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Abstract: Currently, high-level synthesis (HLS) methods and tools are a highly relevant area in the
strategy of several leading companies in the field of system-on-chips (SoCs) and field programmable
gate arrays (FPGAs). HLS facilitates the work of system developers, who benefit from integrated and
automated design workflows, considerably reducing the design time. Although many advances have
been made in this research field, there are still some uncertainties about the quality and performance of
the designs generated with the use of HLS methodologies. In this paper, we propose an optimization of
the HLS methodology by code refactoring using Xilinx SDSoCTM (Software-Defined System-On-Chip).
Several options were analyzed for each alternative through code refactoring of a multiclass support
vector machine (SVM) classifier written in C, using two different Zynq®-7000 SoC devices from
Xilinx, the ZC7020 (ZedBoard) and the ZC7045 (ZC706). The classifier was evaluated using a brain
cancer database of hyperspectral images. The proposed methodology not only reduces the required
resources using less than 20% of the FPGA, but also reduces the power consumption −23% compared
to the full implementation. The speedup obtained of 2.86× (ZC7045) is the highest found in the
literature for SVM hardware implementations.

Keywords: high-level synthesis; HLS; SDSoC; support vector machines; SVM; code refactoring;
Zynq; ZedBoard

1. Introduction

High-level synthesis (HLS) methodologies allow hardware (HW) designers to increase the
abstraction level and accelerate the automation for the synthesis and verification of the design process.
The current rise in the complexity of the applications and the increment of the capabilities of silicon
technologies, as well as the so called time to market constrain, make HLS methodologies and tools of
mandatory use in the near future [1]. Due to the multiple commercial solutions that can be found
in the market for multiprocessor system-on-chips (MPSoCs) nowadays, it is strictly necessary to
improve its techniques and methodologies [2] so that the technology is able to deal with the multiple
implementation possibilities by using high-level design [3,4].

Some implementations of support vector machine (SVM) classifiers in field programmable
gate arrays (FPGAs) have been released in different applications, such as image processing [5,6],
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automotive [7], medical [8,9], and data signal processing [10,11], among others. These implementations
use different platforms depending on the application and the desired accuracy and timing. For
readers who are interested in different implementations using diverse devices and including not
only a training implementation but also a classification one, we recommend [12], where the authors
review the state-of-arts of SVM implementations using different types of FPGAs. Another interesting
research from the same authors is a SVM classifier for melanoma detection using a Zynq® device
(ZC7020) and HLS methodology. The dataset employed is based on traditional RGB (red, green,
and blue) images and the generation of a binary SVM model, having an output of the class as 1
(melanoma) and −1 (non-melanoma) [13]. The implementation depended on directives used directly
in Vivado HLS without code refactoring. Finally, it is relevant to take into account that, in every
implementation, the communication between the software (SW) and the hardware (HW) parts in an
embedded system represents a relevant bottleneck to be solved, especially when using data with high
storage and data transfer requirements, e.g., hyperspectral image processing. For example, in [14],
the different stages of an Least-Squares Support Vector Machine (LS-SVM) implementation using a
Zynq device is approached, separating the code of the algorithm into different parts, depending on the
communications necessary for each part. In consequence, some parts are more suitable to be computed
using the Advanced RISC Machines (ARM) processors than implementing them in the programmable
logic (PL) part. For this reason, it is mandatory to know the code in detail, and to identify the parts
(loops and sequential code) that are suitable to be accelerated in the embedded system.

Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy methods to obtain
both spatial and spectral information of a scene [15]. While a conventional RGB (red, green, and blue)
image only records three spectral bands in the visible spectrum (380–740 nm), HSI is able to obtain
spectral information within and beyond the human eye [16]. Hyperspectral (HS) sensors are capable
of capturing a very large number of contiguous spectral bands, measuring the radiation reflectance,
absorbance, or emission of the material that is being captured. At the end, a vector of radiance values
for each pixel of the image (called the spectral signature) is obtained [15], allowing the automatic
identification of the materials presented in the scene through image processing algorithms [17]. HSI is a
non-invasive and non-ionizing technique that supports the rapid acquisition and analysis of diagnostic
information in several fields, such as remote sensing [18,19], drug identification [20,21], forensics [22–24],
food safety inspection, and control [25–27], among many others. In the medical field, several studies can
be found in the literature where HSI is applied to different medical applications [28–30]. Particularly,
many research groups have investigated the use of HSI for surgical applications, especially for cancer
analysis [31,32], such as laparoscopic HS imaging [33], the differentiation of breast cancerous and
non-cancerous tissue [34], the identification of tongue cancer of in vivo human samples [35], intestinal
ischemia identification [36], prostate cancer detection [37], gastric cancer delineation [38], head and
neck cancer classification and delineation [39,40], among others.

