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Abstract
The biosynthesis of prostanoids is involved in both physio-
logical and pathological processes. The expression of 
prostaglandin-endoperoxide synthase 2 (PTGS2; also 
known as COX-2) has been traditionally associated to 
the onset of several pathologies, from inflammation to 
cardiovascular, gastrointestinal and oncologic events. For 
this reason, the search of selective PTGS2 inhibitors has 
been a focus for therapeutic interventions. In addition 
to the classic non-steroidal anti-inflammatory drugs, 
selective and specific PTGS2 inhibitors, termed coxibs, 
have been generated and widely used. PTGS2 activity is 
less restrictive in terms of substrate specificity than the 
homeostatic counterpart PTGS1, and it accounts for the 
elevated prostanoid synthesis that accompanies several 
pathologies. The main regulation of PTGS2 occurs at 
the transcription level. In addition to this, the stability 
of the mRNA is finely regulated through the interaction 
with several cytoplasmic elements, ranging from specific 
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microRNAs to proteins that control mRNA degradation. 
Moreover, the protein has been recognized to be the 
substrate for several post-translational modifications 
that affect both the enzyme activity and the targeting 
for degradation via  proteasomal and non-proteasomal 
mechanisms. Among these modifications, phosphorylation, 
glycosylation and covalent modifications by reactive lipidic 
intermediates and by free radicals associated to the pro-
inflammatory condition appear to be the main changes. 
Identification of these post-translational modifications 
is relevant to better understand the role of PTGS2 in se-
veral pathologies and to establish a correct analysis of 
the potential function of this protein in diseases progress. 
Finally, these modifications can be used as biomarkers to 
establish correlations with other parameters, including the 
immunomodulation dependent on molecular pathological 
epidemiology determinants, which may provide a better 
frame for potential therapeutic interventions.

Key words: Prostaglandins; Prostaglandin-endoperoxide 
synthase 2; Post-translational modifications; Glycosylation; 
Colorectal cancer; Inflammation

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The post-translational modifications of prosta-
glandin-endoperoxide synthase 2 (PTGS2) appear to be 
specific signatures of this enzyme in human colorectal 
cancer (CRC). Glycosylations of PTGS2 that alter the 
electrophoretic mobility of the protein are mainly ob-
served in the tumor samples but are absent in the non-
tumor samples obtained from these patients. These 
modifications not only may play a pathophysiological 
role in the progression of CRC but also may provide new 
biomarkers to develop specific therapeutic interventions.

Jaén RI, Prieto P, Casado M, Martín-Sanz P, Boscá L. Post-
translational modifications of prostaglandin-endoperoxide 
synthase 2 in colorectal cancer: An update. World J 
Gastroenterol 2018; 24(48): 5454-5461   
URL: https://www.wjgnet.com/1007-9327/full/v24/i48/5454.htm  
DOI: https://dx.doi.org/10.3748/wjg.v24.i48.5454

INTRODUCTION
The role of prostaglandin-endoperoxide synthase 2 
(PTGS2) in physiology and pathophysiology has been 
addressed in different studies since this enzyme is 
induced under several circumstances, including inflam-
mation, tumor progression and cell survival[1-6]. Two 
PTGSs are present in mammalian cells: PTGS1, which 
is constitutively expressed in almost all tissues at low 
levels, playing a homeostatic role; and PTGS2, which 
is considered as an immediate early gene that is ex-
pressed in response to a wide array of cell challenges 
and stressors[7-10]. Both enzymes catalyze the same 
reaction, which constitutes the rate-limiting step in 

the biosynthesis of different prostanoids, such as se-
veral prostaglandins, via tissue specific prostaglandin 
synthases, thromboxane A2 and other eicosanoids[11,12]. 
Provision of arachidonic acid as substrate is dependent 
on the activation of phospholipase A2, which in turn, 
responds to different cell stressors connecting phos-
pholipid hydrolysis to prostanoid synthesis[10,11,13,14] 

