
UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACION

NAC- NLC & CADENCE : DESIGN FLOW MANAGEMENT IN
CADECE DFW II

 JUDITH C. E. RUSSELL

Las Palmas de Gran Canaria, 1995

PROYECTO FIN DE
CARRERA

NAC - Nlc &J Cadence:

Design Flow Management

in Cadence DFW 11

A Dissertation

su bmitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

in Computer Science and Applications

in the Faculty of Science,

the Queen's University of Belfast,

and in conjunction with

Escuela Técnica Superior de Ingenerios de Telecomunicación,

Universidad de Las Palmas de Gran Canaria.

by

Judith C. E. Russell BSc Hons

September 1995

Tutors: Pedro P. Carballo and Tomás Bautista

Acknowledgments

Special thanks to rny supervisors, Pedro P. Carballo and Tomás Bautista, for al1
their help and encouragement while working on this project. Shanks to Mike McKeag
and ~ a l e n t i n de Armas Sosa for co-ordinating this ERASMUS exchange, and also to al1
the people a t C.M.A. whom 1 have met in the past four months and helped make me feel m

very welcome at this university. - m
O :
-
0

m

E

O
E

Contents

1 Introduction 1

1.1 The evolution of CAD frameworks .
2 ,,

D

1.2 The need for CAD framework standards 4
0

1.3 The characteristics and requirements of CAD frameworks
4 j

0
2 Cadence Design Frarnework 11 6

2.1 Overview of the Cadence DFW 11 . 7 i
2

2.2 The Cadence User Interface . 8 O

2.3 The Design Process . 10 i
3 Design Flow Management 11

3.1 Overview of Design Flow Management . 12

3.2 The Cadence Design Flow Management System 13

4 SKILL Programming Language 16

4.1 Introduction to the language . 17

4.2 What is a SKILL function? . 18

4.3 The SKILL Development Environment . 20

5 Int erprocess Communication 2 2

5.1 Outline of Interprocess Communication . 23

5.2 IPC in Cadence . 24

5.2.1 The Ciommunications Manager . 25

5.2.2 Communications Manager Operations 26

CONTENTS CONTENTS

5.2.3 Integrating a New Tool - using the Communications Manager . . . 28

5.3 The C'ser Intcrfacc Manager and Inter-tool Communication 29

5.4 Open Simulation Systern 30

5.4.1 Integrating a Simulator - usilig the Operi Simulaliuu. Syste~rr 30

5 . 5 IPC & SKILL . 31

5.6 Process Manager . 31

6 Specification of the Design Flow 33

6.1 Objectives . 34

6.2 The prnposed system . 35

6.3 Specification of each design step .

B
7 Design and Implementation 38

E

7.1 'Encapsulating the Tools . 39 5
E

7.2 Creating and Displaying the Flowchart . 39
-
a

7.3 The Functions of the Design Steps + 41 !
n

7.3.1 Step 1 Create Directory - funccreate 44 $
3

7.3.2 Step 2 Edit File - funcEdit . 45

7.3.3 Step 3 C++ Debugger - juncDebug 46

7.3.4 Step 4 nlc Compiler - funcCompile 49

7.3.5 Step 5a XNF to Verilog - juncXnfTo Verilog 67

7.3.6 Step 5 ViewVerilog - func View Verilog 71

7.3.7 Step 6 Xilinx Design Manager - funcXilinx 73

7.4 Adding Buttons to the Flow Browser Window 74

7.5 Externa1 Programs . 77

8 Conclusions and Future Work 79

8.1 Conclusions . 80

8.2 Future Work . 80

List of Figures

1.1 Integration versus Encapsulation . 3

2.1 T,a.yers nf Software . 8
m

3.1 An example of a flowchart in a Flow Browser window 15 $
:
-
0

4.1 Invoking a SKILL Function . 19
O
E

5.1 Point-to-Point Communication . 25
E -
a

5.2 Interprocess Communication in Cadence 26
n n

6.1 Flowchart of the proposed system . 35

7.1 The NAC flowchart in a Flow Browser window 42

7.2 The Verilog subflowchart in a Flow Browser window 43

7.3 Dialog Box - "Create a New Directory" . 44

7.4 Form - "Create a New Directory - File Name Form" 44

7.5 Dialog Box - "Edit or Create a C++ File7' 46

7.6 Form - "Text Editor" . 46

7.7 Dialog Box - "C++ Debugger" . 47

7.8 Form - "C++ Debugger - File Name Form" 47

7.9 Dialog Box - "File Name Check7' . 48

7.10 Dialog Box - "nlc Compiler Help" . 49

7.11 Form - "Interna1 Information Options Form 51

7.12 For - "WIR Netlist Directory Option Form" 52

7.13 Form - "XNF Netlist Directory Option Form" 53

LlST OF FlG URES LIST OF FIGUR,ES

7.14 Form - "Netlists & Symbols Options Form" 56

7.15 Dialog Box - "Version Information Mcssage" 58

7.16 Dialog Box - "View File Warning - Netlists" 58

. 7.17 Dialog Box - 'View File Warning - Syrnbols" 59

7.18 Form - "nlc Compiler Output Options Form" 62

7.19 Dialog Box - "View 11lc Output" . 63

7.20 Form - "nlc - Netlist Compiler Main Menu" 66

7.21 Dialog Box - "XNF to Verilog" . 67

7.22 Form - "XNF to Verilog - File Name Form" 68

7.23 Dialog Box - "XNk' to Verilog Help" . 68
m
D

7.24 Dialog Box - ('View Verilog" . 71
O
8

7.25 Form - "View Verilog - File Name Form" 71
m

E
7.26 Dialog Box - "View Verilog Help" . 71

E

7.27 Dialog Box - "Start Xilinx Design Manager" 73
E -

7.28 Dialog Box - "System Help" . 75 \
n n

7.29 Dialog Box - "Reset System Warning" . 76 !
3
O

Abstract

Design Flow Management is a design framework service that helps designers to keep
track of their design activities and to maintain an overview of the state of the design. The
user interface component of the flow manager informs designers aboiit the statct of
the design and allows tools to be started. ,,

D

-

Cadente Design Framework 11 (DFW 11) has a mechanism to integrate design process !
B in a design methodology. It is very useful when the design flow is clear and well understood. a

A group of tasks can be done in a single pass and the system takes the decision to let the i
designer continue with the next step, when the previous step is correct. O E

n

The main objectives of this project are to generate a general methodology in the
designing of a design flow in Cadence, and to develop an nlc synthesis tool in Cadence by j

n

creating functions using the SKILL language and creating flowcharts using the graphical
editor. 3

O

Chapter 1

Introduct ion

NAC - Nlc 6 Cadence: Design Flow Management in Cadence DFW 11

An overview of the evolution of Computer-Aided Design (CAD) frameworks in the
area of Electronic Design Automation, the necessity for framework standards, and an
outline of the characteristics and requirements of a CAD framework.

1.1 The evolution of CAD frarneworks

Since the late 1960s, the rapid growth in the complexity of integrated circuits (lC1s)
and digital systems has led to an even more rapid growth in the complexity of the software
tools and associated data needed to represent a design. Communication between tools was
possible only if a translator for the respective formats was available. The emergence of
de-facto standard formats, allowing the number of translators to be reduced, e,ased this
problem a bit. It was realized that effective Electronic Design Autornation (EDA)
solutions not only had to provide the individual tools but also the integration facilities to
support the communication between tools.

EDA brought about a great variety of loosely coupled tools to perform the many
design tases. But because the tools supported only individual design tasks, the problems
of handling a multitude of tools and of successfully moving design data from one tool
to another arose for the designer. What was lacking was integration and overall support
for managing the design process. To achieve gains in productivity, attention needed to
be paid to the overall efficiency of the design process. Enter CAD F'rameworks. A
CAD Framework, as defined by the CAD Framework Initiative (CFI), the international
consortium developing framework standards, "is a software infrastructure that provides a
common operating environment for CAD tools"[6]. I t is generally agreed by the industry
as a whole that advanced CAD frarneworks could turn collections of individual tools into
effective and user-friendly design environments.

Basically a CAD framework had to provide facilities for integrating multiple CAD
tools into a coherent design environment, i.e. tool integration, and it has to support the
end-user in conveniently operating t,he design environment, i.e. to become the electronic
assistant of the designer for organizing the design information and managing the design
process. There are two main categories of framework users: developers, i.e. CAD tool
developers and CAU tool integrators, and end-users, i.e. design engineers, administrators
and pro ject managers.

Pntegration versus Encapsulation One aspect of tool integration is the actual tech-
nique used to perform the integration. In the field of EDA, it is normal to distinguish
between integration(sometimes known as tight integration) and encapsdution. Upoii iii-
tegration, the source code of the design tool is modified to include code that handles the
interaction with the CAD framework. Upon encapsulation, the source code of the design
tool is not modified. Instead, a wrupper of additional code is written, to loosely interface
the tool to the CAD framework. Figure 1.1 illustrates both types of tool integration.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Wrapper

Encapsulated

Figure 1.1: Integration versus Encapsulation

There are three main roles allotted to CAD frameworks: ,,

= m

Common Design Database - this is the key to tool integration and tool intexop-
erability, since data which is common to a number of CA.D tools is stored only once in the
database from where it can be used for input for al1 tools. The design database Iriay be a
file-based system, implemented on top of the host operating system, such as in DFW 11
from Cadence Design Systems, Falcon from Mentor Graphics, and the Nelsis CAD Frame-
work Release 4 [3]. Another approach is to employ a conventional Database Management
Systems (DBMSs) to fulfill the role of the design database, or even object-oriented DBMSs
which would offer more flexibility for handling interrelated data of different granularities
on which different types of access are performed.

Design Data Manager - the management of the design database can aid the
designer in the organization of his design information. I t uses knowledge of the structure
and status o£ this design information to provide support and enforce constraints on tke
design process. Management services may then enable a user interface to be added to
allow the end-user to interact with the system to get informed about the structure and
status of Lis design.

Design Process Manager - with the increasing number of tools found in today's
CAD systems, there is a growing need to support the design engineer in correctly execut-
ing these tools to perform his design tasks. Framework services may help him in correctly
invoking the individual tools, as weil as provide support for executing the tools in the
correct order, according to a pre-defined design procedure. The framework could auto-
matically execute design tools , for example, when valid output data is required for a
subsequent tool run. Two services that come under the role of the process manager are
design rnethodologg managemen t and design f l ow managemen t . Design methodology refers

NAC - Nlc éY Cndence: Design Flow Management in Cadence DFW 11

to the definition of a design procedure in terms of abstract design stages, such as "circuit
and layout design" or "circuit verification" , and design flow refers to the definition of a
design procedure in terms of individual tools and dependencies between tools.

A CAD framework will provide environment stability as it oífers a standard operating
environment to the ever evolving set of CAD tools. It also promotes modularization of
CAD systems, as these will be constructed as cooperating tool components on top of a
CAD framework, rather than being implemented as monolithic super-tools.

1.2 The need for CAD framework'standards

There seems to be a world-wide industry consensus that there is an urgent need for
CAD framework technology in order to improve design productivity by building effective
integrated design environments. The EDA community appear to have agreed on the major
functional requirements for a CAD framework, however, there is no common ideology on
how to go about developing and integrating one.

The charter of the CFI, a non-profit consortium of CAD tool users, tool vendors and 6
C

research institutions, is to define "interface standards that facilitate integration of design d
automation tools and design data for the benefit of end users and vendors worldwide" [4]. i

2

CAD users and vendors have encounter difficultics whcn integrating design tools into
2

their production environments, so the primary aim of the CFI is to define standards E
3

and guidelines that will allow tools from different sources to cooperate in a single design "

environment. This ability to eacily incorporate a CAD tool into a design environment, is
referred to as "plug and play".

Another framework effort is the Jessi-Common-F'rame (JCF) project [l]. This Eu
ropean project was started in 1990 and involves many companies and institutes, including
Siemens Nixdorf Informationssysteme AG (SNI), Philips, ICL, and Delft University of
Tedinulugy. T h e JCF is building a framework, the Jessi-Common-Framework, which is
intended to be compliant with the standards defined by CFI.

1.3 The characteristics and requirements of CAD
frarneworks

Some of the key characteristics of the CAD framework architecture are:

openness, the ability of the CL4D framework to easily incorporate new tools, data
and design methodologies,

eficiency, which implies that overall efficiency in the design process is optimized,

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

e a user-friendly interface that is consistent and intuitive in appearance and be-
haviour ,

e jlexibility and modularity, the system must be abie to evolve srnoothly to satisfy
new requirements

The primary functional requirements of a CAD framework are:

o to facilitate tool interoperability, the cooperation among tools from multiple sources,

e tool interchangeability, the ease of tool replacement within a design system,

e multi-user, multi-tasking support, multiple users must be allowed to operate concur-
rently on a design project in a controlled and coordinated manner, i.e., supporting

,,

cooperation between members of a design team,
=
m
O

e to guarantee consistency and integrity of design information, i.e., managing the
process of change, inherent in evolutionary design, to ensure correctness of each
portion, as well as the whole, of the design. O E

n

supporting the configuration management, the management of a collection of related i
design objects, n -

e tool management, the assisting of the design engineers in conveniently executing $
O

tools,

e design fEow management, the assisting of the design engineers in correctly and effi-
ciently performing design activities.

Chapter 2

Cadence Design Framework 11

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

An outline of the Design Framework 11 environment from Cadence Design Systems
Inc, the graphical user interface and the design process.

Overview of the Cadence DFW 11

Cadence provides EDA software and cervices that automate and enhance the design of
integrated circuits (IC's) and electronic systems. The Cadence Design Framework (DFW
11) architecture is the foundation of the Cadence design environment. The DFW 11 archi-
tecture solves many problems traditionally associated with EDA systems, such having
to master different user interfaces for different parts of the design process. The, DFW 11
software provides a common interface for al1 integrated tools, a common functionality,
and a common database.

m

The Cadence software consists of mainly application programs for tasks such as I
layout, compaction, and verification. These applications run to many hardware platforms. -

Cadente's open architecture also permits integration of your own tools from other vendors.
In such a setting it is irnportant that the tools and data be well integrated. DFW 11
provides that integration. C1

main features of DFW 11 are:

software portability which lets Cadence software run on a variety of hardware plat-
forms,

the conformance to open sys tem standards which lets you integrate non-Cadence
tools and design data, e.g., by using the industry-standard EDIF interchange format.
By directly accessing the DFW 11 unified database, you can also integrate your own
tools into the DFW 11 environment,

a consistent graphic interface, based on the industry standard Motif window man-
ager, makes al1 Cadence tools easy to learn

a un i j ed database eliminates data conversion

having a versatile, modular and configurable environment means new tools that are
integrated interact with the other DFW 11 tools, providing a more powerful design
environment ,

the powerful high-leve1 SKILL interactive programming language, which is the Ca-
dence extension language and is based on the artificial intelligence language LISP,
but which supports a more conventional C-like syntax,

NAC - Nlc 63' Cadence: Design Flow Manaaement in Cadence DFW 11

the menu-dr iven interface enables you to execute many SKILL commands from a
menu instead of always through the command line,

the coordination and protection of design worlc by checking them in and out.

