperature/◦C
100 200 300 400 500 600

Zr-5Ti

1 0.23 0.25 0.26 0.33 0.32 0.073
2 0.21 0.23 0.25 0.34 0.30 0.071

10 0.19 0.22 0.22 0.34 0.29 0.067

Zr-25Ti

1 0.25 0.28 0.29 0.33 0.31 0.078
2 0.25 0.27 0.28 0.34 0.29 0.077

10 0.23 0.25 0.26 0.35 0.29 0.071

Zr-45Ti

1 0.30 0.36 0.36 0.40 0.32 0.084
2 0.29 0.35 0.35 0.42 0.32 0.083

10 0.27 0.34 0.35 0.44 0.31 0.081

Table 5. Values of the polarization resistance (in MΩ·cm2) as a function of immersion time of thermally
oxidized Zr-Ti alloys in phosphate buffered saline solution acidified at pH = 6.1 ± 0.1

Immersion Time/h Oxidation Temperature/◦C
100 200 300 400 500 600

Zr-5Ti

1 0.23 0.25 0.26 0.33 0.32 0.074
2 0.22 0.24 0.25 0.34 0.31 0.071

10 0.19 0.20 0.23 0.35 0.29 0.068

Zr-25Ti

1 0.26 0.31 0.32 0.32 0.31 0.079
2 0.25 0.31 0.32 0.34 0.30 0.076

10 0.25 0.29 0.31 0.35 0.29 0.072

Zr-45Ti

1 0.31 0.37 0.37 0.41 0.33 0.085
2 0.29 0.36 0.37 0.42 0.32 0.084

10 0.28 0.34 0.36 0.44 0.30 0.082
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Table 6. Values of the polarization resistance (in MΩ·cm2) as a function of immersion time of thermally
oxidized Zr-Ti alloys in phosphate buffered saline solution acidified at pH = 7.0 ± 0.1

Immersion Time/h Oxidation temperature/◦C
100 200 300 400 500 600

Zr-5Ti

1 0.24 0.25 0.27 0.34 0.32 0.078
2 0.23 0.24 0.25 0.35 0.30 0.075
10 0.19 0.21 0.22 0.35 0.28 0.069

Zr-25Ti

1 0.27 0.31 0.35 0.32 0.31 0.079
2 0.27 0.30 0.34 0.33 0.30 0.077
10 0.25 0.29 0.32 0.36 0.30 0.072

Zr-45Ti

1 0.31 0.36 0.38 0.41 0.31 0.087
2 0.30 0.35 0.38 0.43 0.31 0.084
10 0.28 0.35 0.37 0.46 0.30 0.081

The observed increase in the corrosion resistance has also shown to occur in these alloys when
treated at 500 ◦C using similar procedures [20,21,31]. Scanning electron microscopy (SEM) images
of the cross section of the three materials subjected to similar thermal treatment have evidenced the
formation of oxide layers on top of the metallic material, resulting in a more compact oxide coating
that exhibited higher resistance against corrosion for the Zr-45Ti material [31].

Regarding the surface modification procedure, the corrosion resistance of the alloys was found to
improve with the increase in the oxidation temperature up to 400–500 ◦C, and it deteriorated quickly
for higher temperatures, as illustrated by the data recorded for the samples treated at 600 ◦C in all
cases. The causes for such deterioration remain still unknown and will require further investigation,
although it can be speculated that the formation of a more porous structure with metal oxides of mixed
oxidation state may occur. Finally, acidification of the test solution produced a very small effect on the
corrosion resistance of the alloys, as it could be expected considering that the pH range covered in this
work lies within the stability range of the passivating oxide layers developed on either titanium or
zirconium pure metals [39], although slightly smaller Rp values were determined in solutions close
to neutrality.

Table 7. Values of the polarization resistance (in MΩ·cm2) as a function of immersion time of thermally
oxidized Zr-Ti alloys in phosphate buffered saline solution acidified at pH = 8.1 ± 0.1

Immersion Time/h Oxidation Temperature/◦C
100 200 300 400 500 600

Zr-5Ti

1 0.17 0.19 0.24 0.31 0.29 0.067
2 0.14 0.18 0.22 0.32 0.28 0.059
10 0.09 0.15 0.18 0.34 0.26 0.053

Zr-25Ti

1 0.19 0.21 0.25 0.31 0.30 0.071
2 0.18 0.19 0.24 0.32 0.29 0.065
10 0.15 0.17 0.22 0.35 0.27 0.058