(Figure 1). Both PTGS isoforms are conserved among 
mammals and weight 70-75 kDa. They share more 
than 60% sequence homology in mammalian species 
and retain more than 85% identity when comparing 
orthologues from different species, displaying conserved 
regulatory and catalytic domains as depicted in Figure 
2. Structural studies show that the isoleucine located at 
position 523 in PTGS1 is substituted by valine in PTGS2 
(position 509) and this difference in hydrophobicity and 
size constitutes the basis for the design of selective, 
isoenzyme-specific hydrophobic inhibitors, such as the 
coxibs[15-17]. Regarding the conserved protein motifs, 
they include an epidermal growth factor-like domain 
followed by a membrane-binding region that allows 
positioning of the different PTGS in cytoplasmic micro-
ambiances. The catalytic site of the enzyme involves two 
independent activities: the deoxygenation of arachidonic 
acid and an additional site responsible for the subsequent 
reduction via the peroxidase activity[18]. These domains 
are relevant for the subcellular localization of PTGS al-
lowing the protein to interact with the luminal space of 
the endoplasmic reticulum and with the nuclear mem-
brane. This is important to understand the activity of 
the enzyme since phospholipases and their targets, 
the phospholipids required to release arachidonic acid, 
are located in biological membranes[19-23]. Additionally, 
other free fatty acids, such as eicosanepentaenoic 
acid[24], docosahexaenoic acid[23], α-and γ-linolenic acid 
or linoleic acid can be metabolized by PTGS2 leading to 
molecules involved in the control of inflammation[25,26] 

(Figure 3). Several works described selective distribution 
of both PTGS isoforms in the cell, with a preferred 
positioning of PTGS2 near the nuclear structure. This 
is also pertinent for the fate of the products of the en-
zymes[10]. These prostanoids can be released to the 
extracellular milieu and exert their autocrine or paracrine 
actions either by the specific G protein-coupled receptor 
(GPCR)-coupled prostaglandin E2 (PGE2) receptor (EP) 
receptors[27], by diffusion or through the interaction with 
several transporters (i.e., the prostaglandin transporter 
system, the ABC cassettes, or the scavenger lipid 
receptor CD36[28-30]). In addition to GPCR-mediated early 
signaling, prostanoids may alter gene transcription after 
interaction with several nuclear receptors, such as the 
peroxisomal proliferator activated receptors (PPARs)[31-33].

PTGS2 EXPRESSION IN COLORECTAL 
CANCER TUMORIGENESIS
The role of PTGS2 expression in the initiation and pro-
gress of colorectal cancer (CRC) still remains a matter 
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of debate. On one hand, epidemiological studies using 
broad (aspirin, indomethacin) or selective inhibitors of 
the PTGS isoforms at least suggest that under these 
conditions, prevention occurs in the development of 
CRC[1,16,31,34,35]. However, direct measurement of PGE2 
levels in samples from adenomatous vs healthy tissue 
fails to show a clear cut-off supporting tumor growth and 
survival. In addition to this, the use of selective inhibitors 
of the EP receptors also contributes to the suggestion 
that autocrine signaling is perhaps critical in the com-
mitment of the tumor cells to proliferate and invade 
the tissue via activation of mitogenic and metastatic 
pathways[6,27,31,34,36,37]. In addition to this, it is well known 
the capacity of PGE2 to favor angiogenesis of epithelial 
cells, contributing to the spreading and survival of the 
tumor. Moreover, due to the immunosuppressive activity 
of extracellular prostanoids, the anti-tumor role of the 
immune system is compromised, favoring the survival 
of the transformed cells in this microenvironment[3,33]. 
Not only the released products of PTGS2 have this ca-
pacity to alter cell fate, but at the intracellular level, 
prostaglandins itself or as result of oxidation due to 
increased oxidative stress may contribute to activate 
nuclear receptors, such as PPARs, that oppose to the 
pro-inflammatory defense mechanism favoring onco-
genic progression[31,32]. Thus, the amount and fate of 
the products released by PTGS2 activity have different 
functions in the onset of CRC. Moreover, several authors 
have considered the possibility that, at least for PTGS1, 
it may exert “moonlighting” functions whose biological 
relevance remains to be established[38,39]. Additionally, 
the PTGS products can be modified by another series 
of enzymes, the 15PGDHs, which are transcriptionally 
regulated and determine the prostanoid levels coming 
from the PTGS activity, contributing in this way to 
the fine tuning of the activity of these lipid mediators 
and their involvement on the pathophysiology of CRC 
tumorigenesis[40,41]. Indeed, agreement exists in the 
opposite regulation of PTGS2 and 15PGDH in the sense 

that elevated PTGS2 levels repress 15PGDH expression 
and vice versa, elevated 15PGDH use to repress PTGS 
levels through different complementary mechanisms, 
involving destabilization of the PTGS2 mRNA via specific 
interaction with microRNAs[8,14,42]. Finally, the interplay 
between different contributors to CRC is moving towards 
a new integrative view that considers the immunological 
modulation due to several agents, including vitamin D, 
polyunsaturated fatty acids, diets with specific content in 
omega-3/-6, and pharmacological treatment with broad 
(aspirin) or selective PTGS2 inhibitors (coxibs). Together, 
these factors determine the immune modulation of 
what is defined as the immunomodulatory molecular 
pathological epidemiology (PME), as an integrated view 
of the environment-tumor-immune interactions, that 
may establish efficient protocols for immunoprevention 
and immunotherapy, leading to a better precision medi-
cine[43,44].