2.2 The Cadence User Interface

Cadence runs under is the UNIX operat ing sys tem. Cadence runs under the
windowing system X Windows, which enables you to manage severa1 tasks a t one time
from separate areas of the screen called windows. A window manager controls the size,
placement and behaviour of windows. Cadence software follows the standards established
by the Open Software Foundation in its Motif Window Manager , see figure 2.1: ,,

D

-
m

U ser interface
O :

Cadence tú& C ustomer t o q ~ n

n

3
O

Design Framework II

Figure 2.1: Layers of Software

Cadence software has a graphic user interface based on windows, forms and menus.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Windows - there are 5 major kinds of DFW 11 windows:

e Command Interpreter Window (CIW) - controls the design process

e Flowchart Browser Windows - display flowcharts that graphically represent steps in
the design process

e Library Browser Windows - display a tree structure with the names of designs that
you can choose for work

e Design Windows - display your designs; you can have severa1 open at once, each
running at the same time; the only design window associated with DFW 11 is the
lcon J3ditor W indow

m

=

e Text Windows - display text files; can have severa1 open at once m
O :
-
0

m

E

O
Forms provide a place to enter information that a command must havc in ordcr to
execute. There are 3 types of DFW 11 forms:

n

E
a

n n

e Standard Form - appears when you choose a menu command that is followed by
three dots 3

O

e Options Form - appears during a task, giving you a chance to enter settings as you
work

e Properties Form - appear when you choose Properties from a menu

N.B. Cadence database objects have attributes and properties. Attributes are inherently
part of the object and cannot be deleted, or added to, though their values can be changed.
Properties are characteristic traits that you can add, delete, or modify.

O t her feat ures

Pop-up Menus - contain commands related to the task you are doing

e Dialog Boxes - give you iriformation, warnings or cautions and require you to respond

e List Boxes - display a list of items for viewing and selecting

N-4C - Nlc -& Cadence: Design Flow lvlanagement in Cadence DFW 11

The Design Process

Cadence designs are organized into libraries, which are directories on your hard disk.
There are two types of libraries: reference libraries which contain basic design objects,
and design librarics which contain your ongoing design work. Each library contains cells,
views and cellviews. A cell is a database object that forms a fundamental design unit. A
view (e.g. schematic) is a way of representing that object on the screen. A cellvieuj is the
design you see of a certain view of a certain cell. Each cell is assigned a version number so
it can be tracked. Cellviews must be checked out of the library before work, and checked
i n to the library after work is completed. The Library Browser shows you a tree structure
of the libraries, cells, views, cellviews and versions in the library.

Using SKILL commands, you can create flowcharts that show the steps of the design
process at your workplace. Once the flowcharts are created, you can use the Flow Browser
to view information and run the design steps. You start your design by including virtual P

-

copies (representations) of master cells from the reference library or the design library. i
Then you connect, add to, or modify the cells. The virtual copy of the master cell that
is included in your cells is an instance. As you build your design by including simple i

O instances within more complex ones, you create a design hierarchy with multiple levels.
You can move between levels and work at any level. When you open a design you see
the top level, unless you specify otherwise. Information that affects al1 the designs in the
library is stored in files known collectively as the technology file.

2

n n

n

Chapter 3

Design Flow Management

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

A description of Design Flow Management with particular reference to the Cadence
Design Flow.

3.1 Overview of Design Flow Management

Design Flow Management (DFM) is a framework service that helps designers to keep
track of their design activities and maintain an overview of the state of the design. The
underlying notion DFM, or Design Methodology Management, is that chip design is a
process, involving a scqucncc of opcrations, pcrformcd on dcsign data. DFM software
attempts to capture and automate that process [S].

The DFM system is viewed as a meta-tool in the CAD environment, both in the
sense that it deals with other tools as data, manipulating them to meet some design m

goal which goes beyond the scope of any individual tool, and also in the sense that it
m

"packages" groups of tools into higher-leve1 entities which may be manigulated by the -
user as a single tool. Through DFM it is possible to automate tedious sequences of tool B

E
invocatians, such as an edit netlist simulate cycle. Under a DFM system the user leaves 6
some of the decision-making up to the Design Flow Manager. A number of attempts have !
been made to provide DFM either as part of an integrated CAD system, or as part of a %

a

stand-alone framework.

3

The key DFM issues are (from an end-users perspective): O

e design tracking - keeping track of the state of the design and the design history

e constraint enforcement - permitting constraints on the design process to be defined
and enforced

guidance and automation - supporting the design engineer in efficiently executing
design activities

DFM is difficult to do without standards, as it needs built-in knowledge about the
execution environments of individual tools. Without a standard interface to data manage-
ment it is difficult to determine the state of the design. In the absence of a single standard
database for electronic CAD, data interchange standards such as Electronic Design In-
terchange Format (EDIF) have begun to make it possible to link groups of tools into
sequences. DFM will be more valuable with standards in user interfaces. The X-Window
system no t only supports multiple simultaneous application displays, but it also allows
display on a single screen of the output from programs running on multiple hosts. A single
data model, shared by the CAD tools and the DFM in a single environment, will greatly
simplify tool management tasks, both a t the tool integration leve1 and the DFM level.

NAC - Nlc l3 Cadence: Design Flow Management in Cadence DFW 11

The Cadence Design Flow Management Syst em

Cadence DFM System is an extension-language-based flow system. The design flow
engine is driven by a set of data structures called jlowcharts and design steps which
describe tasks and task dependencies using hierarchical directed graphs. Branching and
looping capabilities add to the richness of the model. Each step (node on the graph)
is defined in terms of a set of procedures and data, defined in the SKILL extension
language, which are activated by the design flow engine as required. The graphical mode
is supported by the graphical user interface which illustrates the flow graph and supports
user interaction through direct manipulation.

The Design Flow system provides a simple way to encapsulate interna1 and exter-
nal tools. Once a tool is encapsulated, it can he shared among iisers ancl its behaviour
can be further customized. The Design Flow is flexible enough to support either a. strict -
methodology, for novices, or a loosely enforced methodology, for expert users. 'A strict
methodology enables ~luvice users to learn the design process without having to be con-
cerned about how to start the tools involved. A lose methodology allows expert users to

E

sue any of the steps in the design process in any order. O
E
n

E -
a

The Flowchart Browser .The Flow Browser Window displays a Aowchart created by
the Cadence Design Flow system. It consists of a system pull-down menu and an area for
displaying a single flowchart. The Flowchart Browser is the means by which you interact
(invoke, query, reset) with a flowchart and the design steps it contains. A Design Step is
a description of a tool, sequence of tools, or a decision point(switch box) encapsulated
to work within the Design Flow system in DFW 11. It provides a means of graphically
viewing the design steps and their interrelationships.

A Flowchart l i nk the design steps together conceptually and graphically to indicate
the ways in which the design flow is controlled and the ways in which thc data movcs
between design steps. A node represents a design step and the arcs between the nodes
guide the designer by indicating which of many possible design steps might logically follow
another step. Flowchart and Design Step lnstances keep information regarding each design
session. They are created each time a flowchart is displayed. They inherit al1 the properties
of their masters, such as dependency information, data flow and node appearance. There
are 2 types of flowchart steps: design steps - shown as rectangles on the flowchart, and
switch boxes - shown as diamonds on the flowchart. See figure 3.1 for an example of a
flowchart in a Flow Browser window. The following are design flow commands in the Flow
Browser window:

1. The system menu on the Flow Browser window banner saves a flowchart to a new
design, redraws a flowchart, and closes the Flow Browser window

NAC - Nlc t4 Cadence: Desim Flow Mana~ement in Cadence DFW 11

2. Commands on a design step run the design step, show its properties, and display a
subflowchart in the design step refers to one (shown as a downward arrow)

3. The default commands associated with a pop-up menu on a design step are the r u n
step, reset step and push to display the subflowchart, although you can customize
this and add other commands to the pop-up menu

The Design Flow Tools Within the Design Manager is the Top Flow Browser. From
here you can access four design to.ols, namely

1. PIC Designer - a tool in the Cadence CAE design software series which is a complete
set of software tools for designing complex systems, such as

o Printed Circuit Boards (PCBs)

4 Field-Programmable Gate Arrays (FPGAs)

0 Complex Programmable Logic Devices (CPLDs)

0 S tarldard ofl- the-shelf curripunents
E

2. ASIC Designer - the ASIC Workbench is an integrated system of design tools, data
l

flows, and developrnent procedures for designing, implementing, testing, and vali-
n

dating the physical layout of Application-Specific Integrated Circuits (ASICs). The
3

ASIC designer starts by creating the logical or structural designs and verifying that "

they work correctly, this is the front-end of the design process, and finishes with the
physical layout of the circuit

3. P&I Designer - the Placement & Interconnection design flow enables the placement
and routing of packaged parts on a layout, and the back annotation of physical
changes from the layout to the schematic; this is the back-end of the design process,
via the Cadence tools Composer and Allego

4. Verilog Simulator - this can be run as a stand-alone tool or in the Logic Workbench
to simulate the results of PIC Designers. With the Verilog Simulator, the simulations
can be interactive or batch and it is possible to view the waveforms interactively or
postprocess using cWaves (the Cadence waveform tool)

NAC - Nlc é3 Cadence: Design Flow Management in Cadence DFW 11

Figure 3.1: An example of a flowchart in a Flow Browser window

Chapter 4

SKILL Programming Language

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

An overview of the SKILL programming language, SKILL functions and how to
develop them, and the SKILL development environment.

4.1 Introduction to the language

SKILL is the Cadence extension language. It is a high-leve1 interactive programming
language based on the artificial intelligence language LISP, however, it supports a more
conventional C-like syntax. SKILL brings a functional interface to the underlying subsys-
tems to the command line and lets you customize existing CAD applications and help
you develop new applications. SKILL is ideal for rapid prototyping because you can in-
crementally validate the steps of your algorithm before incorporating them i n a larger
program . SKTT,T, ha.s a,iitornat,ic storage management which relieves you program of the
burden of explicit storage management. It can also control notoriously error-prone system -
programming tasks like list management and complex exception handling. - = m "

Relationship to Lisp

e In SKILL, function calls can be written in either of the following notations:

1. Algebraic notation - used by most programming languages, eg:

func(argf arg2 . . .
5

2. Prefix notation - used by Lisp programming languages, eg: O

(func arg i arg2 . . .)

e Example of a SKILL program in the first notation:

procedure(fibonacci(n)
if((n == 1 I I n == 2) then

1
else fibonaccih - 1) + f ibonaccih - 2)
1

1

e Same example of a SKILL program but in the second notation:

(def un f ibonacci (n)
(cond

((o r (equal n 1) (equal n 2)) 1)
(t (plus (f ibonacci (dif f erence n 1))

(f ibonacci (dif f erence n 2))))
1

1

NAC - Nlc &' Cadence: Design Flow Management in Cadence DFW II

4.2 What is a SKILL function?

A SKILL function is a "named, parameterized body of one or more SKILL expres-
sions. You can invoke any SKILL function from the command input line available in the
application by using its name and providing appropriate parameters" [Z]. Al1 SKILL func-
tions compute a data value known as the return value of the function. A SKILL function
is called by stating its name and arguments in a pair of parentheses.

Invoking a SKILL Function There are many ways to submit a SKILL function to the
SKILL interpreter for evaluation. In many applications, whenever you use forms, menus,
and bindkeys, the Cadence software triggers corresponding SKILL functions to complete
your task. Normally you do not need to be aware of SKILL functions or any syntax issues
(see figure 4.1).

bindkeys - associate a SKILL function with a keyboard event. When you cause
the keyboard event, the Cadence software sends the SKILL function to the SKILL

m

interpreter for evaluation E

e f o rms - some functions require you to provide data by filling out fields in a pop-up d
E form a

m e n u s - when you chome an item in a menu, the system sends an associated SKILL j
function to the SKILL interpreter for evaluation

i O

e CI W - SKILL functions can be entered directly on a command line in the CIW to
bypass the graphical interface

SKILL process - you can launch a separate UNIX process that can submit functions
directly to the SKILL interpreter

A collection of SKILL functions can be submitted for evaluation by loading a SKILL
source code file. The compiler translates the source code into a target representation
which might be machine instructions or an intermediate instruction set. The SKILL in-
terpreter then executes SKILL programs within the Cadence environment. It translates
the text source code into interna1 data structures, which actively consults the execution
of the program.

SKILL programs are represented as lists and therefore can be manipulated like data.
The ability to manipulate data, i.e. dynamically creating, modifying, or selectively eval-
uating function definitions and expressions, is one of the primary reasons why SKILL is
based on Lisp. SKILL can be used to write flexible and powerful applications because it
takes full advantage o£ the "program is data" concept of Lisp. SKILL supports a special
notation for list construction from templates and so eliminates the long sequence of calls
to list and append.

IVAC - Nlc é3 Cadence: Design Flow Management in Cadence DFW 11

SKILL Pnocess
C -

Figure 4.1: Invoking a SKILL Function
0

-

Developing a SKILL Function Developing a SKILL function includes the following
tasks: - o

m

O
1. Grouping severa1 SKILL statements into a single SKILL statement - using {) to g

group a ccllection of single SKILL staternents into one. The return value is the
return value of the last single SKILL statement (N.B. as normal, you can assign this
return valiie to a variable)

Declaring a SKILL function with the procedure function - to refer to groups o£
SKILL statementc by name, use the procedure declaration to associate a name with
the group. The group of SKILL statements and the name make up a SKILL function.
So execute the group of statements, mention the function name followed immediately

by o.
Defining function parameters - to make your function more versatile, you can identify
certain variables in the function body as formal parameters, therefore, when you
invoke a function, you supply a parameter value for each formal parameter

Maintaining your source code - the Cadence environment makes it easy to invoke an
editor of your own choice. Simply set the SKILL variable editor to a CNIX command
line able to launch your editor, for example:

editor = "x-term -e vi"

The ed function invokes an editor of your choice or alternatively, you can use an
editor independent o£ the Cadence environment

Loading your SKILL source code - the load function which evaluates each expression
in the source code file, returns t if al1 expressions evaluate without error, and aborts

NAC - Nlc tY Cadence: Design Flow Management in Cadence DFW 11

if there are any errors. Any expression following the offending expiession is not
evaluated

6. Redefining a SKILL function - the SKILL interpreter has an interna1 switch called
writeprotect to prevent the virtual memory definition of a function from being at-
tached during a session. By default it is set to nil. SKILL functions defined while
writeprotect is t cannot be redefined during the same session

4.3 The SKILL Developrnent Environment

The Cadence environment allows SKILL program development such as user interface
customization. ,The SKILL development environment contains powerful tracing, debug-
ging and profiling tools for more ambitious projects. SKILL allows you to access and
control al1 the components of your tool environment: the User Interface Management Sys-

=

tem, the Uesign Database, and the commands of any integrated design tool. T h e SKILL -
Development Toolbox provides software tools that reduce the time it takes to develop i
SKILL code and that improvethe efficiency and quality of the code There are five rnain
applications within the SKILL Development Environment which are discussed next. E

,,

SKILL Debiigger The SKILL Debugger helps you debug SKILL code by examining d
the stack, single stepping, tracing, and setting breakpoints. It is accessed via the SKILL
Development toolbox or by typing the SKILL command ilDebugToolBox() a t the com- 2
mand line in the CIW. After the installation, when you run you code and and error occurs,
you enter the debugger automatically. If you reach a breakpoint, regardless of whether
the debugger is installed, you enter it. The Durnp Stacktrace, and Wh,ere commands are
used to display the SKlLL stack and local variables when you run the code and errors
occur. The Set Brealcpoints is used to set breakpoints a t different stages in you code to see
where you went wrong. Each time you exit the debugger, SKILL exits the most recently
entered (nested) debugger session.

