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The Superiority of the Otolith System
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Abstract
Background: The peripheral vestibular end organ is consid-
ered to consist of semi-circular canals (SCC) for detection of 
angular accelerations and the otoliths for detection of linear 
accelerations. However, otoliths being phylogenetically the 
oldest part of the vestibular sensory organs are involved in 
detection of all motions. Summary: This study elaborates on 
this property of the otolith organ, as this concept can be of 
importance for the currently designed vestibular implant de-
vices. Key Message: The analysis of the evolution of the inner 
ear and examination of clinical examples shows the robust-
ness of the otolith system and inhibition capacity of the SCC. 
The otolith system must be considered superior to the SCC 
system as illustrated by evolution, clinical evidence, and 
physical principles. © 2020 The Author(s)

Published by S. Karger AG, Basel

Introduction

The peripheral vestibular system consists of the semi-
circular canals (SCC) and the otoliths. In general, it is 
conceived that SCC and otoliths are complementary, 
since the SCC detect angular accelerations [Fernandez 
and Goldberg, 1971], whereas the otoliths detect linear 
accelerations [Fernandez and Goldberg, 1976] including 
gravity. In this study, we will build up a rationale for ex-
tending this standard view. In essence, the otoliths detect 
all accelerations, i.e., angular and linear accelerations, and 
thus can be considered as the core motion detectors.

Evolution

Throughout evolution of life on Earth, gravity and 
more specifically 1 g, gravitational acceleration on Earth 
of about 9.8 m/s2, has been the sole constant factor, in 
contrast to environmental conditions such as tempera-
ture, humidity, pressure, oxygen level, etc. 

Detection of gravity appears to be essential for com-
plex life. Even plants have evolved multiple mechanisms 
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to sense gravity. Gravitropism directs plants growth rela-
tive to gravity. It determines the orientation and the final 
architecture of the plant. 

Flowering plants, for example, sense gravity via spe-
cialized cells termed statocytes [Fukaki et al., 1998; Kiss, 
2000]. Within these statocytes, dense starch-filled organ-
elles (statoliths) settle relative to the gravity vector, pro-
viding directional information to the plant [MacCleery et 
al., 1999; Saito, 2005]. In case of a reorientation of the 
plant, the settling of the statoliths starts a biochemical 
cascade to promote differential growth in the elongation 
zone of the plant root or shoot.

Moving to the animal kingdom, it seems that the sim-
plest animals, like jellyfish, also have statoliths to per-
ceive gravity as well as water current. Jellyfish appeared 
in the Ediacaran Period 635 million years ago. Approxi-
mately 100 million years later in the Cambrian Period, 
deuterostome (like sea cucumber) appeared and they 
have a statolith located in the statocyst as balance system 
(Fig. 1).

With the arrival of the chordate animals, of which ver-
tebrates is a subgroup, jawless fish with a single SCC and 
a macula appeared around 419 million years ago. This is 
the seed for the development of the inner ear as it is known 

today (Fig. 2). Still there are living animals, like the hag-
fish, with only one SCC and a common macule [Higuchi 
et al., 2019].

Lungfish, or dipnoans, appeared 400 million years ago, 
with 3 SCC and 3 otoliths (utricle, saccule, and lagena). 
However, there was no cochlea. 

From vertebrates, tetrapod appears and then amniote 
320 million years ago. At this point, the synapsida (future 
mammals) and sauropsida (reptiles like dinosaur and 
birds) appeared. Figure 3 represents the inner ear of a 
Tyrannosaurus rex, dating 68 million years ago [Witmer 
et al., 2009]. Mammals appeared around 200 million 
years ago with the currently known cochleo-vestibular 
system.

The third otolith system, i.e., the lagena, is still present 
in many animals (all descendants of the sauropsida). 
Crocodiles do not have a real cochlea but their saccule 
and lagena serve for both hearing and balance, and their 
utricle only serves for balance [Walsh et al., 2009].

The lagena of some birds and fish has a high concen-
tration of metals that allows to use the lagena as a magne-
tometer (compass) to feel the Earth’s geomagnetic field 
[Harada et al., 2001].

Summarizing the evolution of the inner ear, the otolith 
organ emerged in jellyfish 635 million years ago, the SCC 
400 million years ago, whereas the coiled cochlea ap-
peared “only” 200 million years ago (Fig. 4). So actually, 
the vestibular system is not part of the inner ear, but it is 
the other way around.

The Vestibular System

The aim of the vestibular system as it has evolved up 
to date is to provide information of balance, self-motion, 
and position in space. Hereto, the vestibular information 
about motion and position is integrated with vision and 
proprioception.