Zr-45Ti

1 0.21 0.22 0.27 0.32 0.31 0.078
2 0.20 0.21 0.26 0.33 0.31 0.069
10 0.18 0.19 0.24 0.36 0.29 0.061
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3.2. In Vitro Monitoring of the Formation of Passivating Surface Layers on Zr-Ti Alloys

The formation of the oxide surface layers on Zr-Ti alloys upon immersion in simulated physiological
solution was monitored by means of scanning electrochemical microscopy (SECM) operated in the
amperometric feedback mode. In this way, the evolution of the electrochemical properties of these
layers could be monitored in real time. Ferrocene-methanol was added to the Ringer physiological
solution as redox mediator in order to monitor its diffusion-limited oxidation at the Pt microelectrode
tip, which results in the limiting current, ilim, sensed in bulk solution (see Figure 3A). When this reaction
is performed in the proximity of the flat surface of the oxidized Zr-Ti alloy sample, either the material
will block the diffusion of the redox mediator towards the tip (that is, negative feedback at an insulating
substrate, see Figure 3B), or regeneration of the redox mediator will occur if the material undergoes an
electron transfer reaction (i.e., positive feedback at an electroactive substrate, see Figure 3C) [40]. Thus,
respectively smaller or bigger faradaic currents will be recorded at the tip placed in the proximity
of the investigated material compared to the value monitored in the bulk of the electrolyte. When
irreversible electron transfer, under kinetic control, is attained at the surface, the response in SECM
approach curves depicts an intermediate behavior between positive and negative feedback, depending
on the geometry of the electrode and the electron transfer rate constant. Finally, in order to avoid
the potential risk of fouling effects in the Pt probe due to components of the electrolyte, the simpler
Ringer’s solution was chosen instead of PBS, as to mimic the intracellular environment, acidified to pH
3 thereby simulating inflammatory conditions. The measurements were performed in the naturally
aerated solution at 37 ◦C.

Zr-Ti alloys subjected to thermal oxidation in the optimum temperature range were thus selected
for this microelectrochemical characterization during immersion in simulated physiological solution.
Figure 4A–C displays Z-approach curve results for the three thermally-oxidized Zr-Ti alloys measured
during 1-day immersion in acidified Ringer’s solution. Y-axis reflects the normalized current measured
at each location, that is, the measured current divided by the current value registered in bulk solution.
The X-axis gives the normalized vertical position, L, namely the Z position divided by the Pt microdisk
diameter (d = 10 µm). Results show that the behavior of the surfaces was primarily insulating, although
dynamic evolution occur in all samples. The measured currents were observed to slightly increase
within the first 3–5 h immersion, attaining maximum ranges after 140, 180, and 300 min immersion for
the Zr-5Ti, Zr-25Ti, and Zr-45Ti specimens, respectively. After sufficiently long exposure (i.e., 20–24 h
immersion), the surfaces became more insulating, directly related to thickening of the oxide-hydroxide
layer formed on the surface of the alloys exposed to the aqueous environment. This feature is clearly
observed from the general trend towards smaller normalized feedback currents measured at the tip
located in the vicinity of the substrate (i.e., for small normalized tip–substrate separations) occurring
for the longest immersion times in all cases.

These observations also differentiate between the three Zr-Ti alloys in the early stages of immersion.
Thus, whereas normalized currents smaller than one were always measured for the Zr-5Ti alloy (cf.
Figure 4A), surfaces promoting higher tip currents, presumably due to partial conductivity/electron
transfer efficiency, were observed for Zr-25Ti and Zr-45Ti (see the normalized currents higher than one
in Figure 4B,C at the beginning of the experiment). Despite the observation of normalized currents
greater than one for the Ti-rich alloys, it must be noticed that the Z-approach curves do not display
the actual positive feedback behavior characteristic of conductive surfaces, as there was not a steady
growth of the normalized current as the tip approached the substrate, ideally increasing towards
infinite for normalized tip–substrate separations tending to zero. Instead, a mixed behavior between
those corresponding to positive and negative feedback effects is observed. That is, as the tip traveled
towards the substrate from the bulk of the electrolyte, the proximity of the surface was first noticed
from the increase in the normalized current related to partial conductivity, and then eventually changed
towards smaller normalized currents in the vicinity of the substrate. In addition, probe-approach
curves measured after 3–5 h immersion for Zr-45Ti depict a continuous increment of the tip current at
relatively large distances (i.e., 10 to 15 times the diameter of the Pt microdisk), with the same slope