SKILL Lint The SKILL Lint examines SKILL code for possible errors and inefficien-
cies. It is useful for detecting errors not found during normal testing, and helps you spot
unused variables and global variables that are not declared as locals. When you choose
the SKILL Lint from the SKILL Development toolbox, or type the SKILL command
skShowForm(), enter the filename or context that you what analyzed. It is possible to
check for:

e Errors - messages about a SKILL error that occurs if the code is executed

Warnings - messages pointing out pstential errors and areas where you should clean
up your code

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

o Undefined functions - lists al1 the functions that cannot be executed in the executable
form which yo11 ran SKILL Lint

o Performance - messages that give hints or suggestions about potential performance
problems in your SKILL code

SKILL Profiler The SKILL Proj'iler helps you analyze the performance of your func-
tions and determine where the most time is being spent. The SKILL Profiler:

o measures the time spent in each function that executec longer that 1/60th oE a
second

o shows how much SKILL memory is allocated in each function
m

o measures performance without having to modify function definitions -
m O
-

o displays a function cal1 tree graph of al1 functions executed and the time or memory
spent in those functions

m

E

O
E

o allows you to filter functions so you can see only those functions in which you are ;
interested a E

n n

n

Code Browser The Code Browser displays the calling tree of a SKILL function. The j
calling tree showc the child functions called by the parent functions. 1s is possible to expand

"

the entire tree or one node at a time. When you choose the Code Browser from the SKILL
Development toolbox or type slcCodeBrowser() at the command line, you simply specify
the function you wish to expand. The Functions pop up rnenii i s ava,ilable which lets you:

o view the source code of that function

o expand the function to display the children functions of the node selected

+ expand "deep" to display al1 the functinns r~ciirsively tintil the entire calling tree is
expanded

Tracing Tracing lets you trace SKILL function calls and property and variable assign-
ments. When you choose the Tracing option in the SKILL Development toolbox or type
ilTraceForm() you select the type (functions, variables or properties) a.nd the way in which
you want to trace (by name, in context, matching regular expression, user functions, or
all) .

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

An outline of the concept of Interprocess Communication and the integration of tools
to the Cadence DFW 11.

5.1 Outline of Int erprocess Comrnunication

Interprocess Communication (IPC) facilities permit processes to exchange or share
data. A process is when a program is actually running on a particular machine. Unix is an
example of a multi-tasking operating system, as it can simultaneously execute multiple
programs. The best IPC method for a given application depends on the structure of the
communicating programs, the amount of data and kind of data that must be passed, the
requirements for operation in a distributed computing environment, and the demanded
performance.

Processes can communicate by writing to and reading information from fiies. The
main advantages of file IPC are unlimited capacity and multiple delivery. The classic
Unix mechanism for IPC on a single machine is the pipe, which employs the basic byte-
stream model used for file 110. A process may provide' data for direct consumption by
another concurrent process via a pipe. In a distributed computing environment however,
processes living on different machines may need to exchange or share data. Unix offers
facilities for IPC between processes on different machines according to the file I/O byte
stream model. These transport facilities are known as sockets. They provide the basic
service of reliable, end-to-end data transfer across the network.

The Networlc File System (NFS) is a facility for sharing files in a heterogeneous
environment of machines connected to a network. In this kind of environment, different
ma .ch in~s may he attached to the network which employ different representations of dat,a.
Therefore, upon transfer of data between different computer architectures, conversion
between representations must be performed. NFS makes al1 the disk space available as
needed, therefore, individual machines have access to al1 file-based information residing
anywhere in the network.

A Remote Procedural Cal1 (RPC) service can be implemented on top of a transport
facility such as the IPC socket facility. The basic idea of RPC is to extend the use of
procedure calls to a distributed environment. With RPC, a client process can have a
procedure executed by a server process, which may be running on a different machine.
In other words, a single thread of control logically winds through two processes. When a
remote procedure is called, the client is suspended, a message containing the arguments
is constructed and passed to the server process which then executes the procedure. When
the procedure finishes, the results are passed in a message back to the client process,
and the client resumes as if the procedure had run locally. RPC is a simple but efficient
mechanism for communication for distributed programs. When an RPC server program
implements one or more remote procedures, the procedures, their parameters and the

NAC - Nlc t3 Cadence: Design Flow Management in Cadence DFW 11

results are part of the specific program's protocol specification. The protocol specification
is a set of procedures that are agreed upon by the client and server processes.

In a distributed computing environment, multiple tools can be operated concurrently
at the same or different locations. The idea of mapping each running tool to a Unix
process, fully matches the paradigms of Unix and the X Windows System in that multiple
(graphical) applications can be run on one or more machines from multiple windows on
a workstation. This concept of a multiple server processor serving the tool processes in
paralle1 is most effective if the individual servers can operate independently from each
other. A client, therefore, may be connected to multiple servers at the same time. This
multiple server - multiple client process organization scales well with the size of the design
environment. The multiple servers can effectively utilize the distributed computing power
in the workstation environment.

5.2 IPC in Cadence

Tools can communicate in one of three ways:

E

Point-to-point through sockets and pipes a

2

e Common database through files and a distributed database management system E
3
O

Communications Manager through the Application Programming Interface

Point-t-o-Point Communication - Sraditionally, a tool used point-to-point communi-
cation to exchange data directly with another tool, the data was private because
only two tools shared it (see figure 5.1). One tool needed specific knowledge of the
other tool. With point-to-point communication, you inust create multiple IPC lirlks
when you have many tools. Maintaining and adding new links can be complicated
and tedious.

Common Database - Sharing a common database is not practica1 when only a small
amount of data is shared. It can be difficult and inefficient to synchronize processes
and events through database transactions. A standard between vendors and cus-
tomers would also have to be established.

Communications Manager - The CMan represents a major change from the tradi-
tional model of directed IPC requiring a connection between each pair of cooperat-
ing tools. With the CMan? each tool only needs to be connected to the server process
to communicate with every other tool from the session. Adding and deleting tools
from the session can be done with little impact on the other tools.

NAC - Nlc @ Cadence: Desian Flow Manaaement in Cadence DFW 11

Figurc 5.1: Point- to-Point Comrnunication

Tool A

Most existing tools are stand-alone and pass information through files. This niethod
works fine until it is necessary to coordinate the activities of the stand-alone tool and

m

the tool set as a whole. The Cadence Communications Manager offers a comprehensive W -
solution for tools which must communicate interactively. It is a second-genefation inter-
tool communication system incorporating many essential concepts that allow developers to
work at a higher level. The Cornmunications Manager is one component enabling software
engineers to utilize Cadence framework technology to intcgratc thcir tools into a complctc
design solution. Other integration products include: E

a

Tool E

A

e User Interface Manager - which lets interactive applications share a common
user interface with DFW II-based tools

3
O

e Open Simulatian System - which casily builds intcrfaccs with tools that need
connectivity data or are netlist driven

Tool C

SKILL - which gives complete access to the DFW 11 environment through a high-
leve1 extension language

5.2.1 The Cornmunications Manager

- - 1

The Cadence Communications Manager (CMan) enables any number of tools in the
design process to interact and communicate together, exchanging data easily. Each tool
used in the design process has its own view of the design data, but this data must be
shared with other tools. Operations that occur in one tool can effect operations in others.
The CMan allows a multitude of tools to exchange events and data by using its conceptual
data bus. As new tools are added the existing tools do not need to be changed because it
is not a point-to-point system. Programs developed with the Communications Manager
benefit from:

Tool D

"Plug and Play" architecture, allowing new tools to connect to the design fra.mework
easily

NAC - Nlc 63 Cadence: Design Flow Management in Cadence DFW 11

o Multi-cast communications system allows new tools to be added easily without
changes to existing tools

e "Message scenarios" which abstract tools from inter-tool dewendencies making in-
tegration easier

o Sransparent support for distributed processing in heterogeneous environments

Each Communications Manager client application (or tool) interacts with the Com-
munications Manager using calls to the Communications Manager Application Pro-
gramming Interface (API). The CMan API is required to develop applications in C
using the Communications Manager. The API allows a software developer to write new
programs that wark with appIications that are integrated with DFW 11. In figure 5.2
the libcman.~ object library contains the API functions, and each tool must link to this
librarv tn 2rri.w t.he Cnmmiinirattnnc: M a n a w r f i inr t innal i tv

Figure 5.2: lnterprocess Communication in Cadence

The Communicat.ions Manager Server Process, which is bundled with DFW
11, coordinates al1 communication traffic between its tools. Each tool connects directly to
the server process through a network connection.

5.2.2 Comrnunications Manager Operations

CMan provides two fundamental services for tools which must interact: notification
and data transfer. They are, however, separate and distinct operations. A CMan noti-
fication is simply a message, transferred to al1 tools in use, stating that sorne event has
occurred. While multiple tools may be interested in events that occur during the design

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

process, not al1 need to process the data or to respond to the event. CMan prevents over-
loading tools with unnecessary data. By separating data transfer from the notification
process, CMan offers a highly flexible and efficient communications system.

To reduce communication overhead, the Communications Manager API allows tools
to express interest in notifications they wish to receive. By using the API, programmers
register C functions as handlers for these notifications. The Communications Manager
server forwards notifications only to the tools that have expressed interest in them. New
tools can participate in existing message scenarios by expressing interest in documented
notifications, or by creating their own message scenarios without affecting existing tools.
Another advantage of notifications being separate from data transfer is that toól devel-
opers are not required to anticipate what data some future tool will want for a particular
operation.

When an application sends a notification and expects the receivers to import a small
,,

data item in response, CMan provides a No t ify-wit h-Cache option, where the data item -
is send with the notification. The tool receiving the notification imports the data item
in the usual way. Therefore, there is no additional network traffic and the data item is
available. immediately. E

O
E

Tools must be integrated with the Communications Manager according to a well- d
defined and agreed-upon in tegrat ion scenario.This specifies exactly how the tools will i
communicate and also lists the features supported by the integration. The definition of 2

n

the integration scenario is critica1 because it specifies the way the tools interact and helps
to determine any Communications Manager notifications that need to be created. 3 O

Applications make data available to other tools through CMan with the export pro-
cess. When a tool exports data it can then be imported by other tools. Exporting data
does not immediately require any action by other tools, but is often used in conjunction
with a notification to alert interested tools that new data is available. Data can be ex-
ported in conjunction with a notification, or data can be exported for later use by other
tools a t their own convenience. This choice gives developers flexibility on how and when
data is passed between tools.

The Communications Manager automatically manages and performs data tagging
and removal. If an operation, like an object selection or simulation run, is repeated severa1
times, there is data associated with each occurrence of that operation. To ensure that
tools responding to such an event get the associated data, the Communications Manager
implements a data tagging scheme that associates imported data with its corresponding
notification. Previous versions of exported data are saved until any "interested" tool has
had an opportunity to import data. This prevents newer data from overwriting older data,
while performing the necessary "garbage collection" to keep the process size growing.

The Communications Manager Message Dictionary defines the public notifications
supported for intertool communications in an electronic design environment. I t lists the
notifications and data objects that Cadence tools use for inter-tool cornmunication.

NAC - Nlc &' Cadence: Design Flow Management in Cadence DFW 11

The CMan supports distributed processing by allowing programs to be run on
any node in a network. The data and notifications are not affected by the location of
the sending and receiving programs. The CMan makes it possible to transparently dis-
tribute computer-intensive operations to other machines on the network. This means t hat
simulation or verification runs can be divided up so that many computers can worlc in
parallel.

User-defined operations can be created so that external programs can interact with
Cadence tools by using SKILL and the CMan API together. Therefore Cadence tools can
be customized to work with their external programs.

5.2.3 Integrating a New Tool - using the Cornmunications Man-
ager

m

The general steps to integrate a tool are: = m
O :
-
0

m

1. Define your objectives E

2. Determine the integration scenario - Identify the following: n

E
a

notifications in the Message Dictionary to broadcast to tools that have ex-
=

pressed an interest n

e notifications in the Message Dictionary that are of interest to your tool 3
O

e new notifications to define or the new data structures to create

3. Set up the development environment - to set up the development directory,
follow these general steps:

(a) Create a new header and library links

(b) Compile the tool with the C compiler

(c) Link the tool with the Communications Manager library

(d) If the tool must highlight, link the tool with the Communications Manager
library

4. Add the Communications Manager API calls -

Add calls to the starting code of the tool to initialize the Communications
Manager

Integrate communication events into the tool's event processing

Write handlers for the notifications in which the tool is interested

e Add calls to import and export data

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

e Handle tool exit

5. Modify the configuration file - typically, a configuration file is an ASCII file
containing startup information about the tools. When the Communications Man-
ager starts, it reads ASCII configuration files and converts their contents into group
structures. You can use one or more configuration files, al1 have the same syntax.
They can have any name, but by convention, they have either a . cfg or .grp exten-
sion. The Communications Manager merges multiple entries in the same group into
a single group. The configuration file stores specific tool and variable data.

6. Start the Commiinications Manager - this can be done in one of three ways:

(a) From the command line

(b) In the SKILL environment (the Communications Manager starts the first time
you use the SKILL interface) m

D

(c) A Valid Frame script from the desktop starts the Communications Manager 5 :
before starting the Process Manager

- O m

When the Cornnlunications Manager starts, it starts up the initial toolis) specified in
the configuration file. The tools can include a toolbox, such as the Process Manager, %
from which the other tools start. The Communications Manager quits automatically
when al1 the tools have exited.

7. Troubleshoot as necessary
3 O

After completing these steps, the new tool is integrated with the same mechanism Cadence
tools use to cuor-dinate operatioiis.

5.3 The User Interface Manager and Inter-tool Com-
rnunicat ion

The User Interface (UI) Manager provides a suite of interfaces to the Cadence DFW
11 architecture. It gives you use of DFW II services, window management, user interface,
and graphics, without the entire DFW 11 executable tool. The U1 manager allows you to
create tools that execute in a Unix process separate from DFW 11, yet appear (to the user)
as if the tool was part of thc DFW 11 package. DFW 11 acts like a U1 Management system
for the tool process. With the U1 SKILL functions, your tools U1 code is programmed in
SKILL and executes inside DFW 11.

Inter-tool communication is established by handshaking between your tool and DFW
11. The U1 Manager provides your tool with a handshaking (initialization) function that

XAC - N l c B C a d e n c e : Design Flow Management in Cadence DFW 11

retrieves your tool's port number and connects with DFW 11. Inter-tool communication
continues each time your tool requests services from DFW 11.

Job control can be included as part of your tool with the U1 Manager. DFW 11 sends
job control information on to the tool through Cadence's SKILL IPC. For example, the U1
Manager provides you with a SKILL function, rwBeginProcess, to request a child process
ID number to start your tool within the DFW 11 SKILL interpreter.

5.4 Open Simulation System

The OSS provides the foundation for Cadence's simulation strategy that lets you
integrate simulators into the Cadence system. Simulators integrated using OSS present
a consistent user interface for controlling the execution of simulation, the generation of 8 -
netlists and input vectors, and the display of the waveform output.

-
m
O
R

-

The simulation process can be broken down into several steps. A simulation in the 'i
Cadence system can be run wi'th a single command. The Simulation Environment (SE) is
a non-graphics program that uses the SKILL language as its interface. The only difference d
between SKILL in the Cadence graphics program and SKILL in the SE is the extensions i
that have been made to them in each program. The Cadence tools make it possible for 2

n

you to interface most simulators without knowing any of the database structure. n

3
O

5.4.1 Integrating a Simulator - using the Open Simulation Sys-
tern

To integrate a simulator into the Cadence system, you must customize the tools
required by your specific application. The following is a brief descriptioxi of the siniulaliori
process stages and the tools provided in OSS to simplify the process:

1. Create an STL code generator for the simulator - the OSCG (Open Sim-
ulation Code Generator) offers the advantage that the high-leve1 language STL
(Simulation and Test Language) can be used to create the input vecturs. The STL
compiler parses the STL program, so that the developer need only be coxicerned
with programming the vector output format.

2 . Create the appropriate netlist - you first need to decide whether a flat or hierar-
chica1 netlist needs to be created, then, to customize a netlist, each cell in the library
needs to have a view of itself that guides the netlister in terms of the properties that
need to be extracted and their format in the netlist.

NAC - Nlc 6Y Cadence: Design Flow Management in Cadence DFW 11

3. Customize SE - since SE controls the simulation extraction, including invoking
the simulator and t,he netlister as well as loading the data, you need to modify SE
so that it recognizes the new simulator and creates the control files for the specific
simulator .

4. Create the WSF - in order to display the simulation output as waveforms, the
output must be formatted into binary Cadence WSF (Waveform Storage Format).
You can use the WAL (Waveform Access Library) to directly cal1 procedures that
can generate the binary WSF file.

