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Featured Application: The amount of heat transferred by conduction is given by Fourier's law. 
For the study of these phenomena, the application of computational techniques that allow the 
design of machines and devices used in engineering becomes crucial. 

Abstract: In this paper, a new constitutive matrix ሾ𝑀ఛሿ for thermal conduction, for tetrahedral 
meshes, in a steady state thermal regime is developed through a new algebraic methodology, using 
the Cell Method as a computational method, which is included in the finite formulation. The 
constitutive matrix defines the behavior of solids when they are under a thermal potential. The 
results are compared with those obtained for the same problem by means of the constitutive matrix ሾ𝑀ఒሿ  developed previously, taking in both cases with a 2D axisymmetric model as reference, 
calculated with the finite element method. The errors obtained with the new matrix ሾ𝑀ఛሿ are of the 
order of 0.0025%, much lower than those obtained with the matrix ሾ𝑀ఒሿ. 
Keywords: analytical method; computational technique; cell method; FEM; heat conduction; 
thermal constitutive matrix 

 

1. Introduction 

Solid metals have a high thermal conductivity. The transmission of heat by conduction is 
attributed to an exchange of energy between adjacent molecules and electrons in the conductive 
medium, without the macroscopic transfer of matter and without a visible displacement of particles. 

The amount of heat transferred by conduction is given by Fourier's law. This law states that the 
rate of heat conduction through a body per unit cross section is proportional to the temperature 
gradient that exists in the body. 

For the study of these phenomena, the application of analytical methods and computational 
techniques that allow for the design of machines and devices used in engineering becomes very 
important. 

The analytical methods proposed in this article are of an algebraic type. They have been applied 
to the study of heat transmission by conduction in a bimetallic tube. This case can be used for the 
study of pipes, or, in our particular case, for the future studies of the stator or rotor of an electric 
machine [1–4], as it can be seen in Figure 1. The most common heat sources in an electrical machine 
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are the electromagnetic phenomena in the cores (approximated here as metal tubes), heated by the 
Joule effect in the conductors [5–7] and the mechanical friction in the moving parts [8–9]. 

In the present work, we propose the finite formulation (FF) [10–15], as well as the Cell Method 
(CM), [16–17] as an associated numerical method to analyze the numerical models proposed. In this 
methodology, we work with the global magnitudes associated with space-oriented elements such as 
volumes, surfaces, lines, and points of the discretized space, as well as to temporal elements, instead 
of the field magnitudes associated with independent variables with spatial and temporal coordinates 
[16–20]. 

  
(a) (b) 

Figure 1. (a) Stator of an electrical machine. (b) Rotor of an electrical machine. 

In addition, the equations of constitutive type (equations of the medium) are clearly 
differentiated from the topological type (equations of balance) [10]. In FF, the physical laws that 
govern the thermal laws of heat transfer associated with electrical devices are expressed in their 
integral form. In this way, the final system of equations is posed directly, without the need to 
discretize the equivalent differential equations [20]. 

The thermal analysis of electrical devices using this methodology greatly facilitates the 
implementation of the boundary conditions and continuity when working with global magnitudes, 
and, furthermore, directly raises the system of equations without the need to discretize the 
differential equations. 

Three methodologies have been formulated previously in order to obtain the constitutive 
thermal matrix. These methods are those by Tonti [16], Bullo [21–22], and the method proposed by 
Specogna [14], for problems of electrical conduction, which we have adapted to thermal conduction 
[10–13]. 

These three methods use the projections of edges and surfaces from dual to primal space. They 
also use local coordinate systems with subsequent transformations to global coordinates. We 
calculate the barycenters of the dual surfaces, and then obtain a weighted dual barycenter from those 
that were previously found. 

Tonti [16] discusses a new 2D numerical method for the solution of temperature field equations 
using CM. The essence of the method is to directly provide a discrete formulation of field laws. It is 
proven that, for linear interpolation, the stiffness matrix obtained coincides with the one of the finite 
element method (FEM). For quadratic interpolation, however, the present stiffness matrix differs 
from that of FEM; moreover, it is asymmetric. It is shown that by using a parabolic interpolation, a 
convergence of the fourth order is obtained. This is greater than the one obtained with FEM, using 
the same interpolation. 

Bullo [21] calculates, through CM, the 2D fields applied to a coupled computation of electric and 
thermal conduction using a linear interpolation of both the electric and temperature fields, and uses 
a quadratic interpolation for the thermal analysis approach. Bullo [22] uses CM for the solution of 
coupled problems of steady-state electric and transient thermal conductions in 3D regions. Dual 
barycentric cell complexes are used for both space and time domains, the latter inducing a Crank–
Nicolson time integration scheme.  
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Specogna [14], by using a CM formulation for eddy currents, presents a geometric approach to 
construct approximations of the discrete magnetic and Ohm’s constitutive matrices. In the case of the 
Ohm’s matrix, he also shows how to make it symmetric. He compares the impact on the solution of 
the proposed Ohm’s matrices, and an iterative technique to obtain a consistent right-hand-side term 
in the final system is described. 

González [12–13] developed a new constitutive matrix ( ሾ𝑀ఒሿ ) for thermal conduction in a 
transient thermal regime using CM. He demonstrates that this matrix is equivalent to the electrical 
conduction constitutive matrix in a steady state, and applies this constitutive matrix to the thermal 
analysis of asynchronous electric machines in a transient regime.  

Monzón-Verona [12–13] analyzed the temperature distribution in a conductor disk in a 
transitory regime. The disk is in motion in a stationary magnetic field generated by a permanent 
magnet, and so the electric currents induced inside it generate heat. The system acts as a magnetic 
brake, and is analyzed using infrared sensor techniques. In addition, for the simulation and analysis 
of the magnetic brake, a new thermal convective matrix for the 3D Cell Method (CM) is proposed.  

In the present article, a new constitutive thermal conduction matrix ሾ𝑀ఛሿ is obtained with better 
results than with ሾ𝑀ఒሿ. 

The new thermal conduction constitutive matrix ሾ𝑀ఛሿ formulated with CM in 3D has been 
verified by contrasting the numerical results with those obtained by FEM. The difference between the 
CM results obtained and those obtained in FEM is less than 0.0025%. 

The main advantage of the method proposed in this article is its simplicity. The constitutive 
matrices developed by previous methods presented complex calculations, while the new constitutive 
matrix depends exclusively on the coordinates of the vertices of the tetrahedra, which constitute the 
mesh. 

