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Abstract. This paper present an approximation of an
electromagnetic eddy current problem in 2D coupled with
circuital equations, using the Finite Formulation of
Electromagnetics Fields and the modified nodal method. The
definition equations of the two conductor models (filiform and
solid types) are deducted with this formulation. The analysis is
performed at steady state and transient state. To the transient
state, a classical scheme of time discretization is used with the
implicit Runge-Kutta method for two states. As validation
method have been compared results between Finite Element
Method and Finite Formulation of Electromagnetics Fields.
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1. Introduction

There are several references that use the circuital
equations using modified nodal method (MNM) and finite
element method (FEM) [1], [2], [3].

In this paper is used a variation of the modified nodal
method (MNM) and the finite formulation of
electromagnetics fields (FFEF) applied to the Maxwell's
equations. With this procedure is possible to assemble the
continuous behavior of the discretized field equations,
with the circuital equations in a single matrix.
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Fig. 1. Mixed-models representation.

The matrix equations are implemented with the Scilab, a
scientific software package for numerical computations.

To the continuous domain discretization is used the Gmsh
program, that is an automatic 3D finite element mesh
generator, with pre- and post-processing facilities [4].

In this paper is developed a method that uses both tools,
the MNM and FFEF. This allows the simultaneous
analysis of the distributed and concentrated models as
shown in Fig. 1.

2. Finite Formulation

The finite formulation of electromagnetics fields (FFEF)
is based on the use of scalar global variables [5], obtained
by integrating field variables on a double system of
meshes, strictly connected by relations of duality.

Global variables are distinguished in two types, the
configuration variables (CV) associated to the primal
mesh and the source variables (SV), associated to the dual
one. CV involved in the magnetostatic problems are
magnetic fluxes ¢ on primal faces and line integral a of
magnetic vector potential on primal edges. The considered
SV are magnetomotive forces F on dual edges.

The proposed solution relies on the portioning of the
magnetic domain in a dual system of barycentric
hexahedral meshes but the same theoretical scheme can be
applied to unstructured meshes [6]. The topological
magnetostatic equations are expressed according to Tonti
formulation [5].

3.  Variation of the MNM

The fundamental idea is to modify the MNM introducing
two new sets respect to this method, so that the elements
are separated into five disjoint sets between them Fig. 2.

In a first group A4;, those elements that can be expressed as
admittances are included. In a second group A4,, are
included those elements that can not be represented as
admittance or a current value is required. The third group
Ajs, the independent current sources are included. In a
fourth group A, the so called 'solid conductor model'
elements are modeled. At this set are includes the voltages
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and currents that are related with the FFEF and its
numerical implementation with the cell method (CM), and
finally the fifth group 45, includes the filiform conductor
model.

This is the key to eliminate all the circuital unknowns and
to represent any linear element. This is not possible with

the use of pure nodal methods or the mesh current method.
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Fig. 2. The five set division.

We restructured the network elements so that the
equations of the Kirchhoff's current law (KCL) can be
written as,

~ o~

)

[Al Az A3 A4 As]' (1)

o~

Being 4,,;; the circuital incidence matrix nodes-branches,
where 7 is the number of nodes in the circuit minus 1 and
b; the number of elements of each one of the sets
mentioned before.

The divisions are created so that:

The vector /; contains the currents through the branches of
the elements that are represented in the form of admittance
and that are not required as solutions.

Its defining equation is,

v =1 @)

Being Y; a diagonal matrix with dimension [Y;/s;x»;. The
vector [, contains the currents through the branches of the
elements that are not represented in the form of
admittance. It also contains branch currents of voltage
sources and currents of branches that are required as
solutions. The equation defining these elements
corresponds to the application of the Table Method (TM)
and is

YU, +2Z,1, =W, (€)

where the second member W, only contains nonzero
entries of the independent sources of tension, and the
matrix Y, and Z, depend on the type of element.

The vector I; contains the independent current sources (J)
1 3 =J.

The vector I, contains the current of the conductors at the
continuous region with the solid conductor model.

The vector /5 contains the conductors at the continuous
region with the filiform conductor model.