5 . Create an error back-annotation file - a mechanism called probing is used
throughout the design analysis process. Probing is a way of graphically highlighting
nets (nodes) and instances (devices) in your design. I t is also a way of communicating
which nets and devices are "of interest" between design analysis tools.

m
D

5.5 I P C & SKILL
E

O
E

The set of SKILL functions provided by Cadence for IPC allow you to create and ;
communicate with child processes. An advantage of running a child process is that it can
run concurrently with a parent process. A child process can be a program that executes
normally under the given operating system; DFW 11 runs non-Cadence software as a
child process. A child process can also be a s simple as an execution of a mail tool, i.e.
any process can bc a child process, and run parallel with the parent process that created
it, either synchronously or asynchronously. The ability to create and run a child process
greatly expands the SKILL environment.

5.6 Process Manager

The Process Manager is a tool to help you:
Visualize and document the design process
Automate the sequencing and startup of tools
Encapsulate customer and commercial tools into Validhame (The ValidFrame environ-

ment is automatically created when you insta11 the Valid applications and libraries)

The Process Manager (PMan) displays a graphical description of a design process.
I t shows each design task in the process, and the sequence of these tasks. It allows you
to set up tool sequences that run automatically by the Process Manager. It also lets you
encapsulate tools into the framework. Therefore the tools are invoked in the ValidFrame
environment. This allows you to use tools from other vendors and in-house customer tools
in your Process Manager process.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

The Process Manager encapsulates the PIC Designer tools into a process flow and
starts aiitomatically when yoii start a PIC designer. I t also can be uced to invoke the Logic
Workbench (LWB), the Analog Workbench 11 (AWB), the Allegro Workbench (PCB), and
the Integrated Circuit Workbench (ICWB). The Process Manager allows you t o execute a
design process through a set of commands. There are commands to start tools or processes,
to send instructions to tools, and to check the status of running processes.

Chapter 6

Specification of the Design Flow

N-'IC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Using Cadence Design Flow Management, create a design flow encapsulating interna1
and externa1 tools by invoking both user-defined and existing SKILL functions.

Objectives

1. Create a skeleton design flow

create a flowchart and its design steps by incorporating the existing SKILL functions
that are available

e add and link the design steps accordingly to the flowchart

o display the flowchart in a Flow Browser window
= m

o

N.B.The advantage of crcating the skeleton flow is that aspects, such as the direction of j
flow and design set dependencies, can be verified before proceeding with the details of the e
flow . O

E

2. Add functions to the design steps

e each design step will describe a specific action or set of actions

some of the actions to be taken will invoke non-Cadence tools, therefore the function
must be encapsulated in SKILL

the integrati011 ü i uun-Cadence tools must be supported in the source code using
SKILL

3. Incorporate some additional features of the design flow

e to fuliill the requirements of a hierarchical flowchart, create a subflowchart, its design
steps and the necessary functions

e add extra iterns to- the pop-up menus and window/form banners, where necessary

4. Use forms to gather the information from the user

e use the SKILL functions available to create and display various types of forms to
gather the information necessary to invoke the required events from the tools to be
used

NAC - Nlc 6' Cadence: Design Flow Management in Cadence DFW 11

5. Integrate both Cadence and non-Cadence tools

o write the necessary SKILL source code to integrate a variety of tools

e incorporate SKTLL functions that are already available with you own user-defined
func tions

6. Provide an online help facility and user manual

a use the html editor, l1tkHTML 2.3", to create help pages for the individual design
steps, where necessary

e create a user manual for the system
m

6.2 The proposed system
..
E

The proposed system (outlined in figure 6.1) is a design flow which guides the user
-

through a series of steps which will enable him/her to generate XNF netlists from a C++
program, convert them to Verilog nctlists, view the Verilog netlists and the schematic,
and then cal1 the Xilinx Design Manager to further implement the logical design.

3
@

Create Directory t
1 Edit File 1

C++ Debugger -
nlc Compiler c

Verilog c
/ Xilinx Design Manager 1

Figure 6.1: Flowchart of the proposed system

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

The design flow will be presented to the user in a Flow Browser window. Within this
window, Design Flow provides certain menus and ready-made commands (see page 13).
To increase the user-friendliness of the system, it is possible to add your own facilities and
commands. An online user manual and a specific help facility for individual steps, would
benefit the aesthetics of the system.

6.3 Specification of each design step

Create Directory

e ask the user to input the name of the new directory to use for saving files to, etc

0 create this new directory in the user's account
m

-
Edit File m

O :
-
0 .

o ask the user to input the name o£ a file, either an existing C++ program to be ",
edited, or a new one to be created O E

o open the file via a text editor E
a

n

C++ Debugger n

3
@

o call a debugging tool so the user has the opportunity to debug the C++ program

nlc Compiler

o ask the user to select the various compiler options he/she requires

o call the nlc compiler with the selected options and create the necessary files

o view the compiler output, symbol file and WIR or XNF netlist file that are created

Verilog

o convert the XNF netlists to Verilog netlists via calls to two procedures that will
generate, first EDIF netlists from the XNF netlists, and then the EDIF netlists to
Verilog netlists

view the Verilog netlist file via a graphics window

o call "Verilog In" to enable the user to view the schematic in the Cadence graphical
editor. Verilog In imports a design in Verilog Hardware Description Language (HDL)
format into a DFW 11 database format library.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

6. Xilinx Design Manager

start the Xilinx Design Manager so the user can access the various Xilinx tools to
implement the design

Chapter 7

Design and Implementat ion

NAC - Nlc & Cudence: Design Flow Management in Cadence DFW 11

From the outlined design flow in figure 6.1, the flowchart will contain six design steps.
Each step will encapsulate a tool, with the "Verilog" step incorporating two fiirther steps
which will be dealt with via a hierarchical flowchart. Al1 the examples of code are extracts
from the source code file "desproj.i17'.

7.1 Encapsulat ing t he Tools

Each step must first be encapsulated using the SKILL function dfEncapsulate.

createstep = dfEncapsulate(?name "Create Directory"
?function 'funccreate

)
m
D

-
The process of encapsulating a tool is primarily that of creating a design step and

assigning appropriate properties that fully describe it. The tool is defined in terms that
the Design Flow system can use to control and invoke the tool. The Design Flow system
requires that the core functions of the tool, be defined in SKILL. For foreigri tools, t>liis E
might mean creating a wrapper function in SKILL whose only operation is a system cal1
that initiates an externa1 process. More deeply encapsulated foreign tools might include i
SKILL code to interpret the information or exit codes returned by the tool. After defining
the core functions in SKILL, the step can be created and customized. i

O

Creating and Displaying t he Flowchart

Create the Flowchart After the encapsulation of the steps, the main flowchart can
be created. First, it is important to initialize a library in which the design flow will be
stored by using dfInitLib, and then create the flowchart, using dfCreateFlowchart.

df InitLib (?libNamc "pro j lib")
mainFlowchart = df CreateFlowchart (?name "mainFlowchart"

?libName "proj lib"
?lowerLef t ' (150 150)

1

Add and Link Design Steps to the Flowchart To add the design steps to the
flowchart, it is necessary to use dfAddStepToFlowchart function. This, however does not
create any parent-child relationships between the design steps, so the steps must be linked
accordingly using dfLinkStepsToFlowchart. This established the parent-child relationship
between two steps on the flowchart.

NAC - Nlc &' Cadence: Design Flow Managerne~t in Cadence DFW 11

dfAddStepToFlowchart(?flowchart mainFlowchart
?step createstep
?xy ' (O 3500)

)

Create a Subflowchart for the "Verilog" Design Step In the case of the "Verilog"
design step, the operation of a 'single step is too complicated. It makes sense to create a
flowchart which represents the function of this design step. Therefore, a subflowchart is
created and attached to the step. The subflowchart can be set in the encapsulation of the
design step and then its steps are added and linked as for the main flowchart.

verilogstep = dfEncapsulate(?name "Verilog"
. ?subf 1owchartLibName "pro jlib"
?sub£lowcliartName llverilogSubflowchart"
?f unct ion ni1

1

The subflowchart (see figure 7.2) is indistinguishable from an ordinary flowchart,
except that it includes a pointer to the design step which it expands. This is in the
form of a downward-pointing arrow inside the design step, which is automatically created
to indicate that a sub-flow exists for the step (see "Verilog" Step on the flowchart in
figure 7.1), and also a further item is created, called "Push to Subflowchart", in the
pop-up menu of the design step.

Add Pop-Up Menu ltems 'l'he pop-up menu on each of the design steps has two
commands as its default, namely Run Step and Reset Step. Additional items can be added
to this menu. An extra item, Bypass Step, has been added to give the user the opportunity
of "skipping" the step, if it is not needed. This gives the user a certain control over which
steps he/she can run.

bypassCreateAction = list("Bypass Step" "bypassCreateStep" "")

createStepNode = dfGetStepNode(?step createstep
?flowchart mainFlowchart

1

NAC - Nlc éY Cadence: Design Flow Mananement in Cadence DFW 11

procedure (bypassCreateStep0
prog((stepInst)

stepInst = dfGetStepInst(?step createstep
?flowchartInst mainFlowchartInst

)
dfRunPostFunc(?stepInst stepInst

1
) ; ** prog **

) ; ** procedure - bypassCreateStep **

Set Uependencies for the Design Steps However dependencies are set, using df-
SetDependency, so the Design Flow system can validate each step, by ensuring that the
previous step has finished correctly, before allowing the next step to be run.

m

dfSetDependency(?step editStep =

Pflowchart mainFlowchart
m
O :

?dependency 'allParents -. O m

1 E
O
E
n

Display the Flowchart Finally, the flowchart can be displayed in a Flow Browser %
window using the command dfDisplagFlowchart (see figure 7.1).

n

mainFlowchartInst = dfDisplayFlowchart(?libName "pro j lib" 3 O

?cellName "topLevelFlow"

Each step in the design will appear with a colour-coded bar. The bar is green to
begin with, and changes to grey while the step is running, and then to black when the
step has finished. The steps also have two smaller rectangles at the top, cailed Rwz and
Props. The Run box can be used to invoke the step instead of the using the Run Step
command on the pop-up menu, and the Props box brings up a separate window displaying
the information that has been stored on the design step to indicate the status of the step,
such as running, finished, lastRunTime, etc.

The Functions of the D,esign Steps

Each design step has a function which is called when the step is activated. Within the
functions, forms are used to gather information, dialog boxes are used to display messages
and warnings to aid the user, and the various tools are integrated and called to produce
the desired oiitput.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Finure 7.1: The NAC flowchart in a Flow Browser window

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Figure 7.2: The Verilog subflowchart in a Flow Browser window

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

7.3.1 Step 1 Create Directory - fiLncCreate

funcCreate first displays a dialog box to inquire of the user if he/she wishes to create
a new directory (see figure 7.3). By clicking on Yes, it calls another function which displays
a form for t,he iiser to input the name of the directory to be created (see figure 7.4). When
the user clicks on OK, this invokes a procedure which creates the new directory in the
users account .

Figure 7.3: Dialog Box - "Create a New Directory"

Figure 7.4: Form - "Create a New Directory - File Name Form"

r The prucedure below, which is called form funcCreate, creates the form to gather
the new directory's name.

procedure(gotoCreateDirectory()
strf ield = hiCreateStringField(?name >dirName

?prompt "Enter directory name : "
1

hiCreateAppForm(?name ' createForm
?formTitle "Create a New Directory Form"
?f ields ' (strf ield)
?callback ' (funcOK)
?buttonLayout 'OKCancelDef

) ; *+ hiCreateAppForm **

NAC - Nlc &' Cadence: Design Flow Management in Cadence DFW 11

0 This function is called from the Create a New Directory Form to create the new
directory.

procedure (funcOK(createForm "r")
createDir(createF0rm->dirName->value)

; ** procedure - funcOK **

This command displays the Create a New Directory Form.

hi~isplay~orm(createForm)
) ; ** procedure - gotoCreateDirectory **

r Tlle dialog bux is crea~eci here alid calls the furictiu~~ yotoC;reuteDiwctoy if the
user clicks on OK, otherwise the function finishes. ,, -

procedure(funcCreate (akey (stepInst nil))
hiDisplayAppDBox(?name , ' createDirDBoa

?dboxBanner "Create a New Directory"
?dboxText "Do you wish to create a new

directory ?"

?callback "gotoCreateDirectory0"
?dialogType hicQuestionDialog
?buttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
; ** procedure - funccreate **

7.3.2 Step 2 Edit File - funcEdit

funcEdit first creates a dialog box to inquire of the user if he/she wishes to edit or
create a C++ file (see figure 7.5). By clicking on Yes, it calls another function which
displays a form for the user to input the name of the file to be edited or created (see
figure 7.6). When the user clicks on OK, this invokes a procedure which calls the text
editor ready for editing or creating a file.

r This prucedure, which is called from funclidit, sets the test editor in Cadence to
"emacs" and then the SKILL command hiEditFile() brings up a form for the user to input
the file name. When the user elicks on OK, the file is presented in a text editor window.

procedure (gotoTextEditor ()

editor = "$EDITOR"
hiEditfile ()

) ; ** gotoTextEditor **

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Figure 7.5: Dialog Box - "Edit or Create a C++ File"

e
Figure 7.6: Form - "Text Editor"

E
a

2

r The dialog box is created here arid calls the function gotoTextEditor if the user
clicks on OK7 otherwise the function finishes.

3
O

procedure(funcEdit(Qkey (stepInst nil))

hiDisplayAppDBox(?name > editFileDBox
?dboxBanner "Edit or Create a C++ File"
?dboxText "Do you wish to edit or create a

C++ file ?"
?callback "gotoTextEditor0"
?dialogType hicQuestionDialog
?buttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - funcEdit **

7.3.3 Step 3 C++ Debugger - funcDebug

funcDebug first creates a dialog box to inquire of the user if he/she wishes to debug
a C++ file (see figure 7.7). By clicking on Yes, it calls another function which displays
a form for the user to input the name of the file to be edited or created (see figure 7.8).
When the user clicks on OK, a message dialog box appears to check that the file name
has been entered in the correct format (see figure 7.9). This message box returns you to

NAC - Nlc & Cudence: Design Flow Management in Cadence DFW 11

the form and you can either change the format, if necessary, or else click on OK and the
procedure to call the debugger is invoked.

Figure 7.7: Dialog Box - "C++ Debugger" ,,

Figure 7.8: Form - "C++ Debugger - File Name Form"

e This function, which is called from gotoDebugForm, calls the debugger with file
name inpiitted by the user in the Debugger - File Name Form. To invoke the debugger
witli the necessary iriforrriation (ie the file name), the file name is passed to a previously
created "C Shell Script", which in turn makes the call to the tool.

procedure (funcCallToDebugger (option)
setq(debugFi1eName debuggerForm -> f ilename -> value)
p = outf ile("callDebuggerU)

fprintf (p "#! /bin/csh -f \n")
fprintf(p "# Cal1 C++ Debugger\n\nW)
f p r i n t f (p "set nameOfFile = %S \n\nI1 debugFileName)
fprintf(p "($DEBUGGER $nameOfFile $1 \n\na1)
fprintf (p "exit")
clase(p)

system("callDebuggerH)
) ; ** procedure - funcCallToDebugger **

This dialog box checks with the user that the file narne is in the correct format.

NAC - Nlc éY Cadence: Desim Flow Management in Cadence DFW 11

Figure 7.9: Dialog Box - "File Name Check"

procedure (f ileNameMessage (1
hiDisplayAppDBox(?name >fileNameQtnBox

?dboxBanner "File Name Check"
?dboxText "1s the file name specified in.the

style of the format given ?"

?dialogType hicQuestionDialog
?huttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - fileNameMessage **

n

e The procedure below' creates the form to get the narne of the C++ file to be
de bugged. 3 O

procedure(gotoDebugForm()
strfield = hiCreateStringField(?name > f ilename

?prompt "Enter file name:"
?def Value "f ilename . cc*
?callback "f ileNameMessage () "

) ; ** string **

hiCreateAppForm(?name ' debuggerForm
?fomTitle "Debugger - File Name Form"
?f ields > (strf ield)
?callback J(funcCallToDebugger)
?buttonLayout 'OKCancelDef
?initialSize t

) ; ** hiCreateAppForm **

hiDisplayForm(debuggerForm)
) ; ** procedure - gotoDebugForm **

e The dialog box is created here and calls the function gotoDebugForm if the user
clicks on OK, otherwise the function finishes.