Metals 2020, 10, 166 9 of 15

maintained until ca. L = 4, which has been previously reported with the same alloys [19], but can hardly
be ascribed or modeled considering exclusively feedback effects. Features eventually influencing the
tip current must involve the generation of electro-active species diffusing towards the probe, either
metal cations or complexes, or redox species catalytically formed at the surface of the metal following
reactions of components of the electrolyte. The former is very unlikely, not only because of the stability
of the passive films, but also considering that no titanium or zirconium-containing ion or complexes
are expected to produce a measurable electrochemical signal at the given tip potential and weak
acidic aqueous solution. However, (photo)catalytic reactions involving the generation of H2 or H2O2,
oxidizable at the tip potential, cannot be discarded. Further evidence must be attained in order to
investigate this effect, which otherwise should not compromise the surface stability.
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Figure 3. Limiting electrochemical responses for the tip current depending on the surface condition
of the Zr-Ti alloys exposed to Ringer′s solution during amperometric SECM operation using
ferrocene-methanol (Fc) as redox mediator. (A) Current attains a diffusion-controlled limiting current
value in bulk solution; (B) Negative feedback occurs over the oxide-covered surface, which blocks the
diffusion pathways for Fc; (C) Positive feedback happens over conductive alloy surfaces that are able to
regenerate ferrocene-methanol by reducing the ferrocenium ion (Fc+) formed at the tip.

The heterogeneity of the surface response was evaluated by conducting 2-D scans over a fixed
random area of 500 × 500 µm2 dimensions for each specimen during the first 24 h. Figure 5 displays
representative area scans obtained during exposure of the materials to the acidified Ringer′s solution.
Notice that green color in all scans represent normalized current equal to 1, that is, reproducing the
same ilim current value attained for the diffusion-limited oxidation of the redox mediator in the bulk
solution. Hence, normalized current values greater than one (e.g., yellow and red colors) indicate
higher surface reactivity (i.e., positive feedback), whereas the blue color corresponds to more insulating
properties (i.e., negative feedback).

The behavior of the three specimens dynamically changed during the first hours of immersion,
moving towards more insulating character when samples were exposed over 20 h. Zr-5Ti showed
smoother current variations throughout the scanned area, whereas higher Ti content depicted regions
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with distinct reactivity. The response resembled closely that previously observed in the same solution
at 25 ◦C [20]. However, the behavior differed with the addition of higher Ti content at the simulated
body temperature in this work. Scans performed on Zr-25Ti exhibited one region with rather insulating
properties in all scans (close to the drawn origin of coordinates), and only the first measurement showed
a nearby area with higher reactivity, which progressively deactivated in following scans. Conversely, it
was observed that the Zr-45Ti surface presented single locations with much higher activity towards
electron exchange with the redox mediator. These spots contrasted with the main insulating properties
exhibited by the surface, in particular after 24 h immersion.

It must be noticed that the conductivity characteristics in the feedback mode reflect the efficiency
of the electron transfer reaction at the very site examined by the microelectrode for L/d→ 0, whereas
wider screening of the surface occurs for longer distances. Then, normalized currents bigger than
one in the Z-approach curves of Figure 4B,C indicate a surface that is not an efficient insulator, yet
this phenomenon can also be explained considering the single active locations seen in the scans taken
over the Zr-45Ti (cf. Figure 5). As result, from the observation of the Z-approach curves displayed
in Figure 4A–C it can be concluded that the surface films formed on Zr-5Ti exhibit low efficiency for
electron transfer even at short exposures to the electrolyte, and subsequent thickening of the bilayer
oxide film leads to even more insulating characteristics. In contrast, the richer Ti alloys require exposure
to the electrolyte to develop the surface oxide layers with insulating characteristics, namely 1 h and
approximately 1 day for Zr-25Ti and Zr-45Ti, respectively. The surface film developed on the Zr-25Ti
surface would be the most insulating, with heterogeneities mostly depicting inert areas. Conversely,
the oxide layer formed on the Zr-45Ti was partially conductive at single locations, suggesting that the
passive character could be locally broken to facilitate electron donation.

