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Abstract

Although the seismic actions generally consist of a combination of waves, which propagates with
an angle of incidence not necessarily vertical, the common practice when analysing the dynamic
behaviour of pile groups is based on the assumption of vertically-incident wave fields. The aim of
this paper is to analyse how the angle of incidence of SV waves affects the dynamic response of
pile foundations and piled structures. A three-dimensional boundary element-finite element cou-
pling formulation is used to compute impedances and kinematic interaction factors corresponding
to several configurations of vertical pile groups embedded in an isotropic homogeneous linear vis-
coelastic half-space. These results, which are provided in ready-to-use dimensionless graphs, are
used to determine the dynamic properties of slender and non-slender superstructures through a
procedure based on a substructuring model. Results are expressed in terms of flexible-base period
and damping as well as maximum shear force at the base of the structure. The relevance and main
trends observed in the influence of the wavefront angle of incidence on the dynamic behaviour of
the superstructure are inferred from the presented results. It is found that effective damping is
significantly affected by the variations of the wave angle of incidence. Furthermore, it comes out
that the vertical incidence is not always the worst-case scenario.

Keywords: pile foundations, seismic wave propagation, angle of incidence, soil-structure interac-
tion, substructure model, kinematic interaction factors, effective damping

1 Introduction

When studying the seismic behaviour of foundations and structures, the system is usually assumed
to be subjected to a vertically-incident wave field. Indeed, the seismic actions generally consist of a
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combination of waves, which impinges on the ground surface with an angle of incidence not necessarily
vertical. That assumption is made in current practice in the light of the usual uncertainty concerning5

this parameter and often assuming that this hypothesis corresponds to the worst-case scenario.
The dynamic response of deep foundations under non-vertical excitation still demands further

investigation. A pioneer work by Mamoon and Ahmad [1] analysed the effect of obliquely-incident
SH, SV and P waves on the seismic response of single piles expressed in terms of kinematic interaction
factors. After that, other works (e.g. [2, 3, 4]) addressed this problem for different configurations of10

pile groups subjected to obliquely-incident body waves or Rayleigh waves. Subsequently, Zarzalejos
et al. [5] analysed how the type of seismic body wave and its angle of incidence affect bending
moments at cap level of single piles and 3 × 3 pile groups. The relevant influence that the wave
angle of incidence exerts on the dynamic response of pile foundations became apparent from the
results of these investigations. However the influence of this parameter on the dynamic response of15

the superstructure has not received enough attention. Todorovska and Trifunac [6, 7] studied the
dynamic behaviour of structures supported by embedded foundations and subjected to plane P and
SV waves with several angles of incidence using a 2D model that considers a rigid foundation with
semicircular shape. Moreover, Avilés et al. [8] analysed the influence of kinematic interaction effects
on the relevant dynamic properties of structures supported by embedded and shallow foundations and20

subjected to obliquely incident P, SV and Rayleigh waves.
Regarding pile-supported structures, Medina et al. [9] analysed the dynamic response of pile-

supported buildings subjected to shear waves but only vertical incidence was considered in that work.
Álamo et al. [10] employed a boundary element-finite element (BEM-FEM) model [11, 12] to obtain
results for the dynamic response, in terms of maximum shear forces at the base of the structures, of a25

group of three structures supported on 3× 3 pile groups and subjected to planar oblique shear waves.
However, to the extent of the authors’ knowledge, there are no parametric studies in the scientific
literature examining the effects of the angle of incidence of seismic waves on the dynamic behaviour
of structures supported on pile foundations consisting of a variable number of piles, with different
embedment and spacing between them.30

In order to contribute to filling this gap, this paper addresses an analysis of the dynamic response
of slender and non-slender structures supported on pile groups subjected to SV obliquely-incident
waves. The harmonic response of the soil-foundation system is obtained by making use of impedance
functions and kinematic interaction factors computed through the BEM-FEM model mentioned above
[11, 12, 13]. Results corresponding to several configurations of vertical pile groups embedded in a35

homogeneous and viscoelastic half-space are provided in ready-to-use dimensionless graphs. These
results allow not only analysing how the angle of incidence of the seismic waves affects the dynamic
response of pile foundations but also that of the superstructures through a procedure based on a
substructuring model in the frequency domain that takes into account both kinematic and inertial
interaction effects [14]. The variables employed in this case are flexible-base period and damping as40

well as maximum shear force at the base of the structure. Their values are computed, as functions of the
angle of incidence of the seismic wave, for different configurations of foundations and superstructures.
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2 Problem definition