NAC - Nlc & Cadence: Desinn Flow Management in Cadence DFW 11

procedure (funcDebug(@key (stepInst nil))
hiDisplayAppDBox(?name 'debugDBox

?dboxBanner "C++ Debugger"
?dboxText "Do you wish to debug a C++ file ?"

?callback "gotoDebugForm() "
?dialogType hicQuestionDialog
?buttonEayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - funcDebug **

7.3.4 Step 4 nlc Compiler - funcCompile

funcCompiEe is significantly longer than any of the other design step functions as it
contains then nlc Compiler options. From the main menu the user makes various choices of
what he/she requires for the compilation. This menu calls several forms, each containing
more compiler options. Once al1 the xiecessary inforrnation is gathered (i.e. filenames and
options) the nlc Compiler is called via a "C Shell script" which has al1 the inforrnation E

passed to it. O
E

0 This function is called from the nlc Compiler Output Options Form when the user
-

clicks on the nlc Help button, It displays a message box asking the user if they require
help (see figure 7.10)) if they do, f u r ~ c H e b is called which invokes a system cal1 to the
html browser with the relevant "Help pages" (see the Appendix).

3
O

Figure 7.10: Dialog Box - "nlc Compiler Help"

procedure (funcHelp ()
system("$HTMLBROWSER html./nlcHelp.html a ")

) ; ** procedure - funcHelp **

NAC - Nlc 43 Cadence: Design Flow Management in Cadence DFW 11

hiDisplayAppDBox(?name ' helpDBox
?dboxBanner "nlc Compiler Help"
?dboxText "Do you require help or infomation

for the nlc compiler ?"
?callback "funcHelp()"
?dialogType hicQuestionDialog
?buttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - gotoNlcHelpOption **

This is the body of procedure funcInternalInfoOptions where the various choices
that the user makes in the Interna1 Pnformation Options Fomn are evaluated and available
for use in the systemCallToCompiler function.

procedure(funcInternalInfo0ptions(Qoptional choicel choice2 choice3
choice4 choice5 choice6)

setq(choice1 internalInfoForm -> internalInfoOptions -> togglel ->
value

setq(choice2 interrlalInfoForm -> internalInfoOptions -> toggle2 ->
value)

setq(choice3 internalInfoForm -> internalInfoOptions -> toggle3 ->
value)

setq(choice4 internalInfoForm -> internalInfoOptions -> toggle4 ->
value)

setq(choice5 internalInfoForm -> internalInfoOptions -> toggle5 ->
value)

setq(choice6 internalIafoFom -> internalInfoOptions -> toggle6 ->
value 1

cond(
(choicel == t && choice2 != t &% choice3 != t && choice4
&& choice5 != t %& choice6 ! = t opt4 = 11-d{t3't)
(choicel != t && choice2 == t &% choice3 != t && choice4
&& choice5 != t && choice6 != t opt4 = "-d(s)")
(choicel != t && choice2 != t && choice3 == t && choice4 != t
&& choice5 != t && choice6 != t opt4 = "-d(o3")
(choice1 != t &% choice2 != t %% choice3 != t && choice4 == t
&& choice5 != t && choice6 != t opt4 = "-d(c3")
(choicel != t && choice2 != t && choice3 != t && choice4 != t
&& choice5 == t && choice6 != t opt4 = "-d(rn3")
(choice1 != t && choice2 != t && choice3 != t %% choice4 != t
&& choice5 != t && choice6 == t opt4 = "-d(z3")
(choice1 == t && choice2 == t && choice3 != t &% choice4 != t
&& choice5 != t && choice6 != t opt4 = "-d{t){s)")

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFIV 11

(choice1 == t && choice2 == t && choice3 == t && choice4 == t
&& choice5 == t && choice6 == t opt4 = "-d<a)")

) ; ** cond **
) ; ** procedure - funcInternalInfoOptions **

This is the body of procedure gotoInternalInfoOptions which creates a r d displays
the Internal Information Options Form (see figure 7.11).

Figure 7.11: Form - "Internal Information Options Form

procedure (gotoInternalInf o0ptions ()
opt2Toggle = hiCreateToggleField(?name 'internalInfoOptions

?choices list (
)(togglel "Tree built during parsing")
) (toggle2 "Symbol table built during
parsing")

) (toggle3 "Operators")
I(toggle4 "Transformed function in C
f ormat ")

I(toggle5 "The modules instanciated
from the parse tree")

'(toggle6 "Usage statistics of the
LEDA library")

) ; ** l i s t **
?numSelect 6
?prompt " Interna1 inf ormat ion

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

dump about : "
7itemsPerRow 1
?value '(ni1 ni1 ni1 ni1 ni1 nil)

) ; ** opt2Toggle **

hiCreateAppForm(?name 'internalInfoForm
?formTitle "Interna1 Information Options Form"
?f ields list(opt2Toggle
?callback '(funcInternalInfoOptions)
?buttonLayout '(OKCancelDef

(nlc\ Help "goto~lc'~elp~ption()")
1

?initialSize t
) ; ** hiCreateAppForm **

hi~is~la~~orm(int erna11nf OFO&)
) ; ** procedure - gotoInternalInfoOptions **

E

e This is the body of procedure goto WirOption whi'ch creates and displays the WIR
Netlists Directo y Option F o r n (see figure 7.12).

E

Figure 7.12: For - "WlH Netlist Uirectory Option Form"

procedure (gotoWirOption()
wirstringl = hiCreateStringField(?name ' wirDir

?prompt "Directory WIR
netlists are written to: "
?defValue "./wirU

) ; ** wirstringl **

wirString2 = hiCreateStringFiald(?name ' wirExt
?prompt "The extension for
WIR netlists : "
?def Value " .1"

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

hiCreateAppForm(?nanie ' wirForm
?f ields list(wirString1 wirString2)
?f ormTitle "WIR Netlist Directory Option Form"
?buttonLayout ' (OKCancelDef

(nlc\ Help "gotoNlcHelpOption()")
)

?initialSize t
; hiCreateAppFom **

hiDisplayForm(wirForm) .

) ; * * procedure - gotoWirOption **

m

o This is the body of procedure gotoXnf0ption which creates and displays the XNF
=

Netlists Directory Option F o m (see figure 7.13).
m
O :

Figure 7.13: Form - "XNF Netlist Directory Option Form"

procedure(gotoXnfOption0
xnfString1 = hiCreateStringField(?name ' xnf Dir

?prompt "Directory XNF
netlists are written to: "
?def Value " . /xnfl'

) ; ** wirstringl **

xnfString2 = hiCreateStringField(?name ' xnf Ext
?prompt "The extension for
XNF netlists :
?defValue ".xnfN

) ; ** wirString2 **

hiCreateAppForm(?name > xnf Form
?f ields list (xnf Stringl xnf String2)

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

?f ormTitle "XNF Netlist Directory Option Form"
?buttonLayout '(OKCancelDef

(nlc\ Help "gotoNlcHelpOption()")
1

? init ialSize t
) ; hiCreateAppForm **

hiDisplayForm(xnfFom)
) ; procedure - gotoXnfOption **

e This is the body of procedure funcNetlistAndSyn~sOp¿iu~~s wliere the various choices
that the user makes in the Netlists @ Symbols Options Form are evaluated and available
for use in the systemCallToCompiler function.

setq(choice1
value)

setq(choice2
value)

setq(choice3
setq(choice4
setq(choice5
setq(choice6

if (choice3 == "wir" then
gotoWirOption0

else
got oXnf 0pt ion()

) ; ** if **

cond (
(choice1 == t && choice2 != t
(choice1 != t && choice2 == t
(choice1 == t && choice2 == t
(choice1 != t && choice2 != t

) ; ** cond **

if (choice3 == "wir" then

Qoptional choice1 choice2 choice3
choice4 choice5 choiceb) '
netlistAndSymsOpt1 -> togglel ->

netDir -> value)
symDir -> value)
symExt -> value)
bitvectorsize -> value)

setq(wirOpt1 wirForm -> wirDir -> value)
if (wirOpt 1 ! = "" then

setq(opt5b strcat(" -N " wirOpt1))
else

setq(opt5b " "1
) ; ** if **

NAC - Nlc 43 Cadence: Design Flow Management in Cadence DFW 11

e l s e
se tq(xnfOpt1 xnfFom -> xnfDir -> value)
i f (xnf Opti ! = "" t h e n

se tq (op t5b s t r c a t (" -A -X " xnfOpt1))
e l s e

se tq (op t5b " ")
) ; ** if **

) ; ** if **

i f (choice4 != " " t h e n
se tq (op t5c s t r c a t (" -S " choice4))

e l s e
se tq (op t5c " ")

) ; ** if **

i f (choice3 == "wir" t h e n
setq(wirOpt2 wirForm -> wirExt -> value)
i f (wirOpt2 ! = "" t h e n

s e t q (o p t 5 d s t r c a t (" -n " wirOpt2))
e l s e

se tq (op t5d '' "1
) ; ** if **

e l s e
se tq(xnf 0p t2 xnf F o m -> xnf Ext -> value)
i f (xnfOpt2 != "" t h e n

se tq (op t5d s t r c a t (" -x " xnf 0pt2))
e l s e

se tq (op t5d " ")
) ; ** if **

) ; ** if **

i f (choice5 != "" t h e n
se tq (op t5e s t r c a t (l l -S " choice5))

e l s e
se tq (op t5e " "1

) ; ** if **

i f (choice6 ! = "" t h e n
se tq (op t5f s t r c a t (" -w " choice6))

e l s e
se tq (op t5f " ")

) ; ** if **

s e t q (o p t 5 s t r c a t (opt5a opt5b opt5c opt5d opt5e op t5f)
) ; ** procedure - funcNetlistAndSyms0ptions **

NAC - Nlc k3 Cadence: Design Flow Management in Cadence DFW 11

This is the body of the gotoNetlistAndSyrnsOptions procedure which creates and
displays the Netlists & Symbols Options Forrn where the user selects certain compile
options (see figure 7.14).

E

Figure 7.14: Form - "Netlists & Symbols Options Form" a

procedure (gotoNetlistAndSymc0ptions ()
opt3Toggle = hiCreateToggleField(?name

Ychoices
' (togglel

JnetlistAndSyrnsOptl
list (

"Keep all, do not clean up
the netlist")

'(toggle2 "Optimize the netlist")
) ; ** list **

?numSelect 2
?prompt "Select option(s) : "
?itemsPerRow 1
?value ' (ni1 nil)

) ; ** opt3Toggle **

opt3Radio = hiCreateRadioField(?name J netDir
?choices J (ttwir~ "xnf "1
?prompt "Select which directory
netlists are written to: "
?itemsPerRow 1

) ; ** opt3Radio **

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

?prompt "Directory symbols are
written to: l1
?def Value " . /symI1

) ; ** opt3Stringl **

opt3String2 = hiCreateStringField(?name) symExt
?prompt "The extension for symbols:"
?def Value " .1"

) ; ** opt3String3 **

opt3String3 = hiCreateStringField(?name '5itvectorSize
?prompt "Change the bitvector size : "
?def value 16"

) ; ** opt3String4 **

hiCreateAppForm(?name 'netlistAndSymsForm
?PormTitle "Netlists & Symbols Options Fom"
?f ields list(opt3Toggle opt3Radio opt3Stringl

opt3String2 opt3String3)
?callback ' (funcNetlistAndSyms0ptions)
?buttonLayout)(OKCancelDef

(nlc\ Help "gotoNlcHelpOption()) "1
)

?initialSize t
) ; ** hiCreateAppForm **

hiDisplayForm(netlistAndSymsForm)
) ; ** procedure - gotoNetlistAndSymsOptions **

e The procedure displays a dialog box informing the user that the "version informa-
tion" option they choose will be written to the nlc.log" file (see figure 7.15), which can
be viewed from the output form.

procedure(gotoPrintVersionInfo0pt2on()

hiDisplayAppDBox(?name 'printVersionDBox
?dboxBanner "Version Information Message"
?dboxText "Version information is now being

written to the nlc.log file"
7dialogType hicMessageDialog
?buttonLayout 'Close

; ** hiDisplayAppDBox **
; ** procedure - gotoPrintVessionInfoOption **

NAC - Nlc í3 Cadence: Design Flow Management in Cadence DFW 11

Figure 7.15: Dialog Box - "Version Information Message"

e t,he procedures gotoDisplny WarningMe.ssage1 and gotoDisplay WarningMessage2
display message boxes to indicate to the user that the output they wish to see cannot be
viewed as they did not choose that option in the previous forms (see figures 7.16 and 7.17).

Figure 7.16: Dialog Rox - "View File Wa.rning - Netlists"

procedure (gotoDisplayWarningMessage1~)
hiDisplayAppDBox (?name 'errorMessageBox

?dboxBanner "View File Warning"
?dboxText "Cannot display netlist file as it

vas not specified in the menu"
?callback "gotoNicOutputF~rm() "
?dialogType hicWarningDialog
?buttonLayout >OKCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - gotoDisplayWarningMessage1 **

procedure(gotoDisplayWarningMessage2~)
hiDisplayAppDBox(?name 'errorMessageBox

?dboxBanner "View File Warning"
?dboxText "Cannot display symbol file as it was

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Figure 7.17: Dialog Box - "View File Warning - Symbols"

not spccificd in the menu"
?callback "gotoNlcOutputForm~) " ,,

?dialogType hicWarningDialog = m
O

?buttonLayout ¶OKCancel :
-

) ; ** hiDisplayAppDBox ** 0

m

E

) ; ** procedure - gotoDisplayWarningMessage2 ** O
C
n

o This part of the code of funcNlcOutput passes the necessary information to anC %
Shell Script" to view the netlist file output (WIR or XNF) either, in a view window, or q
vía the standard output (xterrn window), depending on what options were chosen earlier.