In this paper, an evaluation of code refactoring and SDSoCTM (Software-Defined System-On-Chip)
design methodology and implementation is performed, using both binary and multiclass SVM
classifiers for hyperspectral imagery. To test the implementation design flow, the SVM codes were
modified to increase the speed up and were tested in two different Zynq devices. Our proposed
methodology could provide a reliable solution to accelerate the processing of hyperspectral data in
several medical applications, in particular for the intraoperative brain cancer detection application.

This paper is organized as follows. In Section 2, the most relevant specifications of the research
work are described, such as the devices (Zynq), the electronic design automation tool (SDSoC), and
the basis of the SVM classifiers. In addition, a summary of the hyperspectral dataset employed in
this work is detailed. In Section 3, a detailed explanation of the code refactoring of the binary and
the multiclass SVM classifiers is provided, together with an explanation of the used methodology.
This paper concludes including the experimental results in Section 4 and outlining the conclusions in
Section 5.
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2. Materials and Methods

This section is intended to briefly describe the tools and platforms employed for the development
of this work, as well as the methodology followed for the implementation of the algorithms using HLS.
Furthermore, the hyperspectral dataset employed for the experiments is described.

2.1. Zynq-7000 SoC Device from Xilinx

The Zynq is an SoC (system-on-chip) provided by Xilinx [41]. All versions have the same
processing system (PS) features, a dual-core ARM Cortex A9 (ARMv7-A architecture), 32 KB Level
1 cache for instructions, and 32 KB Level 1 cache for data. The two cores share a 512 KB L2 cache
and a 256 KB on-chip memory (OCM). The basic clock frequency for the PS part of this platform is
667 MHz, but some specific versions can reach 1 GHz. The programmable logic (PL) part can access
the DDR memory, the OCM memory, and the L2 cache in the PS via AXI interfaces, with coherency
behavior through the Accelerated Coherency Port (ACP). The resources of the PL part depend on
the version selected. In this paper, two Zynq versions were selected: a ZC7020 in a ZedBoardTM

Evaluation Kit [42] and the ZC7045 in a Xilinx Zynq-7000 SoC ZC706 Evaluation Kit [43]. These devices
prevent the designer from wasting excessive HW or SW design time, increasing the communication
performance between the two parts by using the provided communication interfaces, but sometimes
some modifications are required to get an appropriate HLS implementation. The transactions between
the PL and the PS parts suppose a relevant challenge for the designer and dramatically affect the final
system performance.

The ZC706 board uses the XC7Z045 SOC and 1 GB DDR3 RAM among other resources. The
XC7Z045 includes the standard SW configuration (PS part) for a generic Zynq device, and the PL part
contains a Kintex-7 architecture with 350 K logic cells, 218.6 K LUTs (Look Up Tables), 437.2 K FFs (Flip
Flops), 19.2 Mb BRAM (Block RAM), and 900 DSPs (Digital Signal Processors) (18 × 25). The ZedBoard
uses the XC7Z020 SOC and 512 MB DDR3 RAM. The XC7Z020 contains an Artix-7 architecture with
85 K logic cells, 53.2 K LUTs, 106.4 K FF, 4.9 Mb BRAM, and 220 DSP (18 × 25). Both devices include
the same SW part, but do not use the same architecture. In this work, both devices were used to check
if it is worth using the most expensive SOC for the application.

In a data-intensive embedded system, the designer needs to deal with the communication
bottleneck, not only with the HW implementation but also with the SW communication. The Zynq
provides dedicated and well-defined data bus communications between both parts, including SW and
HW parts, in one device. Moreover, the design tools created by the manufactures provide the designers
with efficient mechanisms to save time in the final implementation. Such tools provide libraries and
methods to communicate the two parts and create the final implementation in a reasonable amount
of time.