This work has been divided into the following sections: Section 2 explains, in detail, the 
analytical methodology for obtaining the new thermal conduction constitutive matrix ሾ𝑀ఛሿ in CM, 
formulating the corresponding conductive term. Section 3 shows the results obtained, validating the 
previous formulation through the computational simulation with ሾ𝑀ఒሿ and ሾ𝑀ఛሿ. Finally, Section 4 
presents the conclusions. 

2. Calculation of the New Thermal Constitutive Matrix ሾ𝑴𝝉ሿ 
In the present section, we obtain the analytical formulation of the matrix ሾ𝑀ఛሿ that has been 

developed to improve the results obtained with ሾ𝑀ఒሿ. In a steady state, and without internal heat 
sources, the equation of energy balance without mass transfer [10–13] is in the CM, 𝐷෩ሺ−𝑀ఛ𝐺𝑇ሻ  =  𝐺௧ሺ𝑀ఛ𝐺𝑇ሻ  =  0. (1) 

The domain is meshed by tetrahedral elements. In CM, the tetrahedron of Figure 2 will be taken 
as the reference cell, with its nodes, and edges and dual surfaces oriented internally and externally, 
respectively. 

  

(a) (b) 

Figure 2. (a) Tetrahedron with primal nodes and primal edges. (b) Tetrahedron with dual surfaces. 

In CM, the discrete gradient operator for the reference tetrahedron is defined as follows: 
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ሾ𝐺ሿ  =  ⎣⎢⎢
⎢⎢⎡−1 1−1 0−1 0 0 01 00 10 −10 00 −1    1 0−1 1   0 1⎦⎥⎥

⎥⎥⎤. (2) 

It is assumed that the temperature is distributed within the tetrahedron, following the affine 
function of Cartesian spatial coordinates 𝜏௜ሺ𝑥, 𝑦, 𝑧ሻ  =  𝑔௫  𝑥 + 𝑔௬ 𝑦 + 𝑔௭ 𝑧 + 𝑎, (3) 

 where 𝑎 is an auxiliary constant introduced in order to later develop a square matrix. Then, the 
temperatures in the primary nodes of the reference tetrahedron are as follows: 𝜏଴  =  𝑔௫ 𝑥଴ + 𝑔௬ 𝑦଴ + 𝑔௭ 𝑧଴ + 𝑎𝜏ଵ  =  𝑔௫ 𝑥ଵ + 𝑔௬ 𝑦ଵ + 𝑔௭ 𝑧ଵ + 𝑎𝜏ଶ  =  𝑔௫ 𝑥ଶ + 𝑔௬ 𝑦ଶ + 𝑔௭ 𝑧ଶ + 𝑎𝜏ଷ  =  𝑔௫ 𝑥ଷ + 𝑔௬ 𝑦ଷ + 𝑔௭ 𝑧ଷ + 𝑎 , (4) 

where the Cartesian coordinates of the nodes 𝑁 =  ሼ𝑛଴,𝑛ଵ,𝑛ଶ,𝑛ଷሽ are the following 

቎𝑛଴𝑛ଵ𝑛ଶ𝑛ଷ቏  =  ቎𝑥଴ 𝑦଴ 𝑧଴𝑥ଵ 𝑦ଵ 𝑧ଵ𝑥ଶ 𝑦ଶ 𝑧ଶ𝑥ଷ 𝑦ଷ 𝑧ଷ቏. (5) 

The equation system shown in Equation (4), in matrix form, is as follows: 

቎𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ
𝑦଴𝑦ଵ𝑦ଶ𝑦ଷ

𝑧଴𝑧ଵ𝑧ଶ𝑧ଷ
1111቏ ቎

𝑔௫𝑔௬𝑔௭𝑎 ቏  =  ቎𝜏଴𝜏ଵ𝜏ଶ𝜏ଷ቏, (6) 

 which in short form can be written as ሾ𝐵ሿସ×ସሾ𝐺௔ሿସ×ଵ  =  ሾ𝜏ሿସ×ଵ, (7) 

 and then, ሾ𝐺௔ሿ  =  ሾ𝐵ሿିଵሾ𝜏ሿ. (8) 

The Cramer rule can be used to solve Equation (6). The determinant of the system is 

∆ =  ቮ𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ
𝑦଴𝑦ଵ𝑦ଶ𝑦ଷ

𝑧଴𝑧ଵ𝑧ଶ𝑧ଷ
1111ቮ. (9) 

Then, 

  𝑔௫  =  ቮ
𝜏଴𝜏ଵ𝜏ଶ𝜏ଷ

𝑦଴𝑦ଵ𝑦ଶ𝑦ଷ
𝑧଴𝑧ଵ𝑧ଶ𝑧ଷ

1111ቮ∆ ,    𝑔௬  =  ቮ
𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ

𝜏଴𝜏ଵ𝜏ଶ𝜏ଷ
𝑧଴𝑧ଵ𝑧ଶ𝑧ଷ

1111ቮ∆  ,    𝑔௭  =  ቮ
𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ

𝑦଴𝑦ଵ𝑦ଶ𝑦ଷ
𝜏଴𝜏ଵ𝜏ଶ𝜏ଷ

1111ቮ∆ .  (10) 

We do not calculate 𝑎 because 𝜕𝑎 𝜕𝑥ൗ  =  𝜕𝑎 𝜕𝑦 ൗ = 𝜕 𝑎 𝜕𝑧ൗ  =  0. 

2.1. Analytical Development of gx, gy, and gz 

To calculate gx, we developed Equation (10) using adjuncts of the determinant 

𝑔௫  =  𝜏଴ ൥௬భ ௭భ ଵ௬మ ௭మ ଵ௬య ௭య ଵ൩∆ − 𝜏ଵ ൥௬బ ௭బ ଵ௬మ ௭మ ଵ௬య ௭య ଵ൩∆ + 𝜏ଶ ൥௬బ ௭బ ଵ௬భ ௭భ ଵ௬య ௭య ଵ൩∆ − 𝜏ଷ ൥௬బ ௭బ ଵ௬భ ௭భ ଵ௬మ ௭మ ଵ൩∆ , 
(11) 

 and we obtain the following expression 
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𝑔௫  = ఛబ∆ ሾሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ − ሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ + ሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻሿ− ఛభ∆ ሾሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ − ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ + ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻሿ+ ఛమ∆ ሾሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ − ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ + ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻሿ− ఛయ∆ ሾሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻ − ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻ + ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻሿ . (12) 