The equations of the Kirchoff's voltage law (KVL) can be
written in the same way.
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Being U,—; 5 vectors containing the potential differences
of the elements at each set, and V, a vector with the
electric potential between each node and one reference
node. The equations are represented in five individual
matrix equations.

U =47, (%)
U,=A4V, (6)
U,=AlV, O]
U,=A4V, (®)
Us,=Alv, ©)

The equation (7) is used to determinate the voltage at the
current sources once the V, value has been determinated.
Rewritting (1) as follows

AL+ A, + A, + A =—AJ (10)

and substituting (2) in (10)
AYU, + AL, + AL, + AL, =—AJ an

The voltages at the branches U; can be substituting by (5)
AY AV, + AL+ AT, + Al =-A4J  (12)

and in the same way substituting (6) in (3), we obtain
VALY, + 2,0, =W, >

The equations (12) and (13) will be used to complete in a
single matrix equation all the unknowns.

4. Finite Formulation of the Maxwell’s
Equations

A. Topology of the Maxwell's Equations at Sinusoidal
Steady

Consider two complexes dual meshes in R’ called S and
S”. For example, suppose that S is made of tetrahedra, and
its volumes coincide with those tetrahedra. The set of dual
mesh nodes S’ contains an interior center point
(barycentre of the tetrahedra) for each volume of the
primal mesh, as shown Fig. 3.

Two nodes of the dual mesh complex S, are connected by
straight segments passing through the barycenter of the
triangular faces common to the primal mesh S.

This procedure establishes a bijective correspondence
between the faces of the primal mesh and the edges of the
dual mesh and vice versa, to each edge of the dual mesh
there is a correspondence with one and only one face of
the primal mesh [7], [8].

The quantities in Maxwell's equations are electrical
voltage U, magnetic voltage F, electric flux O, magnetic
flux @ and electric current /. These are defined by line



integrals and surface integrals of the basic field values as
electric field strength E,magnetic field strength
H ,electric flux density D,electric current density J and
magnetic flux density B.

{p.b1,b2,b3,ba} e

Fig. 3. Tetrahedra reference.

These integrals are assigned as unknowns to the elements
of primal and dual meshes.
Topological equations of Maxwell's Laws to the magnetic
field in sinusoidal steady [5]:
Gauss magnetic field theorem

Dg=0 (14)

Faraday's law of induction
CU=—jW¢ (15)

Developing the equation (15)
S —-wpvisfes 09

Jiejee

where the coefficients of the sum ¢, e{O,il}, i.e. for
example, ¢, =1 if e, € df,, where the signs correspond

to the relative orientation of these elements, but if not then
c;;=0.
Ampere's Law

CF=1I (17)

Law of continuity of current
DI=0 (18)

Being D,,rthe incidence matrix of pairs (v,f;) of S, Cg, the
incidence matrix of pairs (f,e) of § and D 7 the

incidence matrix pairs (Gl_,fl_) of S’ and 57 _ the matrix
incidence of pairs ( fi,e/,) of S”.

These matrix take into account the orientation of the
identities involved. The faces of the S mesh and the
corresponding dual edges have to be numbered and

oriented consistently, i.e., G=D', C=C", D=-G", so
that DC=0 and DC =0. For 2D problems is verified

C=-G and C" =—G". These relations are those for
differential operators div rot=0.

B. Constitutive Equations

The approach of the formulation is present when line and
surface values are relationated with the meshes S and S”

respectively.

The constitutive equations for (14), (18) are:
F=M, (19)
I=M,U (20)

The matrix M represent metric properties and medium
properties, and a value transfer operator between S and S’
(Hodge operator) [9]. The FFEF does not determine how
to build this matrix. The way it is constructed is not
unique and leads to different numerical schemes [5], [6].
The modeling in the FFEF is influenced by the generation
of primal and dual meshes and the building materials
constitutive equations, which include a average process of
the properties of materials.

Fig. 4. Air, source and conductor domain set.
C. Solving Equations

As shows Fig. 4, if we know the current sources at Dy, the
boundary conditions and initial conditions, then the
solution of the problem search the unknowns {®,U,F,1}.
To do this, the magnetic and electric potentials are used
as auxiliary quantities. It makes problems easier and allow
coupling the circuital and field equations easily.