3

procedure(funcNlc0utput(f4optPonal outoptl outopt2 outopt3)
setq(outopt1 nlcOutputForm -> viewNlcOutput -> togglei -> value)
setq(outopt2 nlcOutputForm -> viewNlcOutput -> toggle2 -> value)
setq(outopt3 nlcOutputForm -> viewNlcOutput -> toggle3 -> value)

If the user has chosen the nlc compiler output option, then "view" the log file.

if (eq(outopt1 t) then
view("nlc . log")

) ; ** if **

o If the user has chosen netlist output option, then depending on which type of netlist
was opted for earlier, this procedure will produce the desired output.

if (eq(outopt2 t) then
setq(netDir0pt netlistAndSymsForm -> netDir -> value)
setq(fi1eName mainMenuForm -> filename -> value)
setq(f ileNameLength strlen(f ileName))
setq(reqdLength fileNameLength - 3)
setq(newFi1eLength fileNameLength * -1)
setq(f ileNameStem substring(f ileName newFileLength reqdlength))

NAC - Nlc @ Cadence: Design Flow Management in Cadence DFW 11

If the user has chosen the WIR option, then check whether they opted to send
the output to the standard output or to an appropriate file, if not then display an error
message.

if(netDirOpt == %irM then
setq(fi1eExtA wirFom -> wirExt -> value)
if (f ileExtA == "-la then

setq(newFi1eExtA " "1
else

setq(newFi1eExtA f ileExtA)
) ; ** if **
setq(wirDirName wirForm -> wirDir -> value)
if (wirDirName == '"' then

gotoDisplayWarningHessage1 (1
else
if (virDirName != "-" then

setq(wirDirLength strlen(wirDirName))
setq(neuWirDirName substring(wirDirName 3 wirDirLength))
setq(newFi1eName strcat (newWirDirName "/J' f ileNameStem

newFileExtA)
view (newFileName)

else
println("Net1ist directory options (uir) stated the file be

uritten to the stdout")
p = outf ile ("nlcStdOutNet1")
fprintf (p "#! /bin/csh -f \n")
fprintf (p al# Vrite =et,list diroct~=a te o+.i_orr+\,n\,E1l)
fprintf(p "set nameOfFileStem = %s\nW fileNameStem)
fprintf(p "set netDirExt = %s\n\nW newFileExtA)
fprintf(p "mora wir/$namaOfFilnStem%netDirht \nv)
fprintf (p "exit")
close (p)
system("xterm -e nlcStdOutNetiw)

) ; ** if wirDirName **
) ; ** if wirDirName **

o l f the user has chosen the XNF option, then perform the same checks as for the
WIR option above.

else ; ** (if netDirOpt == "xnf") **
setq(fi1eErtB xnfForm -> xnfExt -> value)
if (f ileExtB == "-" then

setq(newFileExt8 " ")
else

setq(neuFi1eExtB f ileExtB)

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW II

) ; ** if **
setq(xnfDirName xnfForm -> xnfDir -> value)
if (xnfDirName == "" then

gotoDisplayWarningMessagei()
el s e

if (xnfDirName != "-" then
setq(xnfDirLength strlen(xnfDirName))
setqhewXnfDirName substring(xnfDirName 3 xnfDirLength))
setq(newFi1eName strcat(newXnfDirName "/" fileNameStem

newFileExtB))
view(newFi1eName)

else
println("Net1ist directory options (xnf) stated the file

be written to the stdout")
p = outf ile("nlcStdOutNet2")
fprintf(p "# ! /bin/csh -f \n")
fprintf (p "# Write xnf netlist directory to stdout\n\nf'l
fprintf(p "set nameOfFileStem = %s\n" fileNameStem)
fprintf (p "set netDirExt = %s\n\nM newFileExtB)
fprintf(p "more xnf/$nameOfFileStem$netDirExt \n")
fprintf (p "exit")
close (p)
system("xtelin -e nlcStdOutNet2")

) ; ** if xnfDirName **
) ; ** if xnfDirName **

) ; ** if netDirOpt **
) ; ** if eq **

If the user has chosen the Symbol option, then check whether they opted to send
the output to the standard output or to an appropriate file, if not then display an error
message.

if (eq(outopt3 t) then
setq(symDirName netlistAndSymsForm -> symDir -> value)
if (symDirName == "" then

got oDisplayWarningMessage2 (1
else

setq(f ileName mainMenu~orm -> f ilename -> value)
setq(f ileNameLength strlen(f ileName))
setq(reqdLength f ileNameLength - 3)

setq(newFi1eLength f ileNameLength * -1)
setq(fi1eNameStem substring(fi1eName newFileLenght reqdlength))
setq(fi1eExtC netlistAndSymsForm -> symExt -> value)
if (f ileExtC == "-If then

setq(newFi1eExtC " ")

NAC - N l c & C a d e n c e : Design Flow Management in Cadence DFW 11

else
setq(newFi1eExtC f ileExtC)

) ; ** if **
if (symDirName != "-" then

setq(symDirLength strlen(symDirName))
setq(newSymDirName substring(symDirName 3 symDirLength))
setq(newFi1eName strcat(newSymDirName "/" fileNameStem

newFileExtC)
view (newFileName)

else
println(l'Symbol directory options stated the file be

written to the stdout")
p = outfile("nlcStd0utSym")
fprintf (p "# ! /bin/csh -f \nI1)
fprintf (p "# Write spbol directory to stdout\n\nl')
fprintf (p "set name~f~ile~tem = %S \n" f ileNameStem)
fprintf(p "set symDirExt = %S \n\nl1 newFileExtC)
fprintf (p "more sym/$nameOf FileStem$symDirExt \n")
fprintf(p "exit")
close (p)
system("xterm -e nlcStd0utSym")
; ** if symDirName **

) ; ** if symDirName **
) ; ** if eq **

) ; ** procedure - funcNlcOutput **

This creates and displays a form asking the user to choose which compiler outputs
he/she wishes to view (see figure 7.18).

Figure 7.18: Form - "nlc Compiler Output Options Form"

procedure (gotoNlcOutputForm()
outputToggle = hiCreateToggleField(?name 'viewNlcOutput

?choices list (
'(togglel "View the nlc Compiler output")

NAC - Nlc.& Cadence: Oesign Flow Management in Cadence DFW 11

Figure 7.19: Dialog Box - "View nlc Output"

'(toggle2 "View the netlist file (WIR or XNF
depending on which option you choose)")

' (toggle3 "View the symbol file")
1

?numSelect 3
?prompt "Select option(s) :"

?iternsPerRow 1
) ; outputToggle **

hiCreateAppForm(?name 'nlcOutputForm
?f ields ' (outputToggle)
?formTitle "nlc Compiler Output Options Form"
?callback ' (funcNlcOutput)
?buttonLayout '(OKCancelDef

(nlc\ Help "gotoNlcHelpOption() ")

1
?initialSize t

) ; ** hiCreateAppForm **

hiDisplayForm(nlc0utputForm)

) ; ** proceciure - gotoNlcOutputFom **

0 This displays a dialog box asking the user if he/she wishes to view the output files
created (see figure 7.19).

procedure(gotoNlc0utputBox()
hiDisplayAppDBox(?name JnlcOutputBox

?dboxBanner "View nlc Output"
?dboxText "Do you wish to view the compiler

output files ?"
? callback "gotoNlcOutputForm() "

NAC - Nlc & Cadence: Desinn Flow Manaaement in Cadence DFW 11

?dialogType hicQuestionDialog
?buttonLayout IYesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - gotoNlcOutputBox **

e This is the body of the function systemCablToNlcCompiler which passes the nec-
essary information (ie the file name and the options) via the "C Shell Script" to the nlc
Compiler using a system call.

procedure(systemCallToNlcCompiler(opti opta opt3 opt4 opt5 opt6)
setq(f ileName mainMenuForm -> f ilename -> value)
printf("Fi1e Name is: %S \n" fileName)
priatf ("Options are: %S %S %S %S %S %S \n\n" optl opt2 opt3 opt opt5 opt6)
p = outfile("nlcRun0pt")
fprintf (p "# ! /bin/csh -f \n")
fprintf (p "# Run option for nlc \n\nl')
fprintf(p "set name0fFile = %S \n" fileName)
fprintf(p "set optionchoice = '%S %S %S %S %S %S' \n\n" opti opta

opt3 opt4 opt5 opt6)
fprintf (p " ($NLC $optionChoice $nameOfFile >&nlc . log) \nW)
fprintf(p "exit")
clase(p)

system("nlcRun0pt")
gotoNlc0utputBox ()

) ; ** procedure - systemCallToNlcCompiler **

e This is the body of funcMenu0ptions which sets the various nlc options if they
have been selected by the user and calls function systen~CullToNlcCu~~~~pile'~~ l u rurl nlc.

procedure(func~enuOptions(Qoptional filename compOpt1 compOpt2 compOpt3
nain0ptl mainOpt2 mainOpt3)

setq(compiler0ptioni mainMenuForm -> compilerOpti -> value)
setq(compilerOption2 mainMenuForm -> compilerOpt2 -> value)
setq(compilerOption3 mainMenuForm -> compilerOpt3 -> value)
setq(mainMenu0ptioni mainMenuForm -> mainMenu0ptions -> togglel -> value)
setq(mainMenuOption2 mainMenuForm -> mainMenuOptions -> toggle2 -> value)
setq(mainMenuOption3 mainMenuForm -> mainMenuOptions -> toggle3 -> value)

if (compilerOption1 != "" then
setq(opt1 strcat (lb -P " compiler0ptioni)

el se
setq(opt1 " "1

) ; ** if **

NAC - Nlc 6 Cadence: Design Flow Management in Cadence DFW 11

if (compiler0pt ion2 ! = "" then
setq(opt2 strcat(I1 -D " compilerOption2))

else
setq(opt2 " "1

) ; ** if **

if(compilerOption3 ! = "" then
setq(opt3 strcat(I1 -1 " compilerOption3))

else
setq(opt3 " ")

) ; ** if **

if(neq(mainMenuOption1 t) then
aetq(opt4 " "1

else
goto~nternalInfoOptions~)

) ; ** if **

if(neq(mainMenuOption2 t) then
setq(opt5 " ")

else
gotoNetlistAndSymsOptions (1

) ; ** if **

if(neq(mainMenuOption3 t) then
setq(opt6 '' ")

el se
gotoPrintVersionInf oOption()
setq(opt6 "-v")

) ; ** if **

systemCallToNlcCompiler(opt1 opt2 opt3 opt4 opt5 opt6)
) ; ** procedure - funcMenu0ptions **

This dialog box checks with the user that the file name is in the correct format.

procedure (f ileNameMessage 0
hiDisplayAppDBox(?name 'fileNameQtnBox

?dboxBanner "File Name Check"
?dboxText "1s the file name specified in the style

of the format given ?"
?dialogType hicQuestionDialog
?buttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - fileNameMessage **

N,4C - Nlc é.3 Cadence: Desian Flow Management in Cadence DFW 11

Figure 7.20: Form - "nlc - Netlist

This is the body of funcCompile in which
fnrm i s crea.t,ed and displayed (see figure 7.20).

?prompt
?def Value
?callback

) ; ** fileNameString **

m D

Compiler Main Menu" -
m
O

-
S

the nlc - Netlist Compiler Main Menu

' f ilename
"File name : "

3

"f ilename. cc" O

"f ileNameMessage 0 "

'compilerOpt1
"Alternative CPP comrnand:"

'compilerOpt2
"Define symbols for CPP:"

'compílerOpt3
"Additional search paths

for include files for CPP:"
) ; ** compile3String **

mainToggle = hiCreateToggleField(?name 'mainMenuOptions
?choices list (

' (togglel " Interna1 Inf ormation")
' (toggle2 "Netlists % Symbols Options")

N,&C - Nlc ¿3 Cadence: Design Flow Management in Cadence DFW 11

Figure 7.21: Dialog Box - "XNF to Verilog"

'(toggle3 "Print Version Infomation")
1 m D

?numSelect 3 = m
O

?prompt "Select menu option(s):" - O

?itemsPerRow 1 m

E

?value > (ni1 ni1 nil) O
6

) ; ** mainToggle ** n

E
a

hiCreateAppForm(?name 'mainMenuForm
?f ormTitle "nlc - Netlist Compiler Main Menu" n

?f ields list(fileNameString conpilelString 3 O

compile2String compile3String mainToggle)

?callback (funcMenuOpt ions)
?buttonLayout '(OKCancelDef

hlc\ Help "gotoNlcHelpOption()")
1

t

hiDi splay~orm(mainMenuForm)
) ; ** procedure - funccompile

7.3.5 Step 5a XNF to Verilog - funcXnfTo Verilog

funcXnfToVerilog is the first of the child design steps of the "Verilog" design step.
I t first asks the user if he/she wishes to translate XNF netlists to Verilog netlists (see
figure 7.21) and then produces a form for the user to input the file name (see figure 7.22).It
translates the XNF netlists to Verilog netlists via system calls to two procedures, namely
"xnf2edif" and "edif2verilog". These procedures require file names which are provided by
passing them to the Scripts and then calling the procedures.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Figure 7.22: Form - "XNF to Verilog - File Name Form"

Figure 7.23: Dialog Box - "XNF to Verilog Help"

e This function is called from the XNF t o Verilog - File N a m e F o r m when the user
clicks on the xnf Help button. I t displays a message box asking the user if they require
help(see figure 7.231, if they do, funcHelp is called which invokes a system call to the html
browser with the relevant "Help page" (see the Appendix).

procedure (f uncHelp 0
system("netscape html/verilogHelp.htd &")

) ; ** procedure - funcHelp **

' helpDBox
"XNF to Verilog Help"
"Do you require help ?"
"f uncHeLp 0 "
hicQuestionDialog
>YesNoCancel

) ; ** procedure - gotoXnfHelpOption **

0 funcGenerate V e d o g invokes two "C Shell Scripts" consecutively to call procedures
to, first convert XNF netlists to EDIF netlists, and then EDIF netlists to Verilog netlists.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

These two procedures must be invoked with file names which are passed to the "C Shell
Scripts" which then invoke the procedures.

procedure(funcGenerateVerilog(option)
setq(xnfFi1eName xnfToVerilogForm -> filename -> value)
setq(xnfDirName "xnf/")
p = outfile("xnfToEdif")
fprintf (p "#! /bin/csh -f \no')
fprintf (p "# Generate EDIF netlists from XNF netlists\n\n")
fprintf (p "set nameOfFile = %S \n" xnfFileName)
fprintf(p "set nameOfDir = %S \n\nl1 xnfDirName)
f printf (p " (xnf 2edif -v $nameOf Dir$nameOf File) \n\n")
fprintf (p "exit")
close(p)

system("xterm -e xnf ToEdif ")

setq(f ileNameLength strlen(xnf FileName))
setq(reqdLength f ileNameLength - 4)
setq(newFi1eLength fileNameLength * -1)
setq(íi1eNanieStern substring(xnfFi1eName newFileLength reqdLength))
setq(edifFi1eName strcat (fileNaineStem " .netU))
p = outfile("edifToVeri1og")
fprintf(p "t! /bin/csh -f \nU)
fprintf (p "# Generate Verilog netlists from EDIF netlists \n\n")
fprintf(p "set nameOfEdifFile = %S \n\nl' edifFileName)
f printf (p " (edif 2verilog $nameOf Edif File -f -nt -v) \n\n")
fprintf (p "exit")
close(p 1
system("xterm -e edifToVerilogU)

) ; ** procedure - funcGenerateVerilog **

0 This dialog box checks with the user that the file riame is in the correct format.

procedure(fileNameMessage()
hiDisplayAppDBox (?name ' f ileNameQtnBox

?dboxBanner "File Name Check"
?dboxText "1s the file name specified in the style

of the format given ?"
?dialogType hicQuestionDialog
PbuttonLayout >YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - fileNameMessage **

The procedure below creates the form to get the name of the XNF file to be
translated.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Figure 7.24: Dialog Box - "View Verilog"

Figure 7.25: Form - "View Verilog - File Name Form"

(see figure i . 2 6) , if they do;funcHelp is called which invokes a system cal1 to the html a
browser with the relevant "Help page" (see the Appendix).

3 O

Figure 7.26: Dialog Box - "View Verilog Help"

procedure (funcHelp 0
systern("$HTMLBROWSER html/verilogHelp.html & l b)

) ; ** procedure - funcHelp **

NA4C - Nlc & Cadence: Design Flow Management in Cadence DFW 11

hiDisplayAppDBox(?name ' helpDBox
?dboxBanner "View Verilog Help"
7dboxText "Do you require help ?"
?callback "funcHelp()"
?dialogType hicQuestionDialog
?buttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - gotoVerilogHelpOption **

e The procedure func View passes the name of the Verilog file to a SKILL command
view which brings up the file in a view window. A cal1 is then made, via the SKILL
command impHdlDisplay, which brings up the "Verilog In" form from Cadence. The user
can then fill this form out and it will allow him/her to view the schematic.

procedure (funcview (option) ,

setq(verilogFi1eName viewVerilogForm -> filename -> value)
view(verilogFi1eName)
imp~dl~isplay(impHdlOptionsForm)

) ; ** procedure - funcView +*

n

The procedure below creates the form to get the name of the Verilog file to be
translated.

a

n -

procedure(gotoViewVerilogForm~)
verilogstring = hiCreateStringField(?name ' f ilename

?prompt "Enter file name:"
?defValue "filename.netU
?callback "fileNameMessage()"

hiCreateAppForm(?name 'viewVerilogForm
?f ields list(veri1ogString)
?formTitle "View Verilog - File Name Form"
?callback ' (funcview)
?buttonLayout '(OKCancelDef

(verilog\ Help
1

?initialSize t
) ; ** hiCreateAppForm **

hi~isplayForm(viewVerilogForm)
) ; procedure - gotoViewVerilogForm **

0 The dialog bux is created here and calls the function goto View VerilogForm if the
user clicks on OK, otherwise the function finishes.