In the same way, we obtain gy and y gz 𝑔௬  = −ఛబ∆ ሾሺ𝑥ଶ𝑧ଷ − 𝑥ଷ𝑧ଶሻ − ሺ𝑥ଵ𝑧ଷ − 𝑥ଷ𝑧ଵሻ + ሺ𝑥ଵ𝑧ଶ − 𝑥ଶ𝑧ଵሻሿ+ ఛభ∆ ሾሺ𝑥ଶ𝑧ଷ − 𝑥ଷ𝑧ଶሻ − ሺ𝑥଴𝑧ଷ − 𝑥ଷ𝑧଴ሻ + ሺ𝑥଴𝑧ଶ − 𝑥ଶ𝑧଴ሻሿ− ఛమ∆ ሾሺ𝑥ଵ𝑧ଷ − 𝑥ଷ𝑧ଵሻ − ሺ𝑥଴𝑧ଷ − 𝑥ଷ𝑧଴ሻ + ሺ𝑥଴𝑧ଵ − 𝑥ଵ𝑧଴ሻሿ+ ఛయ∆ ሾሺ𝑥ଵ𝑧ଶ − 𝑥ଶ𝑧ଵሻ − ሺ𝑥଴𝑧ଶ − 𝑥ଶ𝑧଴ሻ + ሺ𝑥଴𝑧ଵ − 𝑥ଵ𝑧଴ሻሿ , (13) 

𝑔௭  = ఛబ∆ ሾሺ𝑥ଶ𝑧ଷ − 𝑥ଷ𝑦ଶሻ − ሺ𝑥ଵ𝑦ଷ − 𝑥ଷ𝑦ଵሻ + ሺ𝑥ଵ𝑦ଶ − 𝑥ଶ𝑦ଵሻሿ− ఛభ∆ ሾሺ𝑥ଶ𝑦ଷ − 𝑥ଷ𝑦ଶሻ − ሺ𝑥଴𝑦ଷ − 𝑥ଷ𝑦଴ሻ + ሺ𝑥଴𝑦ଶ − 𝑥ଶ𝑦଴ሻሿ+ ఛమ∆ ሾሺ𝑥ଵ𝑦ଷ − 𝑥ଷ𝑦ଵሻ − ሺ𝑥଴𝑦ଷ − 𝑥ଷ𝑦଴ሻ + ሺ𝑥଴𝑦ଵ − 𝑥ଵ𝑦଴ሻሿ− ఛయ∆ ሾሺ𝑥ଵ𝑦ଶ − 𝑥ଶ𝑦ଵሻ − ሺ𝑥଴𝑦ଶ − 𝑥ଶ𝑦଴ሻ + ሺ𝑥଴𝑦ଵ − 𝑥ଵ𝑦଴ሻሿ . (14) 

We know that 𝑔𝑟𝑎𝑑 𝜏ሺ𝑥, 𝑦, 𝑧ሻ  =  డఛడ௫ 𝚤 + డఛడ௬ 𝚥 + డఛడ௭ 𝑘ሬ⃗ . (15) 

Taking into account Equation (2), then, 𝜕𝜏𝜕𝑥  =  𝑔௫ ,       𝜕𝜏𝜕𝑦  =  𝑔௬ ,       𝜕𝜏𝜕𝑧  =  𝑔௭ , (16) 

 and, hence, 𝑔𝑟𝑎𝑑 𝜏ሺ𝑥,𝑦, 𝑧ሻ  =  𝑔௫ 𝚤 + 𝑔௬ 𝚥 + 𝑔௭ 𝑘ሬ⃗ . (17) 

2.2. Building the Matrix ሾ𝐴ఛሿ 
The Fourier heat transmission equation has been established, using the CM, as follows  ሾ𝑄௔ሿ଺×ଵ  =  ሾ𝑀ఛሿ଺×଺ሾ𝐺ሿ଺×ସሾ𝜏ሿସ×ଵ, (18) 

where ሾ𝑄௔ሿ is the heat flow transmitted and ሾ𝑀ఛሿ is the constitutive matrix of thermal transmission 
we propose in this article. Suppose there is a matrix ሾ𝐴ఛሿ, such that ሾ𝑀ఛሿ଺×଺  =  ൣ𝑆ሚ൧଺×ଷሾ𝐴ఛሿଷ×଺, (19) 

 where ൣ𝑆ሚ൧ is the dual faces matrix of the cell 

ൣ𝑆ሚ൧  =  
⎣⎢⎢
⎢⎢⎢
⎡𝑆଴௫𝑆ଵ௫𝑆ଶ௫𝑆ଷ௫𝑆ସ௫𝑆ହ௫

𝑆଴௬𝑆ଵ௬𝑆ଶ௬𝑆ଷ௬𝑆ସ௬𝑆ହ௬
𝑆଴௭𝑆ଵ௭𝑆ଶ௭𝑆ଷ௭𝑆ସ௭𝑆ହ௭⎦⎥⎥

⎥⎥⎥
⎤ . (20) 

The heat flow transmitted ሾ𝑞ሿ is ሾ𝑞ሿଷ×ଵ  =  ሾ𝐴ఛሿଷ×଺ሾ𝐺ሿ଺×ସሾ𝜏ሿସ×ଵ. (21) 

We define an unknown vector ሾ𝑋ሿ, such as ሾ𝑋ሿ଺×ଵ  =  ሾ𝐺ሿ଺×ସሾ𝜏ሿସ×ଵ. (22) 

The density heat vector ሾ𝑞⃗ሿ is 
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ሾ𝑞⃗ሿଷ×ଵ  =  −𝜆 ൥𝑔௫𝑔௬𝑔௭൩  =  −𝜆 ሾ𝑔𝑟𝑎𝑑ሺ𝜏ሻሿଷ×ଵ, (23) 

 where 𝜆 is the thermal conductivity coefficient, and, hence, the heat flow ሾ𝑄௕ሿ is ሾ𝑄௕ሿ଺×ଵ  =   ൣ𝑆ሚ൧଺×ଷሾ𝑞⃗ሿଷ×ଵ. (24) 

Then, what is written in Equation (23) is equal to Equation (18), and therefore ሾ𝑄௕ሿ  =  ሾ𝑄௔ሿ −𝜆 ൣ𝑆ሚ൧଺×ଷሾ𝑔𝑟𝑎𝑑ሺ𝜏ሻሿଷ×ଵ  =  ሾ𝑀ఛሿ଺×଺ሾ𝐺ሿ଺×ସሾ𝜏ሿସ×ଵ. (25) 

Replacing Equation (18) and Equation (21) in the second member of Equation (25), we obtain −𝜆 ൣ𝑆ሚ൧଺×ଷሾ𝑔𝑟𝑎𝑑ሺ𝜏ሻሿଷ×ଵ  =  ൣ𝑆ሚ൧଺×ଷሾ𝐴ఛሿଷ×଺ሾ𝑋ሿ଺×ଵ. (26) 