2.2. SDSoC Development Environment by Xilinx

SDSoC is a tool developed by Xilinx that provides the designer with the possibility of creating
complete embedded systems from C or C++ code using Zynq devices as the target system. This type
of tools provides new features over the traditional HLS tools, which are of high interest in the research
community [44,45]. SDSoC includes a system compiler that analyzes the code in order to determine
the data flow between the PS and PL parts, and provides the designer with a complete system. SDSoC
invokes Vivado to create the system and Vivado HLS to create the IPs for the desired accelerated
functions. Then, SDSoC includes the accelerated functions and the Data Movers IP (Intellectual
Property) for data transaction. In order to provide an efficient time implementation, the tool generates
a thread for each accelerated function, ensuring synchronization between the software and hardware
threads. The designer can configure the communication between PL and PS parts in the code with
SDSoC pragma directives to meet the application and solution constraints and adds Vivado HLS
directives to create the desired accelerated IP. The version used in this work is the 2018.2.
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The methodology applied in this paper includes that proposed by Xilinx [46] with some
modifications, thus creating a well-defined six-step design flow, as shown in 0. After the code
is verified in the ARM, checking the results Figure 1a, the first step in the design flow is the profiling
stage Figure 1b. In this step, a profiling tool is needed to detect the functions that must be accelerated.
This step can be carried out with different profiling tools, such as Valgrind [47] for memory usage
and gprof [48] for timing. This step lets the designer identify the relevant functions in the code for
HW acceleration. Since SDSoC uses Vivado HLS, the second step shown in Figure 1c includes the
optimization suggested by the Vivado HLS and SDSoC guidelines. The third step of the methodology
Figure 1d consists of code refactoring, restructuring the source code for an improvement of the latency.
In some cases, this phase is mandatory if a certain speedup is pursued. Moreover, without this code
refactoring, the acceleration could not be affordable. The objective is to modify the code in such a way
that the final implementation reuses the FPGA resources, makes the most of the FPGA embedded
resources, e.g., DSP (digital signal processing) macros, or reflects a particular architecture to achieve
the design constrains. Code refactoring for HLS performance improvement is the main contribution of
this paper, and it will be further explained in Section 3.
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The fourth step of the methodology Figure 1e is to obtain the performance estimation provided by
the tool, and check if the results are the expected ones. In this stage, a detailed report of the resources
and speedup of accelerated functions is provided, and a new iteration can be done to improve the
expected performances. The final iteration of performance estimation depends on the resources of the PL
part, and the resources used will be shown in the HLS report obtained in the next step. The constraints,
the SDSoC compiler directives, and the code refactoring drive the performance estimation. This step
has a high impact on the quality of the final implementation. The designer can also use Vivado HLS
directives together with SDSoC directives. The directives provide instructions to the compiler to meet
the characteristics of the HW architecture and the desired timing constrains, e.g., the use of pipelines to
implement loops, the type of communication channels for data-flow implementations (Data Movers),
FPGA resources to be used for variable storage, etc. To improve the results, it is necessary to take into
account the inferred implementation of the compiler tool.

The final step of the methodology shown in Figure 1f lets the designer check the estimated
performance in the selected board. The estimated performance is obtained during the performance
estimation stage (before the synthesis) with the profiling tool included in the SDSoC software. This
estimation does not allow the designer to know the critical functions (obtained in the profiling stage),
but it shows the estimated speedup that will be achieved with the current implementation. Commonly,
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these results are different from the real speedup obtained in the final implementation. Here, the
speedup can be computed by measuring the clock cycles taken by the accelerated solution compared
to those taken by the serial execution in the ARM processors. SDSoC invokes Vivado HLS in order to
generate the HDL implementation files for the accelerated functions in HDL (VHDL or Verilog) and
provides several comprehensive synthesis reports. The information provided in the synthesis reports
helps the designer meet the targeted performance and resource usage requirements for a specific
application. SDSoC also generates all the files needed to run the application in the embedded system,
the bitstream for the PL part, the connection between the PS and PL parts (Data Movers), and the files
of the OS in Linux or FreeRTOS with the executable binary (ELF file) for running the application. This
final step is mandatory due to the difference between the real and the estimated performance. The real
performance usually is lower than the estimated one. In order to obtain the real performance, it is
mandatory to check the clock used in the PS part.

2.3. Support Vector Machine Classifier

The SVM algorithm is a binary classification approach proposed by Vapnik in 1979 [49]. The main
goal of this algorithm is to find a hyperplane that separates two classes according to their features
with maximum margin. A set of data xi (xi ∈ Rd) and labels associated to this data (yi ∈ R) are given.
Each label provides information about data xi; if yi = 1, the class is positive, and if yi = −1, the class
is assumed to be negative. For example, if we are dealing with a diagnostic test, a positive class
could mean ‘disease’ while a negative can represent ‘non-disease’. According to the input data xi,
Equation (1) can be written.

ŷ = xi·w + b (1)

In Equation (1), ŷ is the predicted class for the instance xi, and the parameters w and b define
the maximum margin hyperplane (w ∈ Rd and b ∈ R). These parameters, w and b, are learned from
a training set, consisting of tuples of data and labels (xi, yi). One of the main features of the SVM
algorithm is that it can be easily generalized for non-linear data [50], which is especially useful for
complex data where a linear separation hyperplane is not capable of separating the data accurately.
Similarly to other binary classifiers, SVM can be extended to a multiclass classifier by combining
several binary classifiers [51].

SVMs are kernel-based supervised classifiers that have been widely used in the classification of
HS images [52]. In the literature, SVMs achieve good performance for classifying HS data, even when
a limited number of training samples are available [53]. Due to its strong theoretical foundation, good
generalization capabilities, low sensitivity to the curse of dimensionality, and ability to find global
classification solutions, many researchers usually prefer SVMs instead of other classification algorithms
for classifying HS images [30].