The dynamic response of one mode of vibration of a piled structure is studied in this paper through
a three-degree-of-freedom (3DOF) system, as the one depicted in Figure 1b. This system is defined45

by the foundation horizontal displacement uc and rocking ϕc, together with the structural horizontal
deflection u. In Figure 1c, displacements are written in terms of relative motions, ucr = uc − ug and
ϕc
r = ϕc − ϕg, where ug and ϕg represent, respectively, the horizontal and rocking motions at the pile

cap.
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Figure 1: (a) Top view of the pile cap (3 × 3 pile group configuration) (b) Problem definition (c)
substructure model of a one-storey structure and (d) equivalent single-degree-of-freedom oscillator.

The structure is considered to be supported on square regular groups of vertical piles embedded50

in a homogeneous, viscoelastic and isotropic halfspace. Pile heads are constrained by a rigid square
pile cap (2b x 2b) which is assumed to be free of contact with the soil and whose mass mo, moment of
inertia Io and thickness are supposed to be negligible. All configurations of pile groups under study
are symmetrical with respect to planes xz and yz. Each one of them consists of a certain number
of piles having all identical material properties as well as identical geometrical properties defined by55

length L and sectional diameter d. The centre-to-centre spacing between adjacent piles is denoted by
s (see Figure 1a).

The superstructure consists of a mass m situated at the height h of the resultant of the inertia
forces for the mode of vibration under study and supported by massless and inextensible columns. The
vibrating mass is assumed to be distributed over a square area and its moment of inertia is denoted60

by I. The structural dynamic behaviour, corresponding to fixed-base condition, is characterized by
the structural fundamental period T and its viscous damping ratio ξ.

2.1 Dimensionless parameters

In line with other authors [15, 16, 17, 18] and for the purpose of characterizing the soil-foundation-
structure system, a set of dimensionless parameters, covering the mean features of SSI problems, has65
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been used. These are the same parameters that were previously used in [9, 14]: (1) dimensionless
fixed-base natural frequency of the structure λ = ωn/ω; (2) fixed-base structure damping ratio ξ; (3)
wave parameter σ = csT/h that measures the soil-structure relative stiffness; (4) structural slenderness
ratio h/b; (5) foundation-structure mass ratio mo/m; (6) mass density ratio δ = m/(4ρsb

2h) between
structure and supporting soil; (7) Poisson’s ratio νs; and (8) damping ratio ξs of the soil. A hysteretic70

damping model of the type µs = Re[µs](1 + 2iξs) is considered in this study for the soil material.
With respect to the pile foundation, the following dimensionless parameters are considered in this

work: number of piles composing the pile group (n×n), pile spacing ratio s/d, embedment ratio L/b,
pile slenderness ratio L/d, pile-soil Young’s modulus ratio Ep/Es and soil-pile densities ratio ρs/ρp.
The dimensionless excitation frequency is defined as ao = ωb/cs, being ω the excitation circular75

frequency, cs =
√

µs/ρs the speed of propagation of shear waves in the halfspace, and µs and ρs the
soil shear modulus of elasticity and mass density, respectively.

2.2 Pile group configurations under investigation

Different configurations of square 2×2, 3×3 and 4×4 vertical pile groups, according to the geometrical
parameters defined in Figure 2, are analysed in the frequency range of interest for seismic loading. The80

dimensionless parameters corresponding to these configurations are listed in Table 1. Four different
values are considered for the structural slenderness ratio (h/b). Although a Poisson’s ratio νs = 0.08
is not representative for typical soils, it has been included in this study as a limit value in order to
explain some dynamic effects associated with the spatial character of the excitation and the kinematic
response.85

Table 1: Values for the dimensionless parameters in the cases under investigation

νs ξs Ep/Es ρs/ρp ξ δ 1/σ mo/m h/b

0.08, 0.2, 1/3, 0.4, 0.45 0.05 103 0.7 0.05 0.15 0− 0.5 0 1, 2, 5, 10

2.3 Incident field

The excitation (incident field) is considered to be a planar SV wave propagating through the halfspace
with a generic direction contained in the yz plane and defined by the angle of incidence θo measured
from the horizontal (see Figure 1b). When non-vertically incident seismic SV body waves hit the free
surface, SV waves are reflected back into the half-space together with P waves. This P-waves are90

inhomogeneous waves propagating horizontally when the angle of incidence is smaller than the critical
angle θcr, which depends only on the Poisson’s ratio, as shown in equation (1).