Simplifying the dual faces matrix ൣ𝑆ሚ൧ −𝜆 ሾ𝑔𝑟𝑎𝑑ሺ𝜏ሻሿଷ×ଵ  =  ሾ𝐴ఛሿଷ×଺ሾ𝑋ሿ଺×ଵ. (27) 

Replacing ሾ𝑋ሿ with the values of ሾ𝐺ሿ and ሾ𝜏ሿ, we obtain 

ሾ𝑋ሿ଺×ଵ  =  ሾ𝐺ሿ଺×ସሾ𝜏ሿସ×ଵ  =  ⎣⎢⎢
⎢⎢⎡−1 1−1 0−1 0 0 01 00 10 −10 00 −1    1 0−1 1   0 1⎦⎥⎥

⎥⎥⎤
଺×ସ

቎𝜏଴𝜏ଵ𝜏ଶ𝜏ଷ቏ସ×ଵ  =  
⎣⎢⎢
⎢⎢⎡
−𝜏଴+𝜏ଵ−𝜏଴+𝜏ଶ−𝜏଴+𝜏ଷ−𝜏ଵ+𝜏ଶ−𝜏ଶ+𝜏ଷ−𝜏ଵ+𝜏ଷ⎦⎥⎥

⎥⎥⎤
଺×ଵ

 (28) 

and, therefore, 

⎣⎢⎢
⎢⎢⎡
𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ𝑥ସ𝑥ହ⎦⎥⎥
⎥⎥⎤
଺×ଵ

 =  
⎣⎢⎢
⎢⎢⎡
−𝜏଴+𝜏ଵ−𝜏଴+𝜏ଶ−𝜏଴+𝜏ଷ−𝜏ଵ+𝜏ଶ−𝜏ଶ+𝜏ଷ−𝜏ଵ+𝜏ଷ⎦⎥⎥

⎥⎥⎤
଺×ଵ

. (29) 

Then, observing Equation (27), replacing the value of ሾ𝑔𝑟𝑎𝑑ሺ𝜏ሻሿଷ×ଵ, then, 

−𝜆 ൥𝑔௫𝑔௬𝑔௭൩ଷ×ଵ  =  ሾ𝐴ఛሿଷ×଺ ⎣⎢⎢
⎢⎢⎡
𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ𝑥ସ𝑥ହ⎦⎥⎥
⎥⎥⎤
଺×ଵ

, (30) 

that is to say 

−𝜆 ൥𝑔௫𝑔௬𝑔௭൩ଷ×ଵ  =  ൥𝐴଴଴𝐴ଵ଴𝐴ଶ଴ 𝐴଴ଵ𝐴ଵଵ𝐴ଶଵ 𝐴଴ଶ𝐴ଵଶ𝐴ଶଶ 𝐴଴ଷ𝐴ଵଷ𝐴ଶଷ 𝐴଴ସ𝐴ଵସ𝐴ଶସ 𝐴଴ହ𝐴ଵହ𝐴ଶହ൩ଷ×଺ ⎣⎢⎢
⎢⎢⎡
𝑥଴𝑥ଵ𝑥ଶ𝑥ଷ𝑥ସ𝑥ହ⎦⎥⎥
⎥⎥⎤
଺×ଵ

, (31) 

and, therefore, developing Equation (31), we obtain the following expression 

−𝜆 ൥𝑔௫𝑔௬𝑔௭൩  =  ൥𝐴଴଴ 𝑥଴ + 𝐴଴ଵ 𝑥ଵ + 𝐴଴ଶ 𝑥ଶ + 𝐴଴ଷ 𝑥ଷ + 𝐴଴ସ 𝑥ସ + 𝐴଴ହ 𝑥ହ𝐴ଵ଴ 𝑥଴ + 𝐴ଵଵ 𝑥ଵ + 𝐴ଵଶ 𝑥ଶ + 𝐴ଵଷ 𝑥ଷ + 𝐴ଵସ 𝑥ସ + 𝐴ଵହ 𝑥ହ𝐴ଶ଴ 𝑥଴ + 𝐴ଶଵ 𝑥ଵ + 𝐴ଶଶ 𝑥ଶ + 𝐴ଶଷ 𝑥ଷ + 𝐴ଶସ 𝑥ସ + 𝐴ଶହ 𝑥ହ൩. (32) 

The value of 𝑔௫ is included in the following equation  −𝜆 𝑔௫   =  𝐴଴଴ 𝑥଴ + 𝐴଴ଵ 𝑥ଵ + 𝐴଴ଶ 𝑥ଶ + 𝐴଴ଷ 𝑥ଷ + 𝐴଴ସ 𝑥ସ + 𝐴଴ହ 𝑥ହ. (33) 

Replacing the values 𝑥௜ developed in Equation (29), we obtain 
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−𝜆 𝑔௫   =  𝐴଴଴ ሺ−𝜏଴+𝜏ଵሻ + 𝐴଴ଵ ሺ−𝜏଴+𝜏ଶሻ + 𝐴଴ଶ ሺ−𝜏଴+𝜏ଷሻ+ +𝐴଴ଷ ሺ−𝜏ଵ+𝜏ଶሻ + 𝐴଴ସ ሺ−𝜏ଶ+𝜏ଷሻ + 𝐴଴ହ ሺ−𝜏ଵ+𝜏ଷሻ. (34) 

If we group the terms affected by the same temperature value, then −𝜆 𝑔௫   = 𝜏଴ሺ−𝐴଴଴ − 𝐴଴ଵ − 𝐴଴ଶሻ ++𝜏ଵሺ𝐴଴଴ − 𝐴଴ଷ − 𝐴଴ହሻ ++𝜏ଶሺ𝐴଴ଵ + 𝐴଴ଷ − 𝐴଴ସሻ ++𝜏ଷሺ𝐴଴ଶ + 𝐴଴ସ + 𝐴଴ହሻ  ,  (35) 

and replacing the value of 𝑔௫ calculated in Equation (12), then, by matching what was obtained in 
Equation (35), we get −ఒఛబ∆ ሾሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ − ሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ + ሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻሿ+ ఒఛభ∆ ሾሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ − ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ + ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻሿ− ఒఛమ∆ ሾሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ − ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ + ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻሿ+ ఒఛయ∆ ሾሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻ − ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻ + ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻሿ  = 𝜏଴ሺ−𝐴଴଴ − 𝐴଴ଵ − 𝐴଴ଶሻ+𝜏ଵሺ𝐴଴଴ − 𝐴଴ଷ − 𝐴଴ହሻ+𝜏ଶሺ𝐴଴ଵ + 𝐴଴ଷ − 𝐴଴ସሻ+𝜏ଷሺ𝐴଴ଶ + 𝐴଴ସ + 𝐴଴ହሻ

. 