D. Formulation {a, (a, V)}

The number of unknowns are reduced when working with
the potentials a,V where g = I Adl (Weber) is defined in

the edges of the primal mesh ¢; and V (Volts) is the
electric scalar potential related with the primal mesh
nodes. If we define ®=Ca, Gauss's theorem is
automatically satisfied if we do:

U=-jWa-GV 21

Faraday's Law is satisfied too, because is also true that
DG=0, where G,,, is the incidence matrix between pairs
(e;n;). Substituting (19) in (17) we have Vee D, U D,

CM Ca=1 (22)

Substituting (20) in (22) and taking into account (21), we
have Ve e D, that is true to the equation:

(CM,C+ jWM )a+M ,GV =0 (23)

Finally, substituting (21) in (20) and substituting (20) in

(18), we have the continuity equation of the current
VneD,:

DM (- jWa—-GV)=0 (24



5. Discretization of the Filiform Conductor
Model (set type 5)

The equation of the filiform conductor model in 2D for an
element, is obtained from a prismatic element with
triangular base [10] as shown in Fig. 5.

Fig. 5. Filiform conductor element.

This element will be crossed by a number of current
filaments, as seen in Fig. 6.

Fig. 6. Filiform conductor model.

If we have
A 25
A ar=[el .

and if we define (op :I:Nf/Qf][Cl]e » VeeQ, and
vaQ, then:
+ jwCra—1W;+R I, =0 (26)

Being R ;=N ?»L) N(oQ,) asa bsxbs diagonal matrix and
C ; as a bsym matrix.

This equation relates global quantities from the purely
circuital world (MNM) with global quantities associated
to the side of the primal complex mesh (CM).

6. Discretization of the Solid Conductor
Model (set type 4)

The global quantities [10] of the potential difference and
current for a considered region in this model are showed

in Fig. 7.
i L
i
LV,
Fig. 7. Solid conductor model in a region.

Also Fig. 8 represents the solid conductor model for an
element in a flat symmetric problem. To each region of
the solid conductor model is defined C, =o/Lxd % C

where d/=+1 if the reference domain f'is the same as the
reference, and d/=-/ if the direction of the domain f is
contrary to the reference. If we consider more than one
conducting region then 7, and U, are grouped in b/
vectors and a bn vector and the matrix Yy, And we
get the following equation:

- wCla+Y,AlV, —-1,=0 (27)

The relationship between the circuital world (MNM) and
global quantities (CM) associated at the primal complex
mesh is showed in this equation.

ly=ly+la+ly

4 6

L s
L p
U
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o
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Fig. 8. Solid conductor model.

7. Ensemble of All Equations in a Global
Matrix

As final results, the assemble of the continuous discretized
field equations, with the circuital equations shown in a
global matrix,

CM.C+joM, —[C14l 0 0 -C,]
— jaCT v,4° 0 -1 0
T=|  joC} -4 0 0 R, |(2¥
() 141)1145v 142 [44 ‘45
I 0 n4l  zZ, 0 0 |

The local definition of the terms is column x bar number
and column x node number.

X=[a v, 1, 1, I[J (29)
w=0 0 0 —4J W] (30)
T-X =W (31)

Where respect to each set,

a , is the set of magnetic vector potential
V', are the nodal potential

I, are the independent currents sources

Z , impedances

Y , admittances

W, are the independent voltage sources
J , are current source from set 3

C, the curl matrix

C , the curl matrix at the dual
A , the incidence matrix

M |, the constitutive magnetic matrix
M _, the constitutive conductivity matrix

R, , winding resistance matrix

8. Solution in the time domain of the global
formulation

The equation (31) can be resolved at the time domain and
zero initial conditions (zero-state response) or with initial
conditions that correspond to a steady state sinusoidal
response (first and second Kirchoff's Law) [11].

The method divides the system matrix 7 in its real part G'
and imaginary part C',



T = G'+iC' (32)

Being i the imaginary unit, and given that each imaginary
component corresponds to a temporal term of the form
d/dt, the equation (31) has the form
33
G'X+ C’dl =W (33)
dt

then applied the Euler-Crank-Nicholson method we have
the (34):

(C+ H.GV)XI1+1 —
At

(Act -(1- 49)-G')X” +(1=-O)yW" +oW"™!