θcr = arccos

(√

1− 2 νs
2(1− νs)

)

(1)

Thus, the mechanism of propagation of the waves in the soil depends on whether the wave angle
of incidence is greater or smaller than this critical angle, which will prove relevant when analysing the
dynamic behaviour of the superstructure.95
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The expressions for displacements vectors and amplitudes in function of the angle of incidence, for
values over and below the critical angle, can be found (e.g.) in the classical texts of Elastodynamics
written by Achenbach [19] or Eringen & Suhubi [20] or more recently, in a summarized form, in
Zarzalejos et al. [5].

3 Methodology100

As mentioned before, the seismic response of the soil-foundation system is computed through a three-
dimensional frequency-domain BEM-FEM formulation previously developed [11, 12, 13, 5]. In this
model, piles are modelled using monodimensional finite elements as Euler-Bernoulli beams, while soil
is modelled using boundary elements as a linear, isotropic, homogeneous, viscoelastic medium. Welded
boundary contact conditions at the pile-soil interfaces are assumed.105

This BEM-FEM coupling model allows determining the dynamic response of the soil-foundation
system in terms of translational Iu(ao, θo) = ug/ugo and rotational Iϕ(ao, θo) = ϕgb/ugo kinematic
interaction factors, being ugo the free-field motion at the surface. The impedance functions at each
frequency ao can be also computed through this model. These impedance functions are usually written
as Kij = kij + iaocij, where kij and cij are the frequency-dependent dynamic stiffness and damping110

coefficients, respectively.
Afterwards, impedances and kinematic interaction factors are used to analyse the 3DOF system

dynamic response through a substructuring model in the frequency domain such as that represented
in Figure 1c. This model consists of a building-cap structure supported on springs and dashpots
representing the soil-foundation stiffness and damping in the horizontal (kxx, cxx), rocking (kθθ, cθθ)115

and cross-coupled horizontal-rocking (kxθ, cxθ) vibration modes, respectively. The whole system is
subjected to the horizontal (ug) and rocking (ϕg) motions measured at the massless pile cap level
when subjected to free-field motion at the surface ugo. A simple and accurate procedure [14] based on
this substructuring model is used in order to determine the dynamic characteristics of an equivalent
single-degree-of-freedom (SDOF) oscillator (see Figure 1d) that reproduces, as accurately as possible,120

the response of the system under investigation (see Figure 1c) within the range where the peak response
occurs. This response is expressed in terms of Q = |ω2

nu/(ω
2ugo)|, which represents the ratio of the

shear force at the base of the structure to the effective earthquake force. The equivalent SDOF system
can be defined by its damping ratio ξ̃ and its undamped natural period T̃ .

The effective period T̃ /T and damping ξ̃ can be obtained from the following equations [14]:125

T̃

T
= λ / 1−

1

λ2
−

1

λ2α2
xx(λ)

−
1

λ2α2
θθ(λ)

= 0 (2)

ξ̃ =

∣

∣

∣

∣

∣

(

Iu+
h

b
Iϕ

)

−1
[

ξ
′

λ̃2
+

1

λ̃2

(

ξxx
α2
xx(1 + i2ξxx)

+
ξθθ

α2
θθ(1 + i2ξθθ)

)

]∣

∣

∣

∣

∣

(3)

where,

ξ′ =
ω

ωn
ξ (4)
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α2
xx = σ2 1

16π2

h

b

1

δ
k̃xx (5)

ξxx =
c̃xx

2k̃xx
(6)

α2
θθ = σ2 1

16π2

h

b

1

δ
Re

[

b2

(h+D)2
K̃θθD

]

(7)

ξθθ =
Im
[

b2

(h+D)2 K̃θθD

]

2Re
[

b2

(h+D)2
K̃θθD

] (8)

being K̃xx = Kxx/(µsb) = k̃xx + ic̃xx and

K̃θθD =
1

µsb3

(

Kθθ −
K2

θx

Kxx

)

(9)

b2

(h+D)2
=





(

h

b

)2

− 2

(

h

b

)

K̃θx

K̃xx

+

(

K̃θx

K̃xx

)2




−1

(10)

where D = D(ω) = −Kxθ/Kxx represents the virtual depth of the point at which the soil-foundation
interaction must be condensed to obtain a diagonal impedance matrix.