. (36) 

Then, matching the terms that affect to 𝜏଴ in (36) in both sides, we obtain the following expression −ఒఛబ∆ ሾሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ − ሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ + ሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻሿ  =  𝜏଴ሺ−𝐴଴଴ − 𝐴଴ଵ − 𝐴଴ଶሻ. (37) 

Comparing the terms in Equation (37)  −ఒ∆ ሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ = −𝐴଴଴ ఒ∆ ሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ = −𝐴଴ଵ −ఒ∆ ሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻ = −𝐴଴ଶ  ⎭⎪⎬
⎪⎫

, (38) 

we get 𝐴଴଴  =  ఒ∆ ሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ𝐴଴ଵ  =  ఒ∆ ሺ𝑦ଷ𝑧ଵ − 𝑦ଵ𝑧ଷሻ𝐴଴ଶ  =  ఒ∆ ሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻ. (39) 

Matching the terms that affect to 𝜏ଵ in Equation (36) ఒఛభ∆ ሾሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ − ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ + ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻሿ  =  𝜏ଵሺ𝐴଴଴ − 𝐴଴ଷ − 𝐴଴ହሻ, (40) 

we obtain 𝐴଴଴  =  ఒ∆ ሺ𝑦ଶ𝑧ଷ − 𝑦ଷ𝑧ଶሻ𝐴଴ଷ  =  ఒ∆ ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ𝐴଴ହ  =  ఒ∆ ሺ𝑦ଶ𝑧଴ − 𝑦଴𝑧ଶሻ. (41) 

Matching the terms that affect to 𝜏ଶ in Equation (36), then, −ఒఛమ∆ ሾሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ − ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ + ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻሿ  =  +𝜏ଶሺ𝐴଴ଵ + 𝐴଴ଷ − 𝐴଴ସሻ, (42) 

and, therefore, we get 
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𝐴଴ଵ = ఒ∆ ሺ𝑦ଷ𝑧ଵ − 𝑦ଵ𝑧ଷሻ𝐴଴ଷ = ఒ∆ ሺ𝑦଴𝑧ଷ − 𝑦ଷ𝑧଴ሻ𝐴଴ସ = ఒ∆ ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻ. (43) 

In the same way, matching the terms that affect to 𝜏ଷ in Equation (36), then, ఒఛయ∆ ሾሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻ − ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻ + ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻሿ = 𝜏ଷሺ𝐴଴ଶ + 𝐴଴ସ + 𝐴଴ହሻ, (44) 

and, hence, we get 𝐴଴ଶ = ఒ∆ ሺ𝑦ଵ𝑧ଶ − 𝑦ଶ𝑧ଵሻ𝐴଴ହ = ఒ∆ ሺ𝑦ଶ𝑧଴ − 𝑦଴𝑧ଶሻ𝐴଴ସ = ఒ∆ ሺ𝑦଴𝑧ଵ − 𝑦ଵ𝑧଴ሻ. (45) 

Following the same procedure, we obtain the terms of 𝑔௬ 𝐴ଵ଴  =  ఒ∆ ሺ𝑥ଷ𝑧ଶ − 𝑥ଶ𝑧ଷሻ𝐴ଵଵ  =  ఒ∆ ሺ𝑥ଵ𝑧ଷ − 𝑥ଷ𝑧ଵሻ𝐴ଵଶ  =  ఒ∆ ሺ𝑥ଶ𝑧ଵ − 𝑥ଵ𝑧ଶሻ
𝐴ଵଷ  =  ఒ∆ ሺ𝑥ଷ𝑧଴ − 𝑥଴𝑧ଷሻ𝐴ଵସ  =  ఒ∆ ሺ𝑥ଵ𝑧଴ − 𝑥଴𝑧ଵሻ𝐴ଵହ  =  ఒ∆ ሺ𝑥଴𝑧ଶ − 𝑥ଶ𝑧଴ሻ, (46) 

and of 𝑔௭ 𝐴ଶ଴ = ఒ∆ ሺ𝑥ଶ𝑧ଷ − 𝑥ଷ𝑦ଶሻ𝐴ଶଵ = ఒ∆ ሺ𝑥ଷ𝑦ଵ − 𝑥ଵ𝑦ଷሻ𝐴ଶଶ = ఒ∆ ሺ𝑥ଵ𝑦ଶ − 𝑥ଶ𝑦ଵሻ
𝐴ଶଷ = ఒ∆ ሺ𝑥଴𝑦ଷ − 𝑥ଷ𝑦଴ሻ𝐴ଶସ = ఒ∆ ሺ𝑥଴𝑦ଵ − 𝑥ଵ𝑦଴ሻ𝐴ଶହ = ఒ∆ ሺ𝑥ଶ𝑦଴ − 𝑥଴𝑦ଶሻ. (47) 

2.3. New ሾ𝑀ఛሿ Matrix 

In the previous section, the terms for Aij have been obtained. Now we can build the matrix ሾ𝐴ఛሿ, 
ሾ𝐴ఛሿ  =  𝜆Δ ቎ ሺ𝑦ଷ𝑧ଶ − 𝑦ଶ𝑧ଷሻ ሺ𝑦ଵ𝑧ଷ − 𝑦ଷ𝑧ଵሻ ሺ𝑦ଶ𝑧ଵ − 𝑦ଵ𝑧ଶሻ ሺ𝑦ଷ𝑧଴ − 𝑦଴𝑧ଷሻ ሺ𝑦ଵ𝑧଴ − 𝑦଴𝑧ଵሻ ሺ𝑦଴𝑧ଶ − 𝑦ଶ𝑧଴ሻሺ𝑥ଶ𝑧ଷ − 𝑥ଷ𝑧ଶሻ ሺ𝑥ଷ𝑧ଵ − 𝑥ଵ𝑧ଷሻ ሺ𝑥ଵ𝑧ଶ − 𝑥ଶ𝑧ଵሻ ሺ𝑥଴𝑧ଷ − 𝑥ଷ𝑧଴ሻ ሺ𝑥଴𝑧ଵ − 𝑥ଵ𝑧଴ሻ ሺ𝑥ଶ𝑧଴ − 𝑥଴𝑧ଶሻሺ𝑥ଷ𝑦ଶ − 𝑥ଶ𝑦ଷሻ ሺ𝑥ଵ𝑦ଷ − 𝑥ଷ𝑦ଵሻ ሺ𝑥ଶ𝑦ଵ − 𝑥ଵ𝑦ଶሻ ሺ𝑥ଷ𝑦଴ − 𝑥଴𝑦ଷሻ ሺ𝑥ଵ𝑦଴ − 𝑥଴𝑦ଵሻ ሺ𝑥଴𝑦ଶ − 𝑥ଶ𝑦଴ሻ቏. (48) 