PTGS2 is mainly regulated at the transcription 
level. The promoter region of PTGS2 contains several 
regulatory elements conferring response to transcription 
factors such as activating protein-2 (AP-2), nuclear 
factor kappa B (NF-κB), cAMP response element 
(CRE), E-box and Sp1, with various sites with impact 
on the promoter activity[35,45-47] (Figure 2). Despite this 
presence of canonical conserved transcription regulatory 
elements, preliminary data from our group show that 
the activity of the promoter has specific signatures 
when comparing its activity in rodent vs human cells, 
at least in the response to the engagement of NF-AT 
sites. Indeed, NF-AT inhibition with cyclosporine A or 
tacrolimus results in the repression of the pro-inflam-
matory transcriptional regulation in human cells, but 
not in the rodent counterparts, suggesting a specific 
fine-tuning of the promoter activity of this gene, at 
least in myeloid and hepatic cell lines (Figure 4). More-
over, PTGS2 expression is controlled also at post-
transcriptional level; from a gene containing 10 exons 
and producing at least three products ranging from 
4.6 to 2.8 kb, a regulatory site, positioned in the last 
exon that contains the 3’-UTR encoding sequences, 
is responsible for RNA instability[48]. As a result of this 
complex regulation, the levels of prostaglandins may 
vary significantly among several pathological situations, 
due to the availability of different substrates for the 
enzyme, the post-translational modifications occurring 
in a given tissue and/or the capacity to export and 
degrade the PTGS products (15PGDH; lipoxygenases, 
etc.). Indeed, it has been proposed a role for PGE2 in 
the CRC stem cell expansion and metastasis, at least in 
mice models of the disease[34]. Nevertheless, consensus 
exists regarding the fact that PTGS2 expression is asso-
ciated with various pathophysiological events, ranging 
from inflammatory diseases to different cancers. The 
main problem encountered by researchers in the field 
is the frequent lack of correlation between mRNA and 
protein levels of PTGS2 and the corresponding bio-
synthesis of prostanoids, mainly PGE2. This is due to 
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pathology[16,34,54].

PATHOPHYSIOLOGICAL RELEVANCE 
OF THE POST-TRANSLATIONAL 
REGULATION OF PTGS2
Apart from the classic pharmacological acetylation by 
aspirin on Ser530 in PTGS1 and Ser516 in PTGS2[55], that 
prevents the full activity of the enzyme [PTGS2 retains 
the ability to generate 15R-hydroxyeicosatetraenoic acid 
(HETE) from arachidonic acid], other physiological post-
translational modifications have been described for the 
PTGS isoenzymes. These modifications have an impact 
on the catalytic activity, on the subcellular localization, 
and on the targeting of the protein for degradation via 
proteasomal or non-proteasomal (endoplasmic reticulum-
dependent pathways) pathways[51]. Overall, these modifi-

the exquisite control on the transcription of the gene; 
the existence of sequences that destabilize the mRNA 
and the posttranslational modifications that alter not 
only the catalytic activity of the enzyme, but also the 
stability of the protein, usually favoring proteasomal 
and non-proteasomal degradation[49-51]. Indeed, some 
suggestion of a ‘moonlighting’ effect for the protein 
has been reported for PTGS, an aspect of growing 
interest in the cancer field[38,39,52]. Finally, more than 
40 clinical trials on the use of coxibs in CRC have been 
registered (ClinicalTrials.gov). Despite the controversy 
on the use of selective (coxibs) vs less specific PTGS2 
inhibitors (NSAIDS) the main problems coming from 
these studies of chemoprevention are associated to 
the lack of specific biomarkers on the progress of the 
disease[53] and the existence of side effects that, at the 
end, represent a serious bias in the establishment of 
the critical parameters associated to the onset of the 
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cations are in the basis of most of the pathophysiological 
responses associated to the different conditions in which 
PTGS2 is expressed.