Finally, the maximum shear force at the base of the structure per effective earthquake force unit130

Qm is obtained as

Qm = Max

∣

∣

∣

∣

∣

∣

∣

∣

1
(

ω2

ω2
n

(

T̃
T

)2
− 1

)

− i2ξ̃ ω
ωn

T̃
T

∣

∣

∣

∣

∣

∣

∣

∣

(11)

The procedure followed to obtain these expressions for the effective period T̃ /T (equation (2)) and
damping ξ̃ (equation (3)) and Qm (equation (11)) is thoroughly described in the aforementioned [14].

4 Results

This section presents the results obtained from the application of the methodology explained above135

to the analysis of the effects that the variation of the angle of incidence θo of SV waves has on the
dynamic response of the configurations under investigation.
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4.1 Kinematic interaction factors

Figures 3 and 4 depict, respectively, the translational Iu = ug/ugo and the rotational Iϕ = b ϕ/ugo
kinematic interaction factors corresponding to all the 3×3 pile group configurations under investigation140

for the following values of the angle of incidence: θo = 30o, 40o, 50o, 60o, 70o 80o and 90o (vertical
incidence). Each column shows results for a different value of the soil Poisson’s ratio νs. Odd and even
rows present, respectively, real and imaginary parts of the translational kinematic interaction factors
corresponding to pile groups with different values of the pile slenderness ratio L/d = 7.5, 15 and 30.
The horizontal axis represents the dimensionless frequency.145

As can be seen in Figures 3, the strongest filtering of the seismic excitation in terms of horizontal
input motion occurs for the more horizontal of the considered angles of incidence (θo = 30o and 40o).
A remarkable filtering capacity is also noticed for angles of incidence more vertical than the critical
angle while, on the contrary, for θo = 50o, the horizontal input motion is amplified by the presence of
the pile foundation.150

On the other hand, as shown in Figure 4, the highest values of the rotational kinematic interaction
factor Iϕ are reached for the those values considered for the angle of incidence that are below the
critical angle (θo = 30o, 40o and 50o). This may be attributed in part to the way of presenting such
information given that the horizontal free-field motion at the surface ugo takes small values for these
angles (see Figure 6, where the evolution of ugo/A

inc with θo is depicted, being Ainc the amplitude of155

the incident wave). It is worth noting that the responses for θo = 30o and 40o are 180o out of phase
with respect to that corresponding to θo = 50o (opposite signs for one angle and the other). This effect
plays an important role in the analysis of the structural response, as it will be shown subsequently,
and occurs within a certain range of θo. For the purpose of illustrating this fact, Figure 7 shows the
evolution of the real part of the kinematic interaction factors (Re[Iu] and Re[Iϕ]) with θo for different160

3 × 3 pile groups configuration when ωd/cs = 0.1. The range of θo in which Re[Iu] and Re[Iϕ] have
opposite signs is indicated with a shaded area.
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Figure 2: Geometric configuration of 2× 2 , 3× 3 and 4× 4 pile groups considered in this study.
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Figure 3: Translational kinematic interaction factor Iu of 3× 3 pile groups for different values of the
angle of incidence θo of SV waves and several values of the Poisson’s ratio νs. Ep/Es = 103 and
ξs = 0.05. L/d(s/d) = 7.5 (2.5) 15 (5), 30 (10).
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Figure 4: Rotational kinematic interaction factor Iϕ of 3×3 pile groups for different values of the angle
of incidence θo of SV waves and several values of the Poisson’s ratio νs. Ep/Es = 103 and ξs = 0.05.
L/d(s/d) = 7.5 (2.5) 15 (5), 30 (10).
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Figure 5: Kinematic interaction factors moduli (|Iu| and |Iϕ|) of 2 × 2, 3 × 3 and 4 × 4 pile groups
for different values of the angle of incidence θo of SV waves. Ep/Es = 103, ξs = 0.05 and νs = 0.4.
L/d = 7.5, 15, 30.
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Figure 6: Variation of the free-field horizontal displacement ugo with the angle of incidence θo for a
SV incident wavefront considering different soils with νs = 0.2, 1/3, 0.4 and 0.45.