SVM Multiclass Classifier

In this paper, we address the implementation of the multiclass SVM classification stage. For this
purpose, we first employed an implementation of the basic binary SVM classifier to perform the
experiments and optimizations. Then, a multiclass SVM classifier implementation based on the
one-vs-one method was used to apply and evaluate the optimizations proposed with the binary
algorithm. This allowed reusing some parts of the binary code modifications and copying the
methodology used in this first implementation. The linear kernel with the hyperparameter cost equal
to 1 was employed for the SVM classifier, since it has been demonstrated to produce accurate results
for hyperspectral brain cancer detection applications [54].

The first version of binary and multiclass classification were written in C++ language and both
final versions were written in plain C following a hardware-friendly way. Both codes were tested
comparing results with the SVM implementation of the LIBSVM [55] implementation in MATLAB®

2019a (The MathWorks, Inc., Natick, MA, USA) software. To validate the implementation, gold
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standard results were obtained from the MATLAB SVM implementation in double precision and saved
into binary files. Such data were used to compare the software and hardware implementations.

In this implementation, the multiclass SVM algorithm was split into four different stages:

(1) Variables declaration and initialization. Here, the inputs that represents the previously trained
model of the algorithm (support vectors, the bias, and the sigmoid function parameters) as well
as the samples to be classified are declared and initialized.

(2) Distances computation. In this step, the distances between the samples (i.e., the pixel) and the
established hyperplane are computed.

(3) Binary probability computation. This step has the goal of estimating the binary probability of
a certain pixel to belong to the two classes under study in the one-vs-one method, taking into
account the distances computed in the previous step.

(4) Multiclass probability computation. This final step aims to obtain the multiclass probabilities for
each pixel performing a for loop that iteratively refines the probabilities for each pixel associated
to a certain class obtained in the previous step. The value of each probability is incrementally
modified on the assumption that the difference with the value of the previous iteration is under
a certain threshold or if the maximum error is reached (the user establishes both parameters).
As soon as one of these two situations is confirmed, the multiclass probabilities of the pixel are
computed, and the final classification map is generated.

This partition of the algorithm will allow performing two different implementations, one where
the entire algorithm is implemented onto the PL part (full version) and another one where the stage
with the most computational cost (modular version) is implemented onto the PL part and the remaining
stages are executed in the PS part.

2.4. In Vivo HS Human Brain Cancer Database

In this work, the HS data employed to evaluate the performance of the implementations belong to
an in vivo HS human brain cancer database [56]. This database was generated intraoperatively using
an HS acquisition system developed during the execution of the HELICoiD project [56]. Particularly,
three HS images that belonged to three adult patients undergoing craniotomy for resection of intra-axial
brain tumors at the University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) were
employed for the validation of the implementations. The patients had a grade IV glioblastoma tumor
confirmed by histopathology. The study protocol and consent procedures were approved by the
Comité Ético de Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) of the University
Hospital Doctor Negrin, and written informed consent was obtained from all subjects. HS data
from these images were labeled into four classes as normal tissue, tumor tissue, hypervascularized
tissue, and background, following the method explained in [56]. This method consisted of two main
steps. First, the pathologists analyzed the biopsied tissue from the tumor area extracted during the
surgical procedure after capturing the intraoperative HS image. Then, the neurosurgeon labeled
certain pixels of the image where they were confident that the pixels belonged to one of the four
classes. Normal tissue, hypervascularized tissue, and background were labeled according to the
surgeon criteria and experience by visual inspection using the labeling tool based on the Spectral Angle
Mapper (SAM) algorithm. Tumor tissue pixels were labeled with the same labeling tool, but taking
into account the definitive diagnostic information provided by histopathological analysis. Normal and
hypervascularized tissue samples were not pathologically analyzed due to ethical reasons. Figure 2a
shows the information structure of an HS cube [31]. On one side, each pixel of the HS image contains a
full spectral signature of length equal to the number of spectral bands of the HS cube. The reflectance
value of a certain pixel in a certain wavelength is called a voxel. On the other side, a gray-scale image of
the captured scene can be obtained using any of the spectral bands that display the spatial information
provided by the image sensor at such a particular wavelength. The rubber ring markers presented in
the image were employed for labeling purposes with the goal of identifying the pathological assessment
of the brain tissue (normal or tumor).
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Figure 2. Hyperspectral (HS) in vivo brain human database. (a) Example of the HS cube basis [31].
(b–d) are synthetic red, green, and blue (RGB) representations of the HS images employed in this study
for results validation (OP8C1, OP12C1, and OP20C1, respectively), where the tumor area is surrounded
in yellow [56]. The size of the HS image in terms of pixels×bands and megabytes is shown below each
RGB representation.