(34

Where are different cases:
6=1 Implicit Euler

6=0 Explicit Euler

6=0,5 Crank-Nicholson
6=2/3 Galerkin

9. Results and discussion

The circuit scheme of example 1 shows in Fig. 9 consists
of a current source of AC (element set type 3) and two
conductive regions corresponding to a solid conductors
models (elements set type 4) where all the elements are in

series and connected as shown in Fig. 9.
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Fig. 9. Example 1 representing elements type 3 and type 4.

A section of the region known as discretized continuous
domain is represented in Fig. 10. That is divided into five
regions, the region number 1, correspond to the solid
conductor between node 0 and node 2, see Fig. 10.

Fig. 10. Discretized continuous region in five parts of the primal
and dual barycenter cell.

Region number 2 correspond to the solid conductor
between node 2 and 1. The regions number 3, 4 and 5 in
this problem corresponds to the air. As seen in Fig. 10
corresponds to the primal mesh triangles. At 3D would be

a triangular base prisms. It is also noted the dual mesh,
which corresponds to a barycentric division. For the
matrix 7T, the matrices of equation (28) that are involved
are _

CM,C+joM, -C,A; 0

T=| —joCT v, AT -1 (35)
0 0 A,
and to the second member vector
w=[0 0 —4J] (36)
the unknowns vector
[ v, L] 37
At this example
0 -1 38
i (38)
-1 +1
A, =[+1 of (39)
J=1] (40)
01L£21 .
Y, = o’Q, 1)
0
L

The data in Table I have been used for a number of
experiences in sinusoidal steady state, and the results are
summarized in Table II.

Table I.- Input parameters value

Magnitude Value
I(A) 1413.7167
f(Hz) 50

Areal(m?) 0.0001571

Area2(m?) 0.0001571
L(m) 1

Y1(S)=Y2(S) 157.07963

In the Table II the results obtained by FEM are compared
with those obtained by GetDP solver program [12], and
shows the convergence of both results with the increasing
number of nodes.

Table I1.-Comparison of maximum induction value

Nodes | Elements | CM(Re) | FEM(Re) | CM(Im) | FEM(Im)

70 142 0.0607 0.0634 3.28e-5 3.32¢-5

173 348 0.0517 0.512 5.11e-5 541e-5

507 1016 0.0528 0.0528 5.72e-5 5.82e-5

1096 2194 0.0537 0.0534 5.80e-5 5.94e-5

The potential difference results in the circuit are shown in
Fig. 11, according to the second Kirchoff's Law. From the
real and imaginary part of the magnetic induction, is
deduced the total self induction coefficient of the
equivalent circuit.

The continuous and discrete parameters models are shown
in Fig. 12.
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Fig. 11. Circuital results.
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Transient results for the solid conductor and the magnetic
potential are represented in Fig. 13 and Fig. 14
respectively. Both results at the coordinate are shown in

Fig. 14.
Transient at the Coordinate (0.005,0.015,0)

00003
£ N n N .
S oooo2| &% A §y oM
TR I :3 ;% FEM
oo ;PP

bl - - - - - -

k) . " . . . .

’?j UN - . - . .

j=] . - . . - -
200001 f 2 Lol PN ‘

7 ? % ! . .

£ -0.0002 ¢ L3 Y ; Y

a / V v .

= 00003 :

0 001 002 003 004 005 006 007
Time (5)
Fig. 14. Magnetic Vector Potential (for a length of m=1).
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Fig. 13. Solid Conductor Voltage Transient.

Are also compared the results of the transient in the same

time points with the results obtained of the GetDP
program, which uses the finite element method.

10. Conclusions

We have presented an approximation of a 2D
electromagnetic eddy current problem coupled with

circuital equations, with the filiform conductor model and
the solid conductor model. Study has been done using the
Finite Formulation of Electromagnetics Fields and the
Modified Nodal Method.

We have analyzed an example with the sets type 3 and
type 4 elements. The results have been compared with two
methods, the FEM and the FFEF. We have obtained the

same results.
The analysis is performed at steady state and transient

state.
To the transient state, a classical scheme of the Euler-

Crank-Nicholson method for time discretization is used.
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