Therefore, the new thermal conductivity constitutive matrix is ሾ𝑀ఛሿ଺×଺  =  ൣ𝑆ሚ൧଺×ଷሾ𝐴ఛሿଷ×଺. (49) 

3. Results and Validation 

Verification consists of checking that the procedure implemented is conceptually correct, and 
validation consists of checking that the data obtained from the numerical simulations coincide with 
an objective reality [23–24]. The verification was carried out in Section 2. To check the validation of 
the new matrix, three types of numerical simulations were designed and executed, which will be 
explained below. On the one hand, a highly accurate numerical simulation was carried out using 
FEM, and then two numerical simulations were carried out to evaluate the accuracy of ሾ𝑀ఒሿ and ሾ𝑀ఛሿ, using CM. 

3.1. Validation of FEM 

Our reference to validate the results obtained in Sections 3.2 and 3.3 was FEM. Specifically, we 
used the FEMM program (Finite Element Method Magnetics program) [25], and then we applied the 
statistics to verify FEMM´s validity. 

We added this section to verify FEMM through the analytical solution of a simple problem for a 
single thermal conductivity. Then, FEMM was applied as a reference tool to verify a more complex 
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problem of two thermal conductivities, and we compared the FEM with the results obtained by 
means of the two thermal conductivity matrices, ሾ𝑀ఒሿ and ሾ𝑀ఛሿ, analyzed with the CM. 

The problem consists of analyzing the distribution of temperatures in a tube with a single 
thermal conductivity and axial symmetry. In Figure 3, a section of the tube with dimensions 0.5 × 2.0 
m can be observed, associated to a cylinder 2 m high and 2 m in diameter. The cylinder wall had a 
thermal conduction coefficient of 1 Wm−1K−1. 

 
Figure 3. Temperature distribution in a section of a tube. 

This problem has the following analytical solution 

𝜏௫  =  ሺ𝜏ଶ − 𝜏ଵሻ ln 𝑟௫𝑟ଵln 𝑟ଶ𝑟ଵ + 𝜏ଵ (50) 

 with r1 and r2 being the internal and external radius of the tube, respectively; rx the radius of an 
intermediate point between r1 and r2; and τ the temperature at the point considered. 

The profile of the temperatures of a parametric section made in the FEMM model has been 
compared with the values obtained from complete analytical Equation (50), as can be seen in Figure 
3. In this parametric section, the temperatures were measured for two concrete meshes, one with 2517 
nodes and the other with 1,013,144 nodes. 

The boundary conditions were the following. The highest temperature was on the outer surface 
of the cylinder (80 °C), and the lowest was on the inner face of the cylinder (30 °C). The top and 
bottom cylinder covers were considered perfect insulators. There was no heat source inside the 
cylinder. The initial and final conditions were the same, because it is a stationary process. 

Figure 4 shows the results obtained for the two meshes analyzed with FEMM and the analytical 
solution for the parametric cut shown in Figure 3. We observed that the three curves were coincident, 
which allowed us to conclude that the solution with 2517 nodes was already a very good solution. 



Appl. Sci. 2019, 9, 4521 10 of 18 

 
Figure 4. Validation of FEMM vs. analytical solution. 

Table 1 shows the temperature values at a characteristic point located 0.75 m from the cylinder 
axis, and compares the temperature obtained by the exact analytical equation with the result obtained 
by FEMM for 2517 and 1,013,144 nodes. As it can be seen, the error converged for 2517, and was 
almost coincident with the analytical value, with a 0.0223% difference percentage. 

Table 1. Temperatures for the validation of FEMM. 

Mesh [Nodes] 2517 1013144 
Temperature (°C) a 0.75 m 
(Analytical ref: 72.7422 °C) 72.7585 72.7585 

Difference of temperatures (°C) 0.0162 0.0162 
Percentage difference (%) 0.0223 0.0223 

Table 2 shows the metrics used to validate the proposed mathematical models. Metrics are 
statistics used to assess the errors between the standard and proposed model. As stated above, our 
standard model is the FEMM. We compared the results obtained with the proposed models, and, 
from the contrast of both results (the FEMM and studied model), we obtained the proposed metrics. 
R2 is the coefficient of determination. RMSPE is the root mean square percentage error. MAEP is the 
mean absolute percentage error. PBIAS is the percentage bias. The metrics indicate the validity of 
FEMM as a reference standard, because the values obtained are very close to the optimum. 

Table 2. Metrics for the validation of FEMM vs. analytical solution. from the contrast of both results 
(the FEMM and studied model), we obtained the proposed metrics. R2—coefficient of 

determination; RMSPE—root mean square percentage error; MAEP—mean absolute percentage 
error; PBIAS—percentage bias 

Mesh [Nodes] 2517 1013144 References 
R2 [0, +1]. Optimum: +1 1 1 [26] 

RMSPE [-1, +1]. Optimum: 0 0.0001 0.0001 [27] 
MAEP [-1, +1]. Optimum: 0 0.0001 0.0001 [27] 
PBIAS [-1, +1]. Optimum: 0 0.0001 0.0001 [28] 

The temperatures obtained were close enough to the analytical solution to consider the FEMM 
a good benchmark. In the distribution of errors (Figure 5), there is a bias respect to the zero error. 
This indicates a certain systemic error in the FEMM, which we assumed (0%, 0.03%; see Figure 5). 
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Figure 5. Errors histogram for FEMM vs. analytical solution, mesh with 1,013,144 nodes. 

The simulations carried out were developed on a PC type Dell, Intel® Core (TM) i7-3820, 3.6 
GHz, 32 GB RAM. The software, freely used, was Gmsh [29], as a CAD tool, mesher, and post-
processing in 3D; FEMM as a CAD tool, meshing, processing, and post-processing using 2D FEM; 
and Dev C ++ [30] to develop the calculations in CM. 

All of the numerical simulations that were carried out followed the same methodology [31], 
which is the following: formulation of the problem; geometric modelling and definition of the thermal 
domain; establishment of the boundary conditions and the initial conditions; generation of the mesh; 
simulation with processing of the results; and, finally, analysis of the results. 