Semi-Circular Canals
The geometrical configuration of the SCC is basical-

ly a torus with an embedded deflector (cupula). The 
sensorial epithelium in the SCC are the hair cells at the 
base of the cupula, which is a membrane that deflects 
driven by the inertial mass of the endolymph upon an-
gular acceleration, i.e., rotation. The dynamics of the 
system can be deduced from hydrodynamic principles 
[Van Egmond et al., 1949; Jones and Spells, 1963; 
Mayne, 1965; Steer Jr, 1967]. Essentially, when the head 
starts to rotate, the inertia of the endolymph causes a 

Fig. 1. Statocyst consists of a sac-like structure containing a stato-
lith, a mineralised mass.
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Fig. 2. Evolution of SCC. 1 SCC appears in Myximi, then 2 SCC with Hyperoartia, and finally 3 SCC with Dipnoan. Image adapted from 
Higuchi et al. [2019].

Fig. 3. Inner ear of a Tyrannosaurus rex. 
Similarities can be observed with crocodile 
and pigeon that also evolve from Saurop-
sida [Witmer et al., 2009; Walsh et al., 
2009].
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deflection of the cupula. This deflection depends on the 
direction and amplitude of the angular acceleration, 
and eventually it is proportional to the velocity of the 
head movement. The derived formulas on the move-
ment of the cupula and the concomitant deflection of 
the hair cell cilia start from the principle that the centre 
of rotation is located in the centre of the SCC. However, 
the canals are located eccentrically. In case of Caucasian 
adults, the distance between both lateral SCC is 8.87 ± 
0.06 cm [Nowé et al., 2003]. Hence, upon rotation of the 
head around the craniocaudal axis, the SCC perceive 
additional tangential acceleration of the endolymph 
and the cupula. This tangential acceleration equals to 
the angular acceleration multiplied by the distance to 
the centre of rotation. But this is merely a scaling factor. 
Sustained rotation will be sensed only for approximate-
ly 20 s after cessation of the angular acceleration by 
means of the velocity storage mechanism (VSM). The 
VSM is activated by both visual and vestibular rotation 
cues and is modified by gravity. The network of neu-
rons in the superior vestibular nucleus and medial ves-
tibular nucleus as well as their commissural intercon-
nections are critical for producing velocity storage 
[Yakushin et al., 2017]. One of the proposed function is 
to prolong the vestibulo-ocular reflex (VOR) longer 
than the mechanically governed 10 s, which is the time 
constant of this damped oscillator. During the rotation 

(i.e., the acceleration phase and the sustained constant 
rotation), the otoliths are sensing this movement. This 
is a consequence of the highly specialized design of the 
otolith system that is driven by million years of evolu-
tion to detect gravity.

Otoliths
The saccule and utricle are complex curved maculae 

that can detect movement in virtually all directions. 
Highly simplified, one can represent the otolith organ as 
3 layers on top of each other (Fig. 5). The base layer con-
tains the sensorial epithelium with the hair cells. The cil-
ia of the hair cells protrude in the second layer, being a 
membrane on top of which lie the otoconial calcium car-
bonate crystals forming the third layer. These so called 
statoliths, have a density of 2.71 g/cm3 [Carlström, 1953] 
that is much heavier than the surrounding endolymph 
(density ∼1 g/cm3) and membrane. Any linear accelera-
tion will exert a shear force on the otoconial layer and 
cause a displacement relative to the base layer and conse-
quently causing a change in the membrane potential of 
the hair cells, which then results in a complex pattern of 
simultaneous excitation and inhibition. 

Although the triggering stimulus for the otoliths is a 
shear force on the otoconial layer, this force can emerge 
both by angular as well as linear accelerations. The fol-
lowing rationale will clarify this concept.

Animalia

Parahoxozon

Otolith

Cnidaria
Bilateria

Deuterostomia
Chordata
Vertebrate

Agnatha*

Hyperoartia***

Myximi**
Amniota

Sauropsida
Mammals

1 SCC
2 SCC

3 SCC

Cochlea

300400500600700800 200760 680 650 560 540 320 312
535

530

* 419
** 416

*** 414

Fig. 4. Summary of the chronological timeline of the inner ear evolution.



The Superiority of the Otolith System 39Audiol Neurotol 2020;25:35–41
DOI: 10.1159/000504595

Indeed, as proven by the evolutionary pathway, both 
in plants as well as in animals, gravity detection is the core 
function of the otolith system. Gravity detection ensures 
optimal growth, upright posture, balanced locomotion, 
and detects deviations from the vertical, including falls, 
for example.

Clinical Example of Multidimensionality

During a short head rotation to the left, both SCC left 
and right are stimulated giving rise to the VOR (Fig. 6, 
left). The output of the left and right SCC is antagonistic, 
however, with the left SCC giving rise to an increase in 

Type 1 hair cells

Supporting cells

Nerve fibres

Otoconia

Type 2 hair cells

Normal function Unilateral otolith disfunction
VOR VOR

O
C
R

O
C
R

OCR R
OCR L
VOR

OCR R
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Fig. 5. Macula of the utricle with the calcite crystal or otoconia.