The HS data generated by the sensor was preprocessed following the preprocessing chain described
in [54]. This chain was based on five main steps: (1) a white and dark calibration employed to perform
a radiometric calibration of the HS image using a white tile that reflects 99% of the incident light and a
dark reference image that remove the effect of the dark currents produced by the HS sensor; (2) an
extreme band removal applied due to the low performance of the HS sensor in these bands; (3) a
band averaging process where the redundant information provided by the high spectral resolution
of the camera is eliminated; (4) a smooth filter employed to remove the spectral noise in the spectral
signatures; and (5) a normalization of the spectral signatures between 0 and 1 to avoid differences in the
amplitude of the signatures produced by the non-uniform illumination. Finally, the HS dataset consists
of 128 spectral bands, covering the spectral range between 450 and 900 nm (visible and near-infrared
spectra). Figure 2b–d show the synthetic RGB representations of the HS cubes selected for this study
and their corresponding size. These synthetic RGB images were generated only for visualization
purposes using three wavelengths directly extracted from the original HS cube to conform the RGB
image (R = 708.97 nm, G = 539.44 nm, B = 479.06 nm).

3. Code Refactoring

The reference code was modified until the final implementation showed clear indications of
reaching the performance objectives. After each change or restructuration in the code, a serial
verification was performed in order to check the results. These modifications were applied to the
binary classifier code. Once the optimal modifications were reached, the same methodology was
applied to the multiclass classifier code.
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3.1. Use of Directives and Memory Allocation

The first modification in the code was to include the minimal directives in order to avoid
dependences of the tool. In this case, only the HLS pragma for pipelining (the number of pragma HLS
pipeline) was used. For memory allocation, only the sds_alloc function was used. This function is
defined in a SDSoC library (sds_lib.h), and allocates physically contiguous memory, which can affect
system performance in the data transfer between the PS and the PL part. Since the accelerated function
receives a considerable amount of data, normally more than 8 MB, the AXI DMA scatter gather was
selected using the related SDSoC directives (#pragma SDS data zero_copy and #pragma SDS data
data_mover (Var1:AXIDMA_SG . . . )).

3.2. Improvement in Data Transfer

If the accelerated function only processes one pixel at each iteration, no speedup is obtained
even with the pragma directives. In order to improve the acceleration of the classification function,
several pixels are transferred between the PS and PL parts in the same clock cycle. Due to the 533-MHz
DDR3 SODIMM bandwidth constraint, an optimal amount of data must be selected in order to avoid
wasted data cycles. Since the implemented system is not always able to reach the entire bandwidth, it
is necessary to determine the highest data transfer near the bandwidth constrain. It is necessary to
take into account that the amount of pixels is not always an integer multiple of the optimal amount
of pixels for a data cycle, so zero padding is a good option to avoid calculating non-existent values.
Figure 3a shows the original code of the SVM binary software implementation. Figure 3b shows the
re-factored code applied in order to improve the transferred data using the proposed modification,
where BLOCKSIZE is the amount of pixels in each data transfer, BANDS is the number of bands values
for each pixel, PIXELS is the number of pixels in the image, and inputInter/outputInter are the arrays
for intermediate input/output data transfers.

Electronics 2019, 8, 1494 8 of 17 

 

binary classifier code. Once the optimal modifications were reached, the same methodology was 
applied to the multiclass classifier code. 

3.1. Use of Directives and Memory Allocation 

The first modification in the code was to include the minimal directives in order to avoid 
dependences of the tool. In this case, only the HLS pragma for pipelining (the number of pragma 
HLS pipeline) was used. For memory allocation, only the sds_alloc function was used. This function 
is defined in a SDSoC library (sds_lib.h), and allocates physically contiguous memory, which can 
affect system performance in the data transfer between the PS and the PL part. Since the accelerated 
function receives a considerable amount of data, normally more than 8 MB, the AXI DMA scatter 
gather was selected using the related SDSoC directives (#pragma SDS data zero_copy and #pragma 
SDS data data_mover (Var1:AXIDMA_SG…)). 

3.2. Improvement in Data Transfer 

If the accelerated function only processes one pixel at each iteration, no speedup is obtained 
even with the pragma directives. In order to improve the acceleration of the classification function, 
several pixels are transferred between the PS and PL parts in the same clock cycle. Due to the 
533-MHz DDR3 SODIMM bandwidth constraint, an optimal amount of data must be selected in 
order to avoid wasted data cycles. Since the implemented system is not always able to reach the 
entire bandwidth, it is necessary to determine the highest data transfer near the bandwidth 
constrain. It is necessary to take into account that the amount of pixels is not always an integer 
multiple of the optimal amount of pixels for a data cycle, so zero padding is a good option to avoid 
calculating non-existent values. Figure 3a shows the original code of the SVM binary software 
implementation. Figure 3b shows the re-factored code applied in order to improve the transferred 
data using the proposed modification, where BLOCKSIZE is the amount of pixels in each data 
transfer, BANDS is the number of bands values for each pixel, PIXELS is the number of pixels in the 
image, and inputInter/outputInter are the arrays for intermediate input/output data transfers. 