NAC - Nlc -& Cadence: Design Flow Management in Cadence DFW 11

procedure(funcViewVerilog(@key (stepInst nil))

'verilog2DBox
" View Verilog"
"Do you wish to view the Verilog netlists
and the schematic?"
"gotoViewVerilogForm0 "
hicQuestionDialog
'YesNoCancel

) ; procedure - funcViewVerilog **

7.3.7 Step 6 Xilinx Design Manager - funcXilinx

funcXzlinx first creates a dialog box to inquire of the user if he/she wishes to start
the Xilinx Design Manager(see figure 7.27). By clicking on Yes, it makes a simple systerri
cal1 to the tool.

Figure 7.27: Dialog Box - "Start Xilinx Design Manager"

e This procedure calls the Xilirlx Desigil Manager.

procedure(funcCallToXilinx()
system("XDM a ")

) ; ** procedure - funcCallToXilinx **

a The dialog box is created here and calls the function funcCallToXilinx if the user clicks on
OK, otherwise the function finishes.

procedure(funcXilinx(Qkey (stepInst ni1))

hiDisplayAppDBox(?name 'xilinxDBox
7dboxBanner "Start Xilinx Design Manager"
?dboxText "Do you wish to start Xilinx Design Manager ?"

?caPlback "funcCallToXilinx()"

NAC - Nlc fd Cadence: Design Flow Management in Cadence DFW 11

?dialogType hicQuestionDialog
?buttonLayout 'YesNoCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - funcxilinx **

Adding Buttons to the Flow Browser Window

Add a "System Help" button to the menu banner of the Flow Browser window
This is achieved by getting the identity (window number) of the window of flow browser
containing the flowchart, creat,ing a banner menu and assigning the function to call the
"System Help" pages to a menu item on a pull-dwn menu (see figure 7.28).

a This fi~nction is called from the System Help menu itern on the banner of the flow
browser window. It displays a message box asking the user if they require help, if they m

do, funcHelp is called which invokes a system call to the html browser with the relevant
m

"Help pages" (see the Appendix).
O :
-
0 .

procedure (funcHelp (1 E

S ystem ("$HTMLBROWSER html/manual . html &") O
E

) ; ** funcHelp ** n

E procedure (fmcSystemHelp 0 - a

hiDisplayAppDBox(?name ' helpDBox 2

n n

?dboxBanner "System Help" o

?dboxText "Do you require help on how to use this
3 O

system ?"
?callback "f uncMelp () "
?dialogType hicQuestionDialog
?buttonLaynut 'YesNnCancel

) ; ** hiDisplayAppDBox **
) ; ** procedure - funcSystemHelp **

a A button is created on the banner of the flow browser window in which the design
flow is contained. So create a banner button it is necessary to first create a pull-down
menu to attach to the button.

menuItem = hiCreateMenuItem(?name > helpItem
?itemText "System Help"
?callback "funcSystemHelpl'

hiCreateP~lldownMenu(~sysHelpMenu "System Help" ' (menuItem))

NAC - A;lc kY Cadence: Design Flow Management in Cadence DFW 11

Figure 7.28: Dialog Box - "System Help"

Add a "Reset System" button to the menu banner of the Flow Browser window
This is achieved by getting the identity (window number) of the window of flow browser p
containing the flowchart, creating a banner menu and assigning the necessary commands
to reset al1 the steps. A warning dialog box appears first to alert the user to the fact that
the whole system can only be reset after the al1 the steps have been set to "Done" (see
figure 7.29).. O E

e This function contains the SKILL commands to reset each step.
E
a

procedure CgotoResetSystem() n
2

dagNumToTool(1) dagGetObjectByPath(dagNumToTool(1) 3

"dummyNode" "dfDummyClass" "Create Directory.OW
O

"dfDefaultClass")) "Reset Step1#)
dagNumToTool(1) dagGetOb j ectByPath (dagNumToTool(1)
"dummyNodeU "dfDummyClass" "Edit File.0"
"dfDefa~ltClass~~)) "Reset Step")
dagNumToTool(1) dagGetOb j ectByPath(dagNumToTool(1)
"dummyNode" "df DmyClass" "C++ Debugger . O"
lldfDefaultClassll)) "Reset Step")
dagNumToTool(1) dagGetOb j ectByPath(dagNumToTool(1)
"dummyNodeU "dfDummyClass" "nlc Compiler.0"
"dfDefa~ltClass~~)) "Reset Step")
dagNumToTool(1) dagGetObjectByPath(dagNumToTool(1)
"dmyNode" "df DummyClass" "Verilog . O"
"dfDefaultClass")) "Reset Step"
dagNumToTool(2) dagGetObjectByPath(dagNumToTool(2)
"dummyNode" "dfDummyClass" "XNF to Verilog.0"
lldfDefaultClassll)) "Reset Step")
dagNumToTool(2) dagGetObjectByPath(dagNumToTool(2)
"dummyNode" lldfDumrnyClass" "View Verilog. O"
"dfDefaultClass")) "Reset Step")
dagNumToTool(1) dagGetObjectByPath(dagNumToTool(1)

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Figure 7.29: Dialog Box - "Reset System Warning"

' ("durmnyNodeM "dfUummyClass" "Xillnx Ueslgn Manager.0"
"dfDefaultClass")) "Reset Step")

m

) ; ** procedure - gotoResetSystem ** -
m
O :
- -
0

e The dialog box containing the warning which, if the user clikcs on OK, calls the 5
function goto ResetSystem. O

C

procedure (funcResetSystem()
hiDisplayAppDBox(?name . 'resetDBox

?dboxBanner "Reset System Warning"
?dboxText "You can only reset the system if ALL

the steps have been set to DONE"
?callback ltgotoResetSystem() "
?dialogType hicWarningDialog
?buttonLayout 'OKCancel

) ; ** hiDisplayAppDBox **

) ; ** procedure - funcReset3ystem **

e A button, Reset System, is created on the banner of the flow browser window in
which the design flow is contained. So create a banner button it is necessary to first create
a pull-down menu and the necessary menu item(s), ie Reset Al1 Steps, to attach to the
button. When the user clicks on this menu item, the function funcResetSystem is called.

menuItem2 = hiCreateMenuItem(?name 'resetItem
?itemText "Reset Al1 Steps"
?callback "funcResetSystem"

1

'JAC - Nlc E4 Cadence: Design Flow Management in Cadence DFW 11

hiCreatePulldownMenu('resetSystem "Reset" ' (menuItem2))

hiInsertBannerMenu(winId2 'resetsystem 1)

7.5 External Programs

From the NAC - Nlc E4 Cadence System, the following externa1 programs have been
used:

1.

2 .

3.

4.

5 .

6.

7.

E D I T O R - emacs, the GNU project Emacs

H T M L B R O W S E R - Nctscapc, the prefersed html browser
m

NLC - adapted version of nlc which includes a facility to generate XNF netlist as
well as WIR netlists O :

-
0

m

DEBUGGER - xdbx, the GNU debugging tool , E
O

xnf2edif - Xilinx program to translate XNF netlists to EDIF netlists
E
a

edif2verilog - Xilinx program to translate EDIF netlists to Verilog
n -

XDM - Xilinx Design Manager
3
O

To access the EDITOR, HTMLBROWSER and XDM simple "system" calls are made
from the source code, with the appropriate file where necessary.

To access NLC, a "C Shell Script" is created, called nlcRunOpt, which calls NLC with
the appropriate file name and options gathered from the user information inputted during
run-time. When using NLC, further C Shell Scripts are used to send information to the
stdout (i.e. standard output) , namely nlcStdOutNet1, nlcStdOutNet2 and nlcStdOutSym,
to output the WIR, XNF and Symbol files, respectively, to the standard output.

7b activate t,he two Xilinx translation programs, xnf2edif and edif2verilog, two C
Shell Scripts are used, called xnfToEdif and edifToVerilog. As with NLC, these scripts
cal1 the two programs with the appropriate file name and extensions gathered from the
user information inputted during run-time.

A list of al1 the programs and files associated with NAC can be seen in the README
file.

Chapter 8

Conclusions and Future Work

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

8.1 Conclusions

The Cadence DFW 11 has proven to fulfill many of the qualities and characteristics
necessary of a CAD framework, especially with its open architecture permitting efficient
and effective tool int,egrat.ion.

Tool integration is achieved primarily via encapsulation of the application using the
extension language, SKILL, and the Design Flow Management Svstem. The graphical
design flow system presents a clearly set out design flow which is easy to use, and aids the
designer in keeping track of the state of the design. The powerful language enables the
designer to create complex iiser-defined SKILL functions to utilize alongside the Cadence
built-in SKILL functions. This combination provides an environment for the integration
of tools which is straightforward to use and easy to understand.

The development of NAC - Nlc & Cadence has shown how it is possible to select
the tools that the user requires and incorporate them into one system which provides

m

a user-friendly environment and alleviates the iisw from having to access each tool on e -
its own. A straightforward approach has been used, which highlights the benefits of the i .

E
Design Flow Management System. The steps of the design flow were first created and 6
encapsulatcd, and then the functions, which each step called, were develuped a ~ i d added

n

to the steps to integrate the tools into the system. - E
a

One of the rnajor benefits of creating NAC is that it can be used as a general method-
ology in creating more systems that integrate tools of a different kind into the Cadence
environmment . 3

O

There are, however a few problems which have been incurred with certain tools,
namely the "xnf2edif' and "edif2verilogV programs. They have been encapsulated within
NAC, but problerns arise during run-time. Both are called from NAC so the integration is
correct, but the netlists that are generated from "xnf2edif' are not able to be translated
into verilog netlists when "edif2verilog" is run. This is the 1st version of NAC, and these
progmms a.re still alpha code which need to be further refined. Aside from this problcm,
the actual task of encapsulation the tools into the system has been achieved.

8.2 Future Work

Modularity is one of the key words that can be used to describe Cadence's Design
Flow Management System. The modular environment enables the design system to be
modified with out having to redesign the entire system. New requirements can be met,
and new tools can be added easily. This feature demonstrates the versatility and flexibility
of the Cadence DFW 11 and how it lends itself to facilitate tool interchangeability. With
this in mind, NAC can be further developed by adding new tools without any undue
difficulties.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

More options could be provided at each step, for example, with the text editor that
you use in the "Edit File" step, or with the debugger that is called form the "C++
Debugger" step, a choice could be made by the user, instead of the system calling the
"defaults" of the operating system.

To improve NAC in Ihe future, the EDIF interface could be improved and an nlc
library (header file) could be generated from an edif description. Other facilities could
be integrated, such as a tool to generate symbols in Cadence format. Further Cadence
tools could be integrated which, once the verilog netlists have been built, simulation with
verilog is carried out.

XAC - Nlc 63 Cadence: Design Flow Management in Cadence DFW 11

Online Help Pages

The Online Help Pages include the following:

1. System Help (Online Manual)

2. Information and Help on rllc

3. nlc Information Page

4. Help on XNF to Verilog and Viewing Verilog

These "IIelp Fages" llave been trausferred from their html equivalent. They are the online
help documentation that can be accessed from the NAC system design flow via the html
browser.

Al1 the figures that appear in the pages of the online help documentation, have been
removed, to save duplication, and instead references to where they are to be found in the
preceding chapters of this report appear.

NAC - Nlc & Cadence: Desim Flow Manazement in Cadence DFW 11

User Manual and Online System Help

Before You Start

About This Manual This manual is for al1 users of the Design Flow. It can be accessed
online from the design flow via the System Help button on the banner of the Flow Browser
window that it appears in. A more indepth guide to the "nlc Compiler" and "Verilog"
steps can be seen in the online help pages that follow, which are accessed from the design
flow via the nlc Help and verilog Help buttons that appear on the banner of al1 thc
associated forms.

Introducing the Design Flow m

= m
O

Overview This system is presented in a flowchart which guides you through the series
O

of steps. It enables you to, first create a new directory, then edit an existing C++ file
or create a new one. It goes o; to generate XNF netlists from a C++ program and con-
vert them to Verilog netlists. You can then view the Verilog netlists and the schematic, %
and finally cal1 the Xilinx Design Manager to further implement the logical design. k

n n

Getting Started / Working with the Flow Browser Window / Working with 8
the Flowchart Steps 3

O

- --

l. Getting Started
At the Command Interpreter Window (CIW) command line, type

load "despro j . il"

The Design Flow will appear in a Flow Browser Window (see figure 7.1)

2. Working with the Flow Browser Window

Banner Buttons The Flow Browser window has 4 buttons on the banner. Two are
automatically created with a Flow Browser window and two have been created for this
design flow.

1. System - the System pull-down menu is automatically created and contains 4 menu
items:

NAC - Nlc E Cadence: Design Flow Management in Cadence DFW 11

(a) Save Flowchart - encrypts and saves the information associated with the
displayed flowchart in the Flow Browser window as a cellview in the design
library. The cell name is the name of the displayed flowchart, and the view
name is fEowchartInst.

(b) Switch t o New Design - displays another flowchart instance you specify from
the same design library or from a different design library in the same Flow
Browser window. This command displays a form and the Library Browser to
help you select a new design. If you do not enter any information into this
form, the flowchart instance that is currently displayed is redisplayed.

(c) Red raw - redisplays the flowchart that is already displayed in the Flow
Browser window.

(d) Close Window - saves the displayed flowchart and closes the Flow Browser
window . ,, -

-
= m
O

Help - the Help button provides by the Cadence environment informs tlie user to
-

cal1 "openbook" , the Cadence online documentation.
0

m

E

O
E

Rese t - contains one menu item to Reset Al1 S t eps of the deslgn flow. When ;
you click on this, it first displays a warning dialog box to inform the user the only g
if al1 the steps have been set to Done (ie, by each step being correctly finished,
or Bypassed), can then whole system be reset. Click on Yes to reset al1 the steps
(including those in the subflowchart). Click on No or Cancel to stop the system
from being reset.

Sys tem Help - contains one menu item, System Help. When you click on this, it
first displays a question dialog box to ask you if you require help on this systcm.
Click on Yes if you do and this manual in its online form will appear via the html
browser.

Pop-up M e n u Each design step contains a Pop-up Menu which is activated by clicking
and holding the middle mouse buttoo over the design step. By default this menu has two
commands, R u n Step and Reset Step. Al1 design steps that are created ha,ve these two
commands associated with them. Some of the steps in this system have other buttons
added to the pop-up menu. Each of the six primary steps in the design flow have an
extra command called Bypass Step, and the "Verilog" design step also has a Push to
Subflowch,nrt command.

Run S t ep - runs the design step. Click and hold the middle mouse button in the
design step box and place the cursor over R u n Step in the pop-up menu to run the
design step.

84

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Reset Step - resets the design step. Click and hold the middle mouse button in the
design step box and place the cursor over Reset Step in the pop-up menu to reset
the design step.

Bypass Step - bypasses the design step, ie sets the step to Done without having
to first run the step. Click and hold the middle mouse button in the design step
box and place the cursor over Bypass Step in the pop-up menu to bypass the design
step.

Push to Subflowchart - displays a subflowchart referenced by the design step.
Click and hold the middle mouse button in the design step box and place th-e cursor
over Push to Subflowchart in the pop-up menu to display the subflowchart. This
action can only be invoked if the design step references a subflowchart

Design Step Commands
and Props. On a design step
arrow on the design step.

m

At the top of each design step there are two buttons, R u n
=

which has a subflowchart attached, there is a downward :
-
0

m

E

O
l. Run - runs the design step. Place the cursor over Run in the design step and click S

right with the mouse to run the design step. E
a

2. Props - displays the run-time properties of the design step. Place the cursor over
Props in the design step and click right with the mouse to run to display the run-time
properties. The properties are displayed in a text window.