3.2. Numerical Simulation with ሾ𝑀ఒሿ 
The model proposed for the validation consisted of a tube that is similar to the stator or the rotor 

of an electric machine, especially that of an asynchronous electric machine. It consisted of a tube of 
2.00 m in height and 2.00 m in diameter. The wall has a thickness of 0.50 m. This wall is composed of 
two concentric tubes, with a thickness of 0.25 m for each one. The thermal conductivities of the inner 
and outer tubes were λ1 = 50.0 Wm−1K−1 and λ2 = 193.0 Wm−1K−1, respectively. 

The wall domain, Ωw, is defined as the volume between the outer surface and the inner surface 
of the tube. The enveloping domain, Ωe, is defined as the external volume that surrounds the tube. 
The boundary conditions were the following: Ωw is a thermal conductor, Ωe is a thermal insulator, 
and there are no internal heat sources. 

The boundary conditions were the following: the external temperature, T0_ext = 30 °C and the 
internal temperature, T0_int = 80 °C. It was considered that the heat advanced in a radial direction, that 
the upper and lower covers of the tube were perfect insulators and that there were no heat sources 
inside the tube. In addition, it was considered a pure heat transmission without convection or 
radiation. Therefore, it is a three-dimensional problem with axial symmetry. 

To measure the temperatures, both in the 2D and 3D distributions, a parametric cut was made 
on a segment, in a radial direction, and there, the temperatures were measured, as can be seen in 
Figure 6. 
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Figure 6. Parametric cut of temperatures in a 3D model with the Cell Method (CM). 

The inner tube had a thermal conductivity of 50.0 Wm−1K−1, typical of steels, with a value 
between 46.6 and 51.9 Wm−1K−1. The outer tube had a thermal conductivity of 193.0 Wm−1K−1, typical 
of aluminum alloys, with a value between 95.3 and 222.0 Wm−1K−1. 

In Figure 7, we analyzed a two-dimensional temperature distribution, which corresponds to the 
generatrix rectangle of revolution of the tube wall. This temperature distribution has been generated 
with FEMM using FEM. The temperature that was used as a reference for the validation of the results 
was that obtained by a horizontal parametric cut at half the height of the bi-dimensional distribution. 

 
Figure 7. Temperatures of reference with FEMM and λ1 = 50.0 Wm−1K−1 and λ2 = 193.0 Wm−1K−1. 

Then, in this section, we calculated, through ሾ𝑀ఒሿ, the heat conduction in the tube of Figure 6. 
The matrix ሾ𝑀ఒሿ was proposed as an alternative to the matrices used in [18–19]. These results will be 
compared with those obtained with the new matrix ሾ𝑀ఛሿ in the Section 3.2. 

On the one hand, a 2D FEMM calculation of 11,042 nodes was carried out, and on the other hand, 
five calculations were made with CM for an increasing number of nodes, ranging from 108 to 13,136 
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nodes, using ሾ𝑀ఒሿ. From 4461 nodes, the results were practically coincident between CM 3D and 
FEMM 2D, which we considered to be the solution to the problem, because being axisymmetric, its 
3D equivalent mesh had many more nodes. The results obtained are shown in Figure 8. 

 
Figure 8. Temperatures in the tube with two thermal conductivities using ሾ𝑀ఒሿ. 

The distribution of errors when comparing CM with the temperatures obtained in FEM is shown 
in Figure 9. There is a bias between the actual distribution of errors (bar chart in blue) and the 
theoretical distribution (Gauss bell type, red color chart). This bias is approximately 0.1%. 

 
Figure 9. Errors distribution between CM and finite element method (FEM) using ሾ𝑀ఒሿ. 

The errors, as expected, decreased with the increase in mesh density, as shown in Table 3. 

Table 3. Temperature at a point of the tube with two conductivities using ሾ𝑀ఒሿ. 
Mesh [Nodes] 108 182 4461 9679 13,136 

Temperature (°C) at 0.75 m 
(FEMM ref: 64.0653 °C) 

67.8991 61.7719 64.0343 63.6987 63.6975 

Difference of temperatures (°C) 3.8338 -2.2934 -0.0310 -0.3666 -0.3678 
Percentage difference (%) 5.9842 -3.5798 -0.0484 -0.5722 -0.5741 
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The temperatures in Table 3 were taken at one point placed radially at 0.75 m from the center of 
the tube, and axially at half its height (1.00 m; see Figure 6). 

Applying the following metrics, the determination coefficient (R2), the root mean square 
perceptual error (RMSPE), the mean absolute percentage error (MAEP), and percentage bias (PBIAS), 
the values obtained can be seen in Table 4. 

Table 4. Metrics for thermal simulation using ሾ𝑀ఒሿ. 
Mesh [nodes] 108 182 4461 9679 13,136 References 

R2 [0, +1]. Optimum: +1 0.9929 0.9982 1.0000 1.0000 1.0000 [26] 
RMSPE [-1, +1]. Optimum: 0 0.0518 0.0122 0.0029 0.0013 0.0012 [27] 
MAEP [-1, +1]. Optimum: 0 0.0471 0.0086 0.0025 0.0011 0.0011 [27] 
PBIAS [-1, +1]. Optimum: 0 0.0450 -0.0051 0.0025 0.0011 0.0009 [28] 

The R2 values indicate a good adjustment of data in all of the comparatives. The RMSPE, MAEP, 
and PBIAS are beside the optimum. Even so, all of the indicators are in the optimal range. Looking at 
Table 2, we can assure that the biggest error committed is the RMSPE, whose value is 0.0518%. This 
error decreases as the node density increases. It is a more than acceptable value. 

We compared a 3D CM model, with low density and tetrahedral meshes, with an axial symmetry 
model in 2D, solved by FEM, with a dense triangular mesh. The errors were not significant. The 
calculation process was greatly simplified. Remember that the number of the nodes indicates the 
number of equations and unknowns that solve the global matrix. This allows for us to see that there 
is no significant improvement when increasing the number of nodes, with denser meshes, as the 
results obtained with meshes of 9679 and 13,136 nodes were very similar, as far as errors are 
concerned. 

3.3. Numerical Simulation with ሾ𝑀ఛሿ 
In the geometric model, the boundary conditions were the same as in the previous case. 

Therefore, the numerical simulation has been carried out with the tube indicated in Figure 6, and the 
FEMM model used is shown in Figure 7. Similarly, the three-dimensional parametric section can be 
seen in Figure 6. However, in this case, the thermal conductivity matrix was ሾ𝑀ఛሿ.  