Following the same format used in Figures 3 and 4, Figure 5 depicts the moduli of the kinematic
interaction factors corresponding to 2 × 2 (yellow line), 3 × 3 (blue line) and 4 × 4 (red line) pile
groups with L/d = 7.5, 15 and 30. It can be seen that the curves corresponding to configurations with165

different number of piles all follow the same trend. It is worth noting that for angles of incidence over
the critical angle, the influence of the number of piles on the rotational kinematic interaction factors
is negligible. A reduction of Iϕ is also observed as the pile slenderness ratio L/d increases for angles
of incidence over the critical angle.

The impedances of 2×2, 3×3 and 4×4 pile groups with L/d = 7.5, 15 and 30 as a function of the170

dimensionless frequency are extracted from Medina et al. [14]. These complex functions, together with
those obtained for the kinematic interaction factors, are used to determine, in the following sections,
the dynamic behaviour of the superstructure.

4.2 Effective period

As expected, the system effective period does not depend on the incident field. The variation of θo175

does not affect the system effective period because the kinematic interaction factors are not involved
in the estimation of the value of T̃ /T corresponding to the SDOF equivalent system (see equation
(2)).

Figure 8 depicts the variation of the system effective period (T̃ /T ) with the structure-soil relative
stiffness (1/σ) for different configurations of pile groups. The left column illustrates how the increment180

of the undamped natural period T̃ with respect to the fixed-base natural period T becomes more
relevant, for instance, when the height of the structure increases. Note that this trend is reversed for
non-slender structures when considering stiffer foundations. A similar effect can be observed in the
central column when the diameter of the piles decreases (larger L/d with constant L/b). The right
column shows a reduction of the effective period for increasing number of piles. Results corresponding185

to the rest of the pile group configurations under study show the same trends but they are not included
in this paper in pursuit of brevity. A thorough study analysing the influence of the main parameters
involved in soil-structure interaction problems on the dynamic characteristics of structures supported
on vertical pile groups was performed (for the first time to the authors’ knowledge) by Medina et al.
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Figure 7: Real part of the kinematic interaction factors Iu and Iϕ of 3 × 3 pile groups for different
values of the angle of incidence θo of SV waves. Ep/Es = 103, ξs = 0.05 and νs = 0.4. L/d(s/d) =
7.5 (2.5) 15 (5), 30 (10).ωd/cs = 0.1.

[14].190

4.3 Effective damping

Figure 9 shows the system effective damping for the different configurations of 3× 3 pile groups under
investigation embedded in a soil such that νs = 0.4. Each row represents the results obtained for a
pile group configuration with a different value of the pile slenderness ratio L/d. In turn, each column
corresponds to a different value of the structural slenderness ratio h/b = 1, 2, 5 and 10. Results195

corresponding to several values of the angle of incidence (θo = 30o, 40o, 50o, 60o, 70o and 90o (vertical
incidence)) are depicted. Results obtained involving only inertial interaction, which are computed
without considering the kinematic effects of the incident field affecting the foundation, are also shown
in this figure. As in Figure 8, the horizontal axis represents the inverse of the wave parameter 1/σ. It
can be seen that for angles of incidence over the critical angle (θo > θcr) the effective damping can be200

well approximated by that corresponding to vertical incidence. If kinematic interaction is neglected
(inertial interaction curve), the computed effective dampings are higher than those obtained when
kinematic interaction is taken into account for angles of incidence θo = 90o, 70o, 40o and 30o. This
means that, for all these cases, neglecting kinematic interaction yields significantly non-conservative
results, and should be avoided. It is worth noting that when θo = 50o, a significant increase of ξ̃ occurs205

for certain values of 1/σ which implies a great reduction of the maximum shear force Qm that reaches
values close to zero. In order to illustrate this effect, Figure 10 presents Qm for the same pile group
configurations analysed in Figure 9, which provide complementary results that are more practical
from a engineering point of view. Greater values of Qm are obtained when the angle between the
direction of propagation of the wavefront and the horizontal is θo = 30o or 40o and minimum values210