 
(a) 

 
(b) (c) 

Figure 3. Support vector machine (SVM) binary code refactoring. (a) Original code. (b) Refactorized
code for transferring a block of pixels. (c) Refactorized code for parallelizing the data processing in
groups of eight elements.



Electronics 2019, 8, 1494 9 of 17

3.3. Improvement in Data Processing

The classification function features a temporal dependency because the actual value on each
iteration depends on its value in the previous iteration. Each classification value for a pixel (clValue)
is calculated adding the bias data and then accumulating the result of multiplying the weight of
every band obtained in the training classification (bandWeight) by the value of the pixel in that band
(bandWeight). So pipelining is not possible to be used in the function given in Equation (2).

clValue+ = bandValue·bandWeight (2)

To improve the execution of this function in order to calculate clValue, instead of using just one
accumulator, we propose the use of several intermediate accumulators. At the end, the final value
for clValue is the sum of the intermediate accumulators. 0 3c shows the refactored code, where the
proposed modification is applied in order to improve the data processing. This refactorization allows
the pipelining implementation to use eight accumulators, where BLOCKSIZE is the number of pixels
for each data transfer, BANDS is the amount of bands for each pixel, intputData[n] is the array with
the pixel values, outputVector[n] is the array with the classification results, weights[n] is the array with
the weights for the classification, and inter[m] is the array for intermediate accumulators.

Figure 4 shows a diagram of the improvement in data transferring and processing, where P is the
number of pixels, Pn is the block of pixels processed in each data transfer, Bn is the block of bands in
which it is divided into the total bands value for each pixel, An represent the intermediate accumulators,
and A is the final accumulator for that pixel.
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3.4. Including Redundant Data inside Accelerated Function

Every time the classification is called, bias and weights values are transferred via the data-mover
IP to the accelerated function in the PL part. The classification data type is double (8 bytes, 64 bits);
therefore, every time Equation (2) is called, the bias and the corresponding weight need to be transferred
for computation. If the SVM training is done before, the weights will not change, hence, weights and
bias values can be included in the IP, reducing the data transfer and improving the speedup.

3.5. Data Type Reduction

Reducing the data type from double to float decreases the bus bandwidth required for the data
transfer between the PS and PL parts. It is necessary to take into account that it is not possible in every
application to change the data type due to the precision needed. In this work, the HS images were
processed in double and float precision, comparing the classification results. In this application, it was
verified that the precision lost did not change the classification results. This data change reduced the
bus bandwidth from 64 bits (8 bytes) to 32 bits (4 bytes).
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4. Experimental Results and Discussion

All the results presented in this section were obtained through the elaboration of the designed
architecture straight on the boards, i.e., no estimated performance was used in these results. In summary,
about 70 implementations were tested in order to obtain accurate results. Each implementation was
iterated 100 times per classification on board to obtain a reliable average values. Linux was used as the
OS in all the implementations for controlling and verification purposes. The speedup was calculated
calling the classification twice, the first one in software without any modification at all, and the second
one in hardware, with all the modifications incorporated.

The preliminary results obtained without applying code refactoring shows a speedup factor of
0.67× (in fact, the implementation showed a slowdown situation); this result was the main reason to
change the code in order to find a better implementation. Once the code was modified by changing
the amount of pixels per clock cycle, parallelizing the processing data with several accumulators and
selecting 100 MHz for the Data Movers IP, a speedup factor between 1.15× and 1.41×was obtained,
depending on the block size.

Once the optimal number of pixels per clock cycle was established, we optimized the other
parameters of the HS design. First, increasing the frequency for data movers and for the accelerated
function to 200 MHz showed a speedup of 1.61×. Second, including weights and bias inside the
accelerated function and keeping the 200 MHz for data movers and the accelerated IP showed a
speedup of 2.35×. Finally, keeping all the configurations shown in Figure 5, 200 MHz for data movers
and accelerated function, including weights and bias in the accelerated function, and changing the data
type from double to float showed a speedup of 2.89×. It is worth noticing that the speedup decreases
once the block size (number of pixels per clock cycle) increases above 128 pixels. This speedup decrease
is due to the wasted space in each transfer to the PL part, since the block size exceeds the amount of
data that the PS part can send to the PL part in each clock cycle.
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Figure 5. Speedup obtained varying the amount of pixels per clock cycle (100 MHz for data movers
and accelerated function).