These SECM observations, depicting electrochemical heterogeneity and local passivity breakdown
on the surface of Zr-45Ti, apparently contradict the higher corrosion resistance exhibited by the
Ti-enriched alloy from conventional averaging electrochemical (impedance) measurements. The
developed oxide layer has shown to be equally or more inert in thermally oxidized Zr-45Ti, compared
to Zr-25Ti and Zr-5Ti, when exposed to phosphate buffer saline solution at 37 ◦C (this work), neutral
Ringer’s solution at 37 ◦C [31], and Ringer’s acidified solution (pH 3) at 37 ◦C [20]. However,
SECM results obtained in the feedback mode reflect the ability of the sample to transfer electrons
via heterogeneous electron exchange reactions at its surface, rather than the release of metal cations
from the anodic degradation of the material. That is, the origin of the electrons collected by the
ferrocenium ions does necessarily stem from the anodic dissolution of Ti or Zr. Instead, ferrocenium
ions may promote the formation of oxides, thus accelerating the thickening of the oxide layer, providing
that the single point location at which tip current increases behaves as electrically conductive and
kinetically active for the heterogeneous electron donation. This thickening process results in a final
surface state which behaves primarily insulating after 24 h immersion, supporting the formation of a
protective layer. In addition, it is feasible that, if the excitation of electrons from the valence band to
the conduction band occurs in such semiconductor material surfaces under illumination, electrons
may be either collected following water splitting mechanism, or by the ferrocenium ions instead. All
these early-stage phenomena might occur heterogeneously during the development of the passive
layer, attaining homogeneous insulating and protective character after sufficiently long immersion
time. Given the presence of redox proteins in the real physiological media [41,42], the ability of a
metal implant to exchange electrons on the surface, and eventually promote the alteration of such
biomolecules during the early stages of the implantation procedure, is regarded as critical and needs to
be taken into consideration in regard to the biocompatibility of a newly proposed biomaterial.
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Figure 5. Representative feedback mode 2-D scans of 500 × 500 µm2 dimension on oxidized binary
Zr-Ti alloys immersed in acidified Ringer’s solution at 37 ◦C. Images in a column were obtained over
the same sample and area, indicated at the top of the figure. Time immersion is given below each scan.
The color scale gives the normalized current in all scans except for the scan measured on Zr-45Ti after
265 min, which is plotted with its own color scale.

4. Conclusions

Corrosion resistance is not exclusively conferred to the binary Zr-Ti alloys by thin oxide films
formed during the thermal oxidation treatment in air, but they operate in combination with the
hydrated oxide films formed upon immersion in the simulated physiological environment. The
reported ageing process of the surface oxide layers in the simulated physiological solution is more
efficient as to enhance corrosion resistance for the alloys with higher Ti content, which may be related
to our previous report of thicker and more compact oxide layers formed on non-treated Zr-45Ti upon
exposure to Ringer’s solution [31]. Finally, as regards to potential use of the binary Zr-Ti alloys as
implant materials with high corrosion resistance, it is recommended that the samples are previously
subjected to a thermal oxidation treatment in air, followed by exposure to an artificial physiological
solution for 24 h.

The present work demonstrates that multiscale electrochemical characterization can be successfully
employed to monitor the corrosion characteristics of binary Zr-Ti alloys subjected to surface modification.
The powerful combination of electrochemical techniques allowed both to select the optimal surface
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processing conditions as well as to characterize the surface reactivity of the surface layers formed on
the treated materials. As a result, the following conclusions were derived:

(1) The thermal oxidation in air increased the corrosion resistance of binary Zr-Ti alloys, the effect
being especially beneficial when performed at 500 ◦C.

(2) Upon immersion in the simulated physiological solution, the formation of passivating oxide layers
on the surface of the alloys occurs. The observation of two time-constants in the electrochemical
impedance spectra of the samples exposed to simulated physiological solution at 37 ◦C reveal the
formation of a bilayer surface film. The results are consistent with a thin inner compact layer and
a thicker, although unsealed, outer layer.

(3) Additions of Ti to Zr (from 5 to 45 wt.%) contribute to the formation of a more corrosion resistant
surface film on the alloys.

(4) SECM characterization in the feedback mode showed that insulating characteristics of the
passivating oxide layers on the binary Zr-Ti alloys are progressively developed with ageing in the
simulated physiological environment. Longer exposures are required for the alloys with higher
Ti contents. The surface formed on Zr-Ti alloy with 45 wt.% content of Ti was observed to be
heterogeneous with single active locations dynamically evolving on the surface.

(5) Thinner and more compact oxide layers are expected in the presence of higher Ti content, which
concurrently promotes the electron transfer phenomena heterogeneously during the early stages of
exposure in the physiological environment. Such phenomena may influence the biocompatibility
of the alloys when exposed to real or in vitro operation conditions.
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