13



1

2

3

0.0 0.1 0.2 0.3 0.4

2 x 2 ; L/d=15
T ˜

/T

1/σ

h/b=1
h/b=2
h/b=5

h/b=10

0.0 0.1 0.2 0.3 0.4

2 x 2 ; h/b=1

1/σ

L/d=7.5
L/d=15
L/d=30

0.0 0.1 0.2 0.3 0.4 0.5

L/d=15 ; h/b=1

1/σ

2 x 2
3 x 3
4 x 4

1

2

3

0.0 0.1 0.2 0.3 0.4

3 x 3 ; L/d=15

T ˜
/T

1/σ

h/b=1
h/b=2
h/b=5

h/b=10

0.0 0.1 0.2 0.3 0.4

2 x 2 ; h/b=5

1/σ

L/d=7.5
L/d=15
L/d=30

0.0 0.1 0.2 0.3 0.4 0.5

L/d=15 ; h/b=5

1/σ

2 x 2
3 x 3
4 x 4

Figure 8: Influence of the structural slenderness ratio h/b (left column), the pile slenderness ratio L/d
(central column) and the number of piles (right column) on the effective period T̃ /T . Ep/Es = 103,
ξs = 0.05 and νs = 0.4.

of Qm are reached for θo = 50o, in most cases. The influence of the foundation stiffness becomes more
remarkable for angles of incidence below the critical angle. For slender structures the maximum shear
force increases with 1/σ, reaching values beyond five times those corresponding to vertical incidence
for the case in which h/b = 10. However, for short or medium-height buildings (h/b < 5), Qm reaches
its maximum for values of the wave parameter such that 1/σ < 0.2.215

This behaviour of the structural dynamic response when θo = 50o is related with the aforemen-
tioned change of sign observed in the rotational kinematic interaction factor Iϕ and it can be explained
from the expression of the system effective damping ξ̃ written in equation (3). It can be inferred that,
for a certain configuration, the maximum value of ξ̃ is achieved when

Iu(T̃ /T ) ≈ −
h

b
Iϕ(T̃ /T ) (12)

which is to say220

ug
b ϕg

≈ −
h

b
(13)
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Figure 9: Effective damping ξ̃ for different 3 × 3 pile groups. Ep/Es = 103, ξs = 0.05 and νs = 0.4
(θcr = 65.9o). L/d(s/d) = 7.5 (2.5) 15 (5), 30 (10). Grey line to be read on the right axis provide a
zoomed out view.

Defining r = ug/ϕg as the vertical distance between the free surface and the system center of
rotation (being r > 0 when the system center of rotation is under the free surface), it can be inferred
that when r reaches values close to the height of the structure (−r ≈ h), the behaviour of the
superstructure closely resembles that of a rigid solid whose center of rotation is located in the centre
of the slab. Consequently, the structural horizontal deflection u and, in turn, the maximum shear225

force at the base of the structure Qm, experience a significant reduction which implies a considerable
increase of the system effective damping ξ̃. For the purpose of illustrating this effect, Figure 11 shows
in each graphical area three curves superimposed that correspond, respectively, to r/b (ao(Qm)) =
Re[Iu]/Re[Iϕ], the structural slenderness ratio h/b and the system effective damping ξ̃ for slender and
non-slender structures supported on a 2× 2 pile group subjected to SV waves being θo = 50o. ao(Qm)230

is the value that takes the dimensionless frequency when the maximum shear force at the base of the
structure Qm occurs. Only the real parts of the kinematic interaction factors, Re[Iu] and Re[Iϕ], have
been considered because their imaginary parts are negligible in both cases. As for previous Figures, the
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Figure 10: Maximum structural response value Qm for different 3 × 3 pile groups. Ep/Es = 103,
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horizontal axis represents the inverse of the wave parameter 1/σ and each column depicts results for a
different structural slenderness ratio h/b. In turn, each row presents results for different values of the235

Poisson’s ratio νs. In this figure, it can be clearly seen that the maximum values of the system effective
damping ξ̃ are reached for those values of the wave parameter at which the curve corresponding to
−r/b intersects that of h/b, as occurs for νs = 0.4 and νs = 1/3.