The objective was to check the validity of the new thermal conductivity matrix ሾ𝑀ఛሿ, and that it 
obtains better results than ሾ𝑀ఒሿ.  

On the one hand, a calculation with a 2D FEMM of 11,042 nodes has been made, and, on the 
other hand, five calculations was made with CM for an increasing number of nodes ranging from 102 
to 13,136 nodes, using ሾ𝑀ఛሿ. From 6428 nodes, the results are practically coincident between 3D CM 
and 2D FEMM, which we consider as a solution to the problem. The results obtained are shown in 
the graph Figure 10. 
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Figure 10. Temperatures in the tube with two thermal conductivities using ሾ𝑀ఛሿ. 

The distribution of errors when comparing CM with the temperatures obtained in FEM is shown 
in Figure 11. As can be seen, the bias has decreased to 0.05%. Hence, operating with a new thermal 
conduction constitutive matrix ሾ𝑀ఛሿ produces a smaller error than operating with ሾ𝑀ఒሿ. 

 
Figure 11. Errors distribution between CM and FEM using ሾ𝑀ఛሿ. 

As we expected, the errors decrease as the mesh density increases, as can be seen in Table 5. 

Table 5. Temperature at a point of the tube with two conductivities using ሾ𝑀ఛሿ. 
Mesh [nodes] 102 108 2328 6428 12,895 

1 68.4981 67.7963 63.7282 63.7047 63.6975 
Difference of temperatures [°C] 4.8022 4.1004 0.0323 0.0088 0.0016 

Percentage difference [%] 7.5393 6.4375 0.0507 0.0138 0.0025 

The temperatures in Table 3 have been taken at one point placed radially at 0.75 m from the 
center of the tube, and axially at half its height (1.00 m). 

Applying the metrics R2, RMSPE, MAEP, and PBIAS, the following values were obtained (see 
Table 6). 
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Table 6. Metrics for thermal simulation using ሾ𝑀ఛሿ. 
Mesh [nodes] 102 108 2328 6428 12,895 References 

R2 [0, +1]. Optimum: +1 0.9910 0.9932 1.0000 1.0000 1.0000 [26] 
RMSPE [-1, +1]. Optimum: 0 0.0576 0.0508 0.0026 0.0027 0.0008 [27] 
MAEP [-1, +1]. Optimum: 0 0.0522 0.0462 0.0023 0.0024 0.0007 [27] 
PBIAS [-1, +1]. Optimum: 0 0.0496 0.0442 0.0014 0.0022 0.0004 [28] 

Observing Table 6, we conclude that the errors are lower when the mesh density is increased, 
and also that errors are very small for meshes with low densities. In any case, the errors quickly 
converge towards the optimum of the metrics. 

Observing Table 7, it is verified that the thermal constitutive matrix ሾ𝑀𝝉ሿ that we provide in this 
article behaves much better than with ሾ𝑀ఒሿ. 

Table 7. Temperature errors using ሾ𝑀ఒሿ and ሾ𝑀ఛሿ. 
 FEMM ref: °C Obtained temp. ºC Error % ሾ𝑀ఒሿ 13,136 nodes 64.0653 63.6975 −0.5741 ሾ𝑀ఛሿ 12,895 nodes 63.6959 63.6975 0.0025 

Similarly, comparing the distribution of the error when we are using ሾ𝑀ఒሿ (Figure 9) with the 
distribution of the error when we use ሾ𝑀𝝉ሿ (Figure 11), it can be seen that in the case of ሾ𝑀𝝉ሿ, there is 
less bias, and it is closer to zero error when we are using ሾ𝑀ఒሿ. 

The proposal of the new thermal constitutive matrix ሾ𝑀ఛሿ fundamentally differs in not using 
averaged values, but exact values such as the Cartesian coordinates of the tetrahedron nodes and the 
vectors of the dual surfacesm as it can be seen in Equations (47) and (48). This implies greater 
precision, as its calculation base is strictly geometric and not approximate, as it can be seen in the 
error histograms in Figure 9 and 11, or if the values shown in Tables 3 to 6 are compared. The matrix ሾ𝑀ఛሿ converges more evenly towards the solution than the matrix ሾ𝑀ఒሿ does. 

4. Conclusions 

In this paper, a new constitutive matrix ሾ𝑀ఛሿ for thermal conduction for tetrahedral meshes, in 
a steady state thermal regime, has been developed through a new algebraic methodology, using the 
Cell Method. The results have been compared with those obtained for the same problem by means 
of the constitutive matrix ሾ𝑀ఒሿ, developed previously in other works. Taking a 2D axisymmetric 
model as reference, calculated with the finite element method, the errors obtained with the new 
matrix ሾ𝑀ఛሿ are of the order of 0.0025%, much lower than those obtained with ሾ𝑀ఒሿ. On the other 
hand, the finite formulation and its associated numerical method, the Cell Method, allows for great 
flexibility when mathematically modelling a physical phenomenon such as conduction heat transfer. 

The main advantage of the method proposed in this article is its simplicity. The constitutive 
matrices developed by previous methods presented complex calculations, while the new constitutive 
matrix, proposed in this work, depends exclusively on the coordinates of the vertices of the 
tetrahedra, which constitutes the mesh. 

In addition, the errors are much smaller with the new matrix, and this allows for meshes of 
smaller number of elements, obtaining the same precision with a lower temporal cost. 

As it has been underlined before, the simplicity of the method and its greater precision mean 
that the new methodology can be applied to more complex problems, such as the calculation of the 
thermal heating of the rotor and the stator of an electrical machine of much more complex geometry, 
and with more complex physical properties and boundary conditions, even convective types. This is 
critical in the problems in transitory regime. 
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Nomenclature 

Symbol Name Unit 
a Auxiliary constant K ሾ𝐴ఛሿ Auxiliary matrix Wm−2K−1 𝑔𝑟𝑎𝑑() Gradient K/m ሾ𝑄௔ሿ, ሾ𝑄௕ሿ, ሾ𝑞ሿ Heat flow W 𝑞⃗ Heat flow density W/m2 𝐷෩ Incidence matrix face–volume of dual mesh - 𝐺,𝐺௧ Incidence matrix edges–nodes of primal mesh - 
t Time s 𝚤, 𝚥, 𝑘ሬ⃗  Unitary vectors - 𝑆ప෩  𝑖 Surface vector of dual mesh m2 ሾ𝑀ఛሿ New thermal conductivity constitutive matrix W/K ሾ𝑀ఒሿ Thermal conductivity constitutive matrix W/K 𝜆 Thermal conductivity Wm−1 K−1𝑇, 𝜏 Temperature K ∆ Determinant m3 
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