Since the catalytic activity of PTGS requires a func-
tional heme group in the protein and this can be modi-

fied by different oxidants, such as nitric oxide and other 
free radicals interacting with the prosthetic group, the 
enzymatic activity can be altered in this way[56]. This is 
especially relevant in situations in which the high through-
put nitric oxide synthase (NOS-2) is expressed and a high 
synthesis of NO occurs; however, this cannot exclude 
other NOS isoenzymes that, although releasing lesser 
NO, because of the proximity to PTGS may selectively 
affect its activity, although discrepancies in the literature 
exist describing either inhibition or activation by NO. In 
fact, a complex crosstalk between the NOS and the PTGS 
systems has been reported in spheroid cultures of CRC: 
NO inhibits PTGS activity through different pathways, 
including S-nitrosylation by peroxynitrite[57].

Western blot analysis of PTGS2 in samples of CRC 
patients and in tumor colonic cell lines have evidenced 
the presence of several immunodetected bands cor-
responding to PTGS2. The change in electrophoretic 
mobility of the proteins is due to the presence of glycosy-
lated motifs in the protein as confirmed by biochemical 
and proteomic studies. Indeed, proteomic analysis of 
PTGS2 characterized the main glycosylated aminoacidic 
residues[58]. Both N-and O-linked glycosylation in 
asparagine and serine/threonine are possible. This glyco-
sylated form is prevalent in CRC samples and in tumor 
colonic cell lines, but is usually absent in samples of 
healthy colonic tissue when PTGS2 is expressed[21,59-61]. 
Indeed, this glycosylated PTGS2 is more resistant to 
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Figure 4  Prostaglandin-endoperoxide synthase 2 exhibits species-specific transcriptional control. Despite the broad conservation of the transcription factor 
motifs in the prostaglandin-endoperoxide synthase 2 promoter, the activity of the promoter in response to the NF-AT inhibitor cyclosporine A (CsA) is repressed in 
human hepatic cell lines, but enhanced in murine hepatic counterparts. To confirm this effect, murine AT3F hepatic cells and human CHL hepatic cells were transfected 
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proteolytic degradation than the non-glycosylated 
counterpart; however, we have been unable to iden-
tify the specific glycosylation(s) of this PTGS2 by 
using proteomic approaches. In fact, this is surprising 
since previous work identified the N-glycosylation at 
Asn580/594 as a condition favoring its proteolysis 
through the ER-dependent pathway[51]. However, the 
absence of glycosyl marks in the protein, after treatment 
with glucosamine that reverts the glycosylated band 
to the non-glycosylated form, targets the protein for 
a rapid degradation, as reflected by the absence of 
changes in the mRNA levels, but inducing a significant 
decrease in the protein levels of HT29 cells treated with 
glucosamine[61]. Moreover, inhibitors of the proteasome 
prevent the degradation of PTGS2 in colonic cell lines 
treated with glucosamine. In addition to this, the cata-
lytic activity of glycosylated PTGS2 is lesser than the 
corresponding to the non-glycosylated form[59,61]. Final-
ly, additional work is required to address the effect of 
PTGS2 glycosylation on the response to the classic 
inhibitors of the enzyme, a condition of pharmacologic 
and therapeutic interest in the regulation of the catalytic 
activity of the enzyme[62]. Figure 5 summarizes the effect 
of glycosylation on PTGS2 activity and fate.

Another issue no completely resolved in the post-
translational modifications of PTGS2 is the phosphory-
lation in tyrosine and serine/threonine residues. In fact, 
PTGS2 contains consensus motifs for the phosphorylation 
by protein tyrosine kinases, such as FYN. However, direct 
proofs for the occurring of such phosphorylations have 
failed to provide sufficient evidence. The same happens 
for the PKC phosphorylation motifs present in the protein. 
However, it appears that specific tyrosine phosphorylation 
is required for the functional glycosylation of PTGS2, 
suggesting the convergence of different pathways in the 
final post-translational modifications of the enzyme, with 
relevance not only for the enzymatic activity but also for 
the targeting and degradation[9].

CONCLUSION
Understanding the pathophysiological role of the post-
translational modifications of PTGS2 remains a subject of 
research in the area of oncology. Assessment of the role 
of prostanoids in CRC initiation and progression may con-
tribute to a better management of the patients and in the 
proposal of therapeutic interventions intended to regulate 
colonic PTGS2 activity. Finally, the possibility exists to use 
PTGS2 post-translational modifications in biopsies as an 
additional predictive biomarker in CRC evaluation, and a 
better integration in the immunomodulatory-molecular 
pathological epidemiology[43].
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