Figure 6 shows a speedup comparison applying all the above modifications, using different pixels
per data cycle and different partitions for bands value. In the best case, with the code refactoring and
changing the data type, the highest speedup achieved is 2.89×with a block size of 64 pixels per data
cycle and partitioning the bands value using 16 accumulators.

Finally, the same methodology was applied to the multiclass SVM classifier. In this case, the code
was divided into four stages (see Section 2.3), and once the performance analysis was obtained, two
versions were implemented, the full one (including all the stages in the PL part) and the modular one,
implementing only the most intensive computational stage (the distance computation, stage number 2)
in the PL part. This difference allows us to compare the speedup versus the resources occupied in the
PL part and the power consumption. As well as in the binary classification, the classification results
obtained were validated with the gold standard results provided by the LIBSVM implementation
in MATLAB. In this case, for the multiclass classification, Figure S1 of the supplementary material
shows the four-class classification maps obtained for each HS cube employed in this study. The
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red color indicates tumor pixels, the green color indicates normal pixels, the blue color indicates
hypervascularized pixels, and the background pixels are represented in black. These gold standard
classification results were previously published in [57] and exactly match with the results obtained by
the proposed multiclass SVM implementation.

Figure 7 shows the time consumption and speedup obtained using both the ZedBoard (ZC7020)
and the ZC706 (ZC7045) for both cases, full (F) and modular (M) implementations, as well as the
SW implementation results. These results show that the obtained speedup is the best when the
modularization of the SVM stage is performed, considering both platforms. In addition, it is clear that
the ZC706 platform outperforms the results obtained with the ZedBoard. In all cases, the selected
frequency for the PL part was 100 MHz. On the other hand, Figure 8 shows the resources occupied
using both platforms for both implementations, where it is possible to observe that the modular version
is more efficient than the full version in terms of resources usage. Finally, Table 1 shows the power
consumption for the two platforms using both implementations. As it can be observed, comparing all
the results, the separation of the code offers better performance, since it consumes less power than the
full one, uses fewer resources, and obtains better latency values.
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Figure 6. Speedup obtained varying the amount of pixels per clock cycle and accumulators (200 MHz
for data movers and accelerated function).
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Figure 7. Execution time (a) and speedup (b) results respect to the software (SW) implementation of
both hardware (HW) implementations (F = full, M = modular) in each processing platform.

Table 1. Power consumption for both implementations (F = full, M = modular).

ZedBoard (ZC7020) ZC706 (ZC7045)

Type F M F M
Dynamic Power (W) 2.42 1.89 2.61 1.91

Static Power (W) 0.17 0.15 0.22 0.21
Total (W) 2.59 2.04 2.84 2.13
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As it was mentioned in the introduction, other hardware implementations have been
performed [12]. In some cases, the implementations have increased the speedup; in other cases,
they have reduced the resources needed or they have reduced the power consumption for different
types of FPGAs. In all cases, a stand-alone FPGA was used. Only one work used a Zynq device [58],
although a binary SVM classifier was implemented, and for that reason it is not included in this
comparison. On all cases, the SDSOC was not used in any such implementations. In this comparison,
only Xilinx devices have been taken into account for resources assessment, due to the different
architectures used between Xilinx and Altera devices. In summary, the implementations used for
comparison have been [59–62]. As different FPGAs have different types of resources, even using only
Xilinx devices, some resources cannot be comparable. In those cases, the resources were omitted.
Table 2 presents the comparison of the speedup, power consumption, and resources employed among
the state-of-the-art implementations and our proposed solution. Notice that some of the articles did
not provide all the necessary information for this comparison. In this table, bold values refer to the
best result for each feature or resource.

Table 2. Comparison of the speedup, power consumption, and resources employed among the different
implementations. Bold values represent the best results for the specific resource or feature.

Reference
Method [59] [60] [61] [62] Proposed (M Version)

Device Xilinx
Virtex-4

Xilinx
Virtex-6

Xilinx
Virtex-II

Xilinx
Virtex-7

ZC7020
(ZedBoard)

ZC7045
(ZC706)

