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Abslracl.
This paper olTel"l a new proof of lhe facl Ihal a cenain diophanline equalion associalcd lO Ihe nalura!
numbcr 16 has a unique SolUlion in the domain of nalural numbers. The proM derives in a slraightfor",,·..rd
manner from lhe division oflh.e nalUrals inlo odd and even numbers.
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1. Introduetion.

The fourth power of 2 is 2' = 16. and in tum, 16 = 4 1 is the square -or sccond power~ of
4. Therefore lhere exisl al leasl IWO natural numbers x=2,y=4 satisfying the

diophantine equation x" == y~ . A ralher natural problem is 10 decide whelher the pair
(2,4), found by simple inspeclion, is Ihe only Solulion in natural numbers lO lhe
equation. Indeed we are aware thal (4.2) is a solulion as well. but both can be ¡dentified
via the symmetry of the equation. Moreover, if we allowx = y, fhere exisl infinilc!y
many trivial Solulions, so from no\\! on x ~ y will be supposed.

The study uf the equalion x" = y' and ies solutions has been addressed rather ofien and
by many authors to a considerable degree ofgeneraliey, including solutions in ZI p and
in the eomplex domain. As an e.'<ample, simple inspeclion deeennines as well lhe real
number 4.81047 .. in Ihe form r' =(-d. See Euler 1748, Dickson 1966, Hausner
1961. HUl"wiIZ 1967, Sved 1990 and references therein.

Our equalion fealures uniqueness of solution only when cansidered ayer the I/atura'
nllmbers. Even the simplesl extension of the doma in, viz. eo the whole numbers domain,
has no unique solulion. for (-2,-4) is a solution as wel!. Here Ihe eommon value is also

relaled with 16: x'" == y~ =16-1
•

The nexl extension, to lhe rational dornain, is best studied by considering first Ihe larger
real field. In Ihis case, under Ihe hypolhesis x < y, let us write y = m:r: , where ni> J is
an otherwisc arbilrary real number. 80th members in lhe equalion become:
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and:

From here it is slraighlforward lo find lhal (observe: m = 2 yields lhe natural case!):

I

X = nI 111-1 ,

y =mx= m",-I

Elemenlary Calculus shows thal for m ~ 00 we ha've x ~ I and y oo. Therefore
there exiSI an in finite number of solulions, and all of them belong 10 lhe par! of Ihe
curve -whose paramelric equalions are lhe above expressions- Iying in lhe plane
slrip{(x,y): 1< x < e}.
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Fig. 1. Where real solulions live

In order lO look for ralional solulions we impose m = .E.. , a fraction in lowesl lerms such
q

Ihal p > q , and conditions are found for lhe Solulions lo be raliona!. A k.nown resull of
Euler (Euler 1748) -which, in a certain sense, is also an uniqueness resull because all
ralional solulions are provided by lhese formulae (a proof is offered in an appendix)- is
oblained when p =n + 1 and q =n:

_(n+I)"_[ 1)" _(n+I)"+I_( 1)"+1x- -- - 1+- y- -- - 1+-
n n n 11

In this paper a new and elementary proof of the uniqueness of lhe solulion ove,. Ihe
natural numbers is presenled. To establish il, only a remark on parity is needed, so quite
possibly proof presenled could be lhe "Book proof' in lhe sense of Erdos (see e.g. Babai
and Spencer 1998, p. 65).
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2. The prOOr.

The main observation is a vcry simple one: Ir Ihcre is a solulion (x,y)or x" = y' over

the natural numbers, thell both x andy mus! be orlhe same parity. Should Ihis not occur,
the left and right members would be or different parilies and could nol have Ihe samc
value. Let us write x for lhe smaller oflhe ¡wo numbers, so for some k E N, we obtain
y .. x + 2k . By plugging this cxpression into the equation we obtain:

oc

Undcr the radical symbol we rccognise lhe familiar expression leading lO the

exponenlial e!t in the limil when x ~ DO. This express ion is monolonically increasing
and salisfies the estimale

( 2k)'1+_ <e!l.
x

By remarking lhal the funelion "lo oblain Ihe 2k -th root" is a monotonic one, Ihe
following estimale holds:

( 2k)'x=lJ l+~ <e=2.718... ,

so lhe only natural candidales fOf x are I and 2. First, let us consider x = 1. For any k,
bolh members ofthe equation become:

and
y:< .. (l + 2k)1 = l + 2k > I .

Therefore, x = I does nol yield a so/u/ion oflhe equalion. Now we tum our altention
to x = 2. BOlh members become:

y' ~[2(I+k)J' =4(I+k)'

and their are equal when k = 1, 16 being lheir common value. Thus we find again what
we found by simple inspection in Ihe Introduclion. No more natural pairs (x,y) can be

found, for lhe sel of possible candidales for x is already exhausted. Nevertheless, the
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following argumenl will reinforcc our conviclion: For llny nalural k ~ 2, the inequalily

4 1
'1 >4(I+k)1 always holds -beeause the exponential grows faster ¡han the seeond

degree polynomial· as the reader can easily check by induction on k. Therefore, we have
obtained the following theorem:

THEOREM: "16 is Ihe ollly nafural nllmber fhal can be wriflen in rwo difJerem ways

x'" = y', wilh x '# y nalllral numbers. TIJe Solllfion 10 Ihe diophantine equalion is

provided by x = 2, Y = 4 (01'. ~ymmelricaf{y. 4 and 2)"
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Appendix: The Euler formulae pro... ide all positi ...e rational solutions.

Let m::::!!... in lowest lerrns such that p> q . We obtain lhat
q

-'- (pJ;'. . (pJ'''-.x=m,"-I=-;¡ ,Y=I71"'I=-;;

and for these numbcrs lO be rational ones ,p and q must be (p-q) -powers of some

olher natural numbers, say P and Q. This condilion determines the rationality of
solulions. For instance. for p = n + 1 and q :::: n lhe Euler formulae are oblained:

(n+lY' ( IJ" (n+IJ"·' ( IJ""x:::: -n-) = 1+; ,y:::: -n- = l+~ .

Therefore, for p-q:::: I there exist rational solutions. Do more ralional solutions occur

for sorne pair p and q such lhat p - q > I ? The answer is in the negati ...e: If we let

p - q > l. then lhe following contradiction appears:

p- q = PI'-" - QI'-~ 2: (Q+ 1)"-~ - QI'-'1 2: I + (p _q)Q?:.1 + (p -q) > p - q
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