The bottom row in Figure 11 illustrates that when νs = 0.08, −r/b and h/b functions do never
intersect. In this case, the system effective damping ξ̃ varies with a monotonous trend as the wave240

parameter decreases. When νs = 0.4 or νs = 1/3, the angle between the direction of propagation of
the wavefront and the horizontal (θo = 50o) is below the critical angle θcr, while for νs = 0.08 (not a
representative for typical soils and only used in order to explain this effect) the angle of incidence of
the SV wave is over the critical angle.

At this stage, it is worth determining the range of values of the angle of incidence θo of SV waves245

for which the superstructure rotates almost as a rigid solid around the centre of the slab that remains
practically at the same place. For this purpose, the problem has been analysed for a 2× 2 pile group
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subjected to SV waves with angles of incidence between θo = 40o and θo = 70o with an increment of
1o. Figure 12 presents the maximum effective damping values obtained for each soil, angle of incidence
and slenderness ratio, together with the values of the other relevant functions for the configuration at250

which that happens. Each column corresponds to a different value of the soil Poisson’s ratio νs and,
consequently, to a different value of the critical angle θcr which has been depicted in each graphical
area with a solid vertical black line. The first and the second rows show the values of the kinematic
interaction factors real parts, Re[Iu] and Re[Iϕ], for the dimensionless frequency ao(Max[ξ̃]) at which
the maximum value of the system effective damping is reached. The third row of this figure depicts the255

ratio of the distance between the pile cap centre and the system center of rotation to the foundation
halfwidth (−r/b). With the aim of facilitating the interpretation of the presented results, the different
values of the structural slenderness ratio are represented, in each graphical area of the third row, with
horizontal lines of the corresponding colours. The fourth row shows the maximum value reached for
the system effective damping Max[ξ̃] within the range of values considered for the inverse of the wave260

parameter 1/σ. For the purpose of providing the reader with complementary information, the bottom
row depicts the values of the inverse of the wave parameter 1/σ for which the maximum value of ξ̃ is
reached for each value of the angle of incidence θo.

Figure 12 aims at helping the reader to understand the aforementioned effect (a great increase of
the system effective damping ξ̃ associated with those values of the angle of incidence θo for which (ug)265

and (ϕg) are out of phase and the ratio −r/b is close to the structural slenderness ratio h/b) and to
delimit the range of θo (indicated with a shaded area) in which this effect occurs for each type of soil.
It can be seen that this effect occurs for 45o < θo < θcr. It is worth noting that this range widens for
more incompressible soils. The same type of graph is presented in Figure 13 for a 3 × 3 pile group
yielding the same conclusions. In order to enhance the reader understanding of Figures 12 and 13,270

the evolution of the location of the system center of rotation within the considered range of θo and
its consequences on the structural behaviour is illustrated in Figure 14. All plots in Figures 12 and
13 show the same four zones: a) for θo < 45o, the system center of rotation is placed at 0 < −r < h,
and the effective damping is low; b) for 45o < θo < θα (see Figure 14), the height of the system center
of rotation is r = −h, which yields a very low effective earthquake shear force Q (a high effective275

damping); c) for θα < θo < θβ, the system center of ration is placed at −r > h, and the effective
damping is low again; and d) for θo > θβ, the system center of rotation is placed below the free surface
and the effective damping is again low. The values of θα and θβ depend on the specific problem.
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Figure 14: Influence of the wavefront angle of incidence θo on the location of the system center of
rotation.

For the purpose of illustrating how the wavefront angle of incidence θo and the dimensionless
frequency expressed as ωd/cs affect the location of the system center of rotation, Figure 15 depicts280

results in terms of −r/b for 2× 2 pile group configurations with different values of the pile slenderness
ratio L/d(s/d) = 7.5 (3.75), 15 (7.5) and 30 (15). Those points in which the system center of rotation
is located at the structural height (−r/b = h/b) are represented with different colours corresponding
to the superstructures considered in this study (h/b = 1 (red), 2 (blue), 5 (green) and 10 (cyan)). The
projection of these points on the horizontal plane is represented in order to facilitate the comprehension285

of the results. Note that the range in which the structure can behave almost as a rigid solid (−r ≈ h)
whose center of rotation is located in the centre of the slab widens as the foundation stiffness decreases
(i.e. greater values of L/d).
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Figure 15: Influence of the wavefront angle of incidence θo and the dimensionless frequency ωd/cs on
the location of the system center of rotation of 2× 2 pile group configurations for νs = 0.4.
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5 Conclusions