Tool System
Generator Xilinx ISE n/a Xilinx XPE

14.1
SDSOC
2018.2

SDSOC
2018.2

Clock rate (MHz) 202.84 n/a 42.012 n/a 200 200

Speedup factor n/a n/a 2.53 n/a 2.20 2.86

Power (W) n/a 2.02 n/a 1.70 2.04 2.13

Slice Registers
(%) 5.00 0.15 21.00 11.00 n/a n/a

Slice LUTs (%) 2.00 0.35 20.00 11.00 n/a n/a

LUTs (%) n/a n/a n/a n/a 20.22 4.84

LUTRAM (%) n/a n/a n/a n/a 4.30 1.00

FF (%) 4.00 32.00 2.00 100.00 14.18 2.76

IOBs (%) 37.00 37.00 20.00 4.00 n/a n/a

DSP (%) 14.00 0.91 n/a 0.00 15.45 3.78

BUFG (%) 3.00 3.00 n/a n/a 9.38 9.38

BRAM (%) n/a n/a n/a n/a 6.07 1.56

MMCM (%) n/a n/a n/a n/a 25.00 12.50

n/a: Data not available, LUTs: Look Up Tables, LUTRAM: LUTs used as RAM, FFs: Flip Flops, IOBs: Input/Output
Blocks, DSPs: Digital Signal Processors, BUFG: Global Clock Buffer, BRAM: Block RAM, MMCM: Mixed-Mode
Clock Manager.
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Although all the compared implementations address SVM multiclass classification, to the best
of our knowledge, none of the implementations use medical images. Furthermore, none of such
works used HSI. In [59], binary images were used for Persian handwritten digits detection [63].
In [60], Patil et al. employed RGB images to develop a facial expression recognition system using the
Cohn-Kanade database [64]. In [61], a phoneme recognition system was tested using the DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus database [65]. Finally, Mandal et al. [62] employed
the setosa and non-setosa data of Fisher’s Iris database available in MATLAB®. Furthermore, it is
worth noticing that different techniques for data reduction were employed in each work. For example,
in [59,60], fixed point and truncation methods were used. In this work, the only data reduction
performed was a conversion from double to float data type. For these reasons, a fair comparison is not
possible because the types of data used for the SVM classifier are different. However, the superiority of
our implementation is demonstrated using HSI data, which imposes relevant challenges due to their
high dimensionality and data throughput. As it can be seen in Table 2, our proposed implementation
achieved the best speedup factor (2.86×) using the ZC7045 (ZC706 board) device. Regarding the
power consumption, the implementation performed in [62] obtained the lower value. However, our
proposed solutions provide similar values, having only an increment of 0.34 and 0.43 W in the ZC7020
(ZedBoard) and ZC7045 (ZC706) devices, respectively. In contrast, the use of the FPGA resources is
lower than [62], especially in the ZC7045 device. Furthermore, it is worth noticing that in the ZC706,
the designer has also extra space for other applications; for example, if the designer wants to use the
output of the SVM to another machine learning algorithm, or if extra space is required to execute other
algorithms in parallel.

5. Conclusions

The results obtained in this work demonstrate the major benefits of writing efficient code for
HLS tools, in this case SDSoC, to accelerate a binary SVM classifier. This methodology can be easily
replicated in other HLS tools to validate the inferred system, as only a few specific tool directives have
been used. It is recommended to include all the redundant data in the accelerated function in order to
decrease the interfaces between PS and PL, thus significantly improving the speedup of the system
by reducing the transferred data. Moreover, the modular version (M), the one that only implements
the binary probability computation, not only obtains better speedup compared to the full version (F),
but also uses less resources, consuming less power. In summary, it is advisable to reduce as much as
possible the implemented functions in HLS, taking into account the transferred data between the SW
and HW parts, fitting each chunk of data to the bus data-width plus the control data. On the other
hand, looking at the resources used in the (ZC7045) ZC706, this implementation allows the designer to
add other algorithms in the SOC, for example, to reuse the output of the SVM in other applications, or
to parallelize the computation of the inputs in other types of algorithms. Finally, it is worth noticing
that the power consumption of the ZC706 is similar to the one obtained with the ZedBoard. However,
the speedup achieved by the ZC706 is higher than the one achieved by the ZedBoard. In summary, in
this paper, the following methodology is proposed. First, a profiling stage is mandatory in order to
identify the functions to accelerate. Second, we make use only of the basic pragmas in the HLS tool.
With these two basic steps, we create a basic project in order to check the preliminary results. If the
results meet the requirements, it will be necessary to modify the loops to create small arrays instead
of passing to the hardware part large amounts of data, trying to fit the data size to the bandwidth of
the bus used in the communication. Next, check for the data dependencies inside the loop, trying
to remove the dependencies, as the accumulators could be if they suppose additional dependencies.
Once all these steps have been committed, the designer should create the final project and check the
results. In case it was not possible to avoid the dependencies inside the loop, the obtained speedup will
represent the time variations in the transmission stage. Future works will contemplate the automation
of code refactoring in order to provide a reliable tool that facilitates the implementation of the original
code, obtaining an improved speedup.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9292/8/12/1494/s1,
Figure S1: Classification results of the SVM multiclass classifier for the employed HS cubes. (a), (c) and (e)
are the synthetic RGB representations of the HS images, where the tumor area is surrounded in yellow [34].
(b), (d) and (f) Classification maps generated by the SVM multiclass classifier implementation. Normal, tumor,
hypervascularized and background classes are represented in green, red, blue, and black color, respectively.
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