Fig. 6. Complete HIT reflexes during left rotation. Left: healthy labyrinths produce only VOR due to the can-
celation of OCR on both sides. Right: unilateral otolith disfunction produce VOR and also OCR to the dam-
aged side.
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spike rate of the hair cells, and the right SCC generating 
a decrease in spike rate. The left and right vestibular nu-
clei in the brainstem decode these antagonistic signals 
from the left and right SCC to drive the respective left 
oculomotor nucleus and right abducens nucleus that gen-
erate compensatory eye movements with eyes going to 
the right mediated by the respective medial and lateral eye 
muscles. At the same time, both utricles are stimulated 
with identical shear forces pulling the otoconial layers 
outward, because of the centrifugal force that is pointing 
out from the centre of rotation. The left utricle will then 
generate a clockwise (from the point of view of the sub-
ject) ocular counter roll (OCR) and the right utricle will 
give rise to a counter clockwise OCR. However, both can-
cel each other out, generating no net eye movement. But, 
in case of one deficient labyrinth, this would cause a slight 
net OCR (Fig. 6, right). For a typical head rotation of 200 
degrees per second, as produced during the Head Impulse 
Test (HIT), this would generate an OCR of 0.4 degrees, 
given an OCR gain of 15%, which is negligible and hard-
ly detectible with the current methods. Based on this, HIT 
is the combination of VOR and OCR. In the case of 
healthy peripheral vestibular system, response during a 
HIT test is purely VOR. But in the case of one deficient 
otolith, a small OCR will appear. 

This does not imply that the utricles do not contribute 
to the whole of the reflex. They even send their signal to 
the respective cortical areas like the operculum parietale 
2 (OP2) in the brain, where the SCC signals converge with 
the otolith signals to appropriately interpret the whole 
movement stimulus [zu Eulenburg et al., 2012]. For ex-
ample, in case of tilt-translation ambiguity, otoliths re-
spond identically to translational (inertial) accelerations 
and changes in head orientation relative to gravity. This 
sensory ambiguity can be resolved using SCC signals. 
This procedure is done in the vestibular nuclei, rostral 
fastigial nuclei, cerebellar nodulus/uvula, and thalamus 
[Angelaki and Yakusheva, 2009]. 

Additionally, the otolith system is multidimensional, 
and there is no left right agonist/antagonist mechanism 
as in the canal system. This is a very important property 
because even with one otolith system, normal OCR re-
flexes are generated upon lateroflexion, showing the ro-
bustness of the otolith system [Wuyts et al., 2001]. The 
otoliths also preserve autonomic function as recently 
demonstrated in cosmonauts [Hallgren et al., 2016]. The 
otolith system mediates the VSM through the so-called 
otolith dump, which is the abolishment of the postrota-
tory nystagmus by inclination of the head. This is com-
monly adopted by figure skaters after high-speed pirou-

ettes [Hain et al., 1988]. Otolith input in general inhibits 
the SCC signals [Hain et al., 1988]. The otoconial mem-
brane neither has a damped spring configuration like the 
SCC, and hence the otoliths permanently sense the grav-
ity vector. Therefore, based on evolution, robustness and 
inhibition capacity, the otolith is superior to the canal sys-
tem.

Clinical observations show that, except for Tumarkin 
syndrome, almost no other vestibular disorders can be at-
tributed solely to unilateral otolith disfunction. Even dur-
ing a vestibular neuritis, which affects the superior ves-
tibular nerve (and thus the signals coming from the hori-
zontal and anterior SCC and the utricle), the complaint 
of the patient is spinning vertigo with a dominant hori-
zontal nystagmus with a slight torsional component, 
however, without sensations of the Tumarkin type. Nei-
ther can other complaints of dizziness or vertigo be at-
tributed to an otolith disorder, despite the absence of ves-
tibular evoked myogenic potentials in some cases. Thus, 
it can be concluded that isolated otolith deficits are dif-
ficult to identify, perhaps because there are few to none. 
Even if one otolith system fails, the other otoliths are suf-
ficient to ensure gravity detection. So only in case of bi-
lateral total vestibulopathy, there will be a lack of gravity 
detection. Hence, the necessity to restore, in the first 
place, the otolith function and this by means of a vestibu-
lar implant, for example. Moreover, based on the above-
mentioned evidence, unilateral restoration should be suf-
ficient.

Conclusion

The otolith system must be considered superior to the 
SCC system as illustrated by evolution, clinical evidence, 
and physical principles. Hence, when replacing the ves-
tibular system by means of a vestibular implant in a pa-
tient with bilateral vestibular areflexia, we hypothesize to 
target at first the otolith system. 
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