This paper addresses an analysis of the influence of the direction of propagation of SV waves on290

the dynamic response of pile foundations and piled structures. A BEM-FEM coupling formulation is
used in this work to compute impedance functions and kinematic interaction factors of several pile
group configurations considering different values of the angle of incidence. Subsequently, a simple
and accurate substructuring procedure is used to determine the dynamic characteristics of a SDOF
equivalent system that reproduces the dynamic response of the interacting system within the range295

where the peak response occurs. This dynamic response is expressed in terms of shear force at the
base of the structure for effective earthquake force Q.

The dynamic behaviour of structures with different slenderness ratios (h/b = 1, 2, 5 and 10)
supported by 2 × 2, 3 × 3 and 4 × 4 pile groups and subjected to SV waves with several angles
of incidence (θo) is analysed in this work. The main conclusions inferred from these results are300

summarised below:

• The results obtained for the translational kinematic interaction factor Iu show that the strongest
filtering of the seismic excitation can be observed when the angle between the direction of
propagation of the wavefront and the horizontal is θo = 30o or 40o, among the cases studied
herein. A noticeable filtering capacity is also shown for angles of incidence more vertical than305

the critical angle. On the contrary, when θo = 50o, the ability of the foundation to filter SV
waves decreases significantly.

• The highest values of the rotational kinematic interaction factor Iϕ are reached for angles of
incidence below the critical angle (θo = 30o, 40o and θo = 50o).

• The influence of the foundation stiffness on the maximum structural response Qm becomes more310

noticeable for angles of incidence below the critical angle.

• It is shown that the hypothesis usually adopted, vertical incidence, does not always corresponds
to the worst-case scenario.

• When kinematic interaction is neglected, the computed effective dampings are over those ob-
tained when kinematic interaction is considered for angles of incidence θo = 90o, 70o, 40o and315

30o. Therefore, for all these cases, neglecting kinematic interaction yields significantly non-
conservative results, and should be avoided.

• For slender structures the maximum structural response increases with relative structure-soil
stiffness for shallow incidence (θo = 30o or 40o), reaching values beyond five times those corre-
sponding to vertical incidence for the case in which h/b = 10. However, for short or medium-320

height buildings (h/b < 5), Qm reaches its maximum for values of the wave parameter such that
1/σ < 0.2.

• Very low structural responses Qm can be reached when the angle of incidence is below the
critical angle, but above 45o. This effect has not been mentioned by other authors in previous
studies and it can be explained attending to the fact that the horizontal (ug) and rocking (ϕg)325

motions measured at the pile cap level are out of phase and the instantaneous centre of rotation

22



of the structure is close to the centre of the vibrating mass −r/b ≈ h/b. This implies that
the superstructure rotates almost as a rigid solid and the structural deflection is close to zero
(u ≈ 0). The more incompressible the soil, the larger the range of incident angles for which
very low maximum structural responses arise. It also has been checked that the influence of the330

foundation-structure mass ratio mo/m on this effect (and the general response) is negligible for
all the cases under investigation.
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[5] J. M. Zarzalejos, J. J. Aznárez, L. A. Padrón, O. Maeso, Influences of type of wave and angle of
incidence on seismic bending moments in pile foundations, Earthquake Engineering & Structural
Dynamics 43 (2014) 41–59.

[6] M. I. Todorovska, M. D. Trifunac. Analytical model for in plane building-foundation-soil interac-350

tion: incident, Report No. CE 90-01, Department of Civil Engineering, University of Southern
California, Los Angeles, California, 1990.

[7] M. I. Todorovska, M. D. Trifunac, The system damping, the system frequency and the system
response peak amplitudes during in-plane building-soil interaction, Earthquake Engineering &
Structural Dynamics 21(2) (1992) 127–144.355
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[11] L. A. Padrón, J. J. Aznárez, O. Maeso, BEM-FEM coupling model for the dynamic analysis of365

piles and pile groups, Engineering Analysis with Boundary Elements 31(6) (2007) 473–484.
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