3
O

3. Down Arrow - displays a subflowchart referenced by the design step. Place the
cursor over down arrow in the design step and click right with the mouse to display
the subflowchart.

Working with the Flowchart Steps

Step 1 - Create Directory When you run this step a question dialog box appears
askiilg yuu if yuu wish tu create a new directvry (see figure 7.3). Click o11 Yes if you do,
and a form will appear for you to input the name of the directory to be created (see
figure 7.4). Click on OK and the directory will be created and the design step is set to
Done.

Step 2 - Edit File When you run this step a question dialog box appears wking you if
you wish to edit or create a C++ file (see figure 7.5). Click on Yes if you do, and a form
will appear for you to enter the name of the file (see figure 7.6). Enter the name of the
file and click on OK and the file will appear in a text window with the text editor. The
design step sets itself to Done.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

Step 3 - C++ Debugger When you run this step a question dialog box appears asking
you if vou wish to debug a C++ file (see figure 7.7). Click on Yes if vou do! and a form
will appear for you to enter the name of the file (see figure 7.8). Enter the narne of the file
and click on OK and the debugger will be invoked. The design step sets itself to Done.

Step 4 - nlc Compiler When you run this step, the "nlc Netlist Compiler Main Menu"
appears (see figure 7.20). For online help on this step, click on the nlc Help button on the
banner of the form. The information on this step can be seen later in the Appendix.

Step 5 - Verilog By clicking on the Push to Subflowchart button on the pop-up menu,
or clicking on the down arrow, the "Verilog" subflowchart appears (see figure 7.2). The
inforrnatinn on this step can he seen later in the Appendix

m
D

=

Step Ea - XNF to Verilog When you run this step a question dialog box appears
asking you if you wish to generate Verilog netlists frorn XNF netlists (see figure 7.21). i
Click on Yes if you do, and a form will appear for you to enter the name of the file (see E

O
figure 7.22). Click on verilog Help for online help, or enter the name of the file and click
on OK and the XNF netlists are translated to Verilog netlists, via EDIF.

E
a

n

Step 5a - View veri1og When you run this step a question dialog box appears 1
asking you if you wish to view the Verilog netlists and the schematic (see figure 7.24). 2
Click on Yes if you do, and a form will appear for you to enter the name of the file (see
figure 7.25). Click on verilog Help for online help, or enter the name of the file and click
on OK and a view file with the netlists will appear and also the Cadence "Verilog In"
form.

Step 5 - Xilinx Design Manager When you run this step a question dialog box
appears asking you if you wish to start the Xilinx Design Manager (see figure 7.27). Click
on Yes if you do, and the Xilinx Design Manager will be invoked.

-- - - - -- -

NXC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

Information and Help on nlc

nlc is a C to Netiist Compiler. It translates a source file written in a subset of the
C (or C++) language into a netlist. This netlist is suitable as input for CAD tools that
accept the WIR netlist format from ViewLogic.

Inforrnation on nlc

The information available on nlc includes information on the author, the language,
how to build nlc, some examples of source input files and the limitations.

Help is available on the following compiler screens: ,,

= m
O

B
nlc - Netlist Compiler Main Menu / Interna1 Information / Netlist &

Symbols Options / WIR Directory Option / XNF Directory Option / Print E
O

Version Information / Viewing the Output Files E

E
a

nlc - NetList Compiler Main Menu

Please note that the following nlc compiler options may be used in any combination.

o File name:

- You must enter the name of the C (or C++) source file you wish to compile
(the format of the file name is given)

- The following message box will then appear:

- If you have specified the file name in the correct format,, dick on Ves, if not.,
then click on No and you can retype the file name.

N.B. If you want to view the version information only, then a file na.me is not,
necessary, so simply delete the file name format and click No on the message box
(and select the Print Version Information option).

o Alternative CPP command:(the default is "gcc -E -x c++ -D-NLC -")

- If you select this option you can specify another C++ compiler

e Define symbols for CPP:

NAC - Nlc t3 Cadence: Desigri Flow Management in Cadence DFW 11

- If you select this option, you can specify symbols

e Additional search paths for include files for CPP:

- If you select this option, you can enter the search path of ariy include fiies
riecessary for yvur prograrn (an example of one path has been given as the
default)

Select menu option(s):

- ,411, one, two or none of these options can be selected

Interna1 Information Options Form

If you select this option from the main menu, you can then select as as many or as
N

few of the options that appear on the form. -
=
m "

Netlist & Symbols Options Form
n

If you select this option from the main menu, you can then select as many or as few ;
a

of the options that appear on the form.
n

e Select option(s): 3
O

- You can select one, botli, or neither of these options

Select which directory netlists are written to:

- You can select one of these. If you select mf then you cannot select wir, and
vice versa.

0 Directory syrnbols are written to: (the default is already given)

- If you want to write to stdout, i-eplace the clefault witll a dash (-)

N.B. Ensure the name of the directory is three characters long, as in the default
shown.

o The extension for symbols: (the default is already given)

- If you do not want an extension, replace the default with a dash (-)

o Change the bitvector size: (the default is already given)

- This may be changed to the size you require

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

WIR Directory Option Form

e Directory WIR netlists are written to: (the default is already given)

- If you want to write to stdout, replace the default with a dash (-)

N.B. Ensure the narne of the directory is three characters long, as in the default
shown.

e The extension for netlists: (the default. is already given)

- If you do not want an extension, replace the default with a dash (-)

XNF Directory Option Form
m

-
= m
O

e Directory XNF netlists are written to: (the default is already given) : - O

m

- If you want to write to stdout, replace the default with a dash (-) O
C

N.B. Ensure the narne of the directory is three characters long, as in the default
-

shown. a

The extension for netlists: (the default is already given)
3
O

- If you do not want an extension, replace the default with a dash (-)

Version Information Message

If you select this option only, a file name is not necessary as it simply prints the
version of nlc.

nlc Compiler Output Options Form

If you wish to view the nlc compiler output files, then click on Yes and the following
screen will appear:

You can choose to view one, two, all, or none of the output files. N.B. You can only
view the netlist and symbol files if the directories have been specified in the Netlist &
Symbols 0ption.s Form, otherwise the following warning messages will appear:

N.B. If you have specified that the netlist and/or symbol directories are to be
written to the stdout, then then output can be viewed via the command tool window.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

nlc Information Page

XNF to Verilog / View Verilog

The following information is available:
e nlc Author Information
e nlc Version Information
e How to build nlc
e The nlc Language
e Examples of source files for nlc
e The nlc bitvector C++ library

Limitations of nlc

N.B. Al1 this information is from the author of nlc.

nlc Aut hor Inforrnat ion

Chmstian Iseli
Laboratoire de Systemes Logiques
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

Christian.Iseli@di.epfi. ch

nlc Version Inforrnation

NLC Version 0.8
Copyright (c) 1994, Christian Iseli
Laboratüire de Syste~nes Logiques
Ecole Polytechnique Federale de Lausanne, Switzerland
Al1 rights reserved

This program is free software; you can redistribute it and/or modify it under the
terms of either:

e a) the GNU General Public License as published by the Free Software Foundation;
either version 2 (if necessary, can be found at /home/asici/dcad/tmp/nlc-O.8/GPL
>, or

NAC - Nlc 67 Cadence: Design Flow Mananement in Cadence DFIV 11

e b) the "Artistic License" which comes with this Kit (if necessary, can be found at
/home/asicl/dcad/tmp/nlc-0.8/Artistic)

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See either the G N U General Public
License or the Artistic License for more details.

How to build nlc

Introduction The Spyder project involves the development of a reconfigurable
processor using FPGAs. Unlike most other reconfigurable processors, Spyder has a fixed
underlying structure. It is based on the VLIW processor architecture, with a single control
unit, shared multi-port registers and multiple reconfigurable execution units. The recon-
figurability comes mostly from the execution units, which are implemented using Xilinx e

E

FPGA chips. O

C1

She interest to describe circuitry in C lies, for me, in the fact of being able to simulate ;
it (or better said, to emulate it) as part of a larger C++ (or C) program. That's why this !
compiler came into being. .

The C to netlist compiler, or nlc for short, is a part of the Spyder project. I t is $
O

used to create the configuration of the execution units from a high-leve1 description of
their functionality in a subset of C++ (or C). This compiler knows about al1 the standard
arithmetic and logic operators of C, except divide (1). It understands FOR loops, IF THEN
ELSE constructs and functions. There is only one data type, which is called bitvector.
The default length of a bitvector is 16 bits, as Spyder is a 16-bit architecture, and nlc can
operate on single bits or on the whole bitvector.

Below you will find some hopefully useful information regarding this compiler. Si-y
it out, hack away and have fun. Feel free to contact me with any comment, question,
remark, suggestion, bug fix and improvement. The list nlc@lslsun.epJ.ch is also open for
any public discussion about this compiler.

Building nlc In order to build nlc, you will need:

a C++ compiler

0 the LEDA 3.1 library, available for example from:

- ftp://ftp.rnpi-sb.mpg.de/pub/LEDA

NAC - Nlc é3 Cadence: Design Flow hlanagement in Cadence DFW 11

- or some other archive site near you (ask archie ...) the libg++ library

the bison parser generator. I'm riot sure if yacc will work ...

Unpack the source code and try to type "make". If not, you might have to tweak the
Makefile a bit ...

I have built it here on a SPARCstation running Solaris 2.3, using gcc 2.6.3. I t compiles
cleanly, even with the -Wall option of gcc turned on.

You can try out the compiler by running "make check". This will check the current
output with some reference output. Some minor diffcrcnccs rnight bc normal ...

The n k language First a word about the intent of this language. The philoso-
phy adopted is that everything happens in parallel. Al1 l o o p are expanded. I t is assumed E:

that there is some externa1 control device that calls the top leve1 routine once every clock $
cycle. The static bitvectors (registers) are written once per clock cycle, at the end of the 1 -

cycle.
0

m

E

O
The only data type is bitvector, so everything is a bitvector. They are similar to an

array of bits and also to int. By default, a bitvector contains 16 bits, but bitvectors of B
-

specific lerigth can be created by specifying the size explicitly to the constructor. You can
l

create one-dimensional arrays of bitvectors (see example below).

Here is a small example:
3 O

1 f o o (b i t v e c t o r i n (4 1 , b i t v e c t o r &out (4))
2 €
3 b i t v e c t o r a , b(81, c (2) [lo] ;
4 s t a t i c b i t v e c t o r r ;
5 a = 8 ;
6 a[O] =b[3] -a[3];

7 a = a e b ;
8 >

Line 1 declares a function (a module) with one 4-bit input vector in and one 4-bit
output vector out. Line 3 declares a to be a bitvector of 16 bits, b a bitvector of 8 bits
and c an array of bitvectors of 2 bits. Line 4 declares a static bitvector (a hardware
register) that will keep its value across calls to the function. Line 5 assigns 8 to the whole
a bitvector. Line 6 assigns the result of the exclusive or of bits b[3] and a[3] to the bit a[O]
and line 7 performs the bitwise exclusive or of a and b.

As can be seen from the above example, there are some slight "extensions" from
standard C++ code.. . in(4) is not allowed as a parameter specifier in C++, and c(2) [lo]
is not allowed either. That 'S why there are some #ifdefs in the example files.. .

NAC - Nlc tY Cadence: Design Flow Management in Cadence DFW 11

There are two control flow constructs: FOR loops and IF THEN ELSE. FOR loop
bounds must be known at compile time.

Al1 functions have a void return type (i.e., they cannot returri anything).

The library that the compiler is to use to generate the netlist must be described in
the source file (or included by the source file). The general format of the description is:

asrn OP (
"OP NAME" [< ("SYMBOL ATTRIBUTE")> 1,
("INPUT-1" [< ("PIN ATTRIBVTE")> 1, "INPUT-2", . . . ,

811NPm-N11) >

("OUTPUT-1" [< ("PIN ATTRIBUTE") >], "OUTPUT-2", . . . ,
IIOUTPUT-N")

>
m

- -- where OP is one of " \% 1 A " - -- < ?stat icH: +:the addition. For the time B
being, thc subtraction is implemented with an addition where the second entry is com-
plemented and the carry bit is set to 1.

-
-
0

m

E

& :
asrn

I
asrn

+ ("name", ("A inputs" , "B input311, "Carry i n ") ,
(IICarry out" , "Sum"))

l o g i c a l and.
& ("name", (" A inputs" , "B inputs") , ("Outputs'"))
: i o g i c a l o r .

I I "name", ("A inputs" , "B i npu t s ") , ("Outputs"))
- : l o g i c a l exclusive o r (xor) .

asrn A ("name", ("A inputs" , "B i npu t s ") , ("Outputs"))
": l o g i c a l no t .

asrn " C "name", (" Inputs") , ("Outputs"))
=: assignment (bu f fe r) .

asrn = ("name", (" Inputs") , ("Outputs"))
-- . -- . equal i ty comparison.

asrn == ("name", ("A inputs" , "B inputs") , ("Output"))
<: a l e s s than b comparison. This i s always an unsigned

comparison. Optionally, the second output i s t he g rea t e r than output .
asrn < ("name" , ("A inputs" , "B inputs") , ("LT output" [,

"GT output"])).
? : mult iplexor . I f s e l e c t == O then output = input-0,

e l s e output = input-1
asrn ? ("name" , ("Se lec t" , "O inputs" , "1 inputs") , ("Outputs"))

s t a t i c : a r e g i s t e r . Used t o implement s t a t i c b i tvec to r s .
asrn s t a t i c ("name" , ("Data" , "Clock" , "Clk Enable") , ("Outputs"))

A - The \%, 1 , , , =, ?and static operators are mandatory (if they are used by the
source code being compiled). The others will be generated by the compiler using basic

NAC - Nlc B Cadence: Design Flow Management in Cadence DFW 11

gates, as needed. You can specify more than one implementation for an operator, the
compiler will use what it think is the best match.

The easiest thing is to take a look at the tests/x4000.h file, which is the description
of the Xilinx XC4000 device.

The PINORDER and PINTYPE attributes are generated automatically by the
compiler. Any other attribute must be specified in the operator description.

Examples of source files for nlc

Here are some examples of source files that will give you an idea of what nlc expects
as its input file:
Example 1
testfor. cc,v 1.2 1994/11/04 13:00:51 chris Exp
This is an example of source code for nlc. Compile it by typing nlt testfor.in and then
Autogen then you can go in the PV/tests directory and try to simulate the resulting
netlist using ViewSim. -4 sample command file is provided for the simulator.

#if def --NLC--
#include "x4000.h"
#endif

testfor(bitvect0r in, bitvector &out)

bitvector i;

out [O] = in [15] in [l] ;
for (i=l;i<=14;i++) i

outCi1 = in[i-11 * in[i+ll ;

>
out El51 = in [l4] in [O] ;

Example 2
testinc. cc,v l . 1 1994/11/22 08:22:59 chris Exp
Test increments.

#if def --NLC--
#include "x4000.h"
#endif

testinc (bitvector cmd(l), bitvector
static bitvector old;

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

i f (cmd [O])
o l d = cur++;

out = o l d ;
1

Example 3
testop. cc,v 1.2 1994/11/04 13:00:55 chr is Exp

i f def --NLC--
#include "x4000.h"
#endif

t e s t o p (b i t v e c t o r i n , b i t v e c t o r

f o r (i = l ; i i++) {
out C i J = in[i-11 A i n [i + i] ;

{
j = i n + i ;
k = i - j ;
ou t = i * j ;
ou t = i
o u t = i I j ;
ou t = i A j ;

ou t = i &

out = i I I j ;
out = j
ou t = j >> 3 ;
out = -k;
out = "k;
j = !k-

out [O] = i
out [O] = k

i f (i
) e l s e

ou t = j ;

i f (i
ou t = i + j

>

Example 4
teststatic. cc,v 1.2 l994/l O/25 l5:4O:33 chris Exp
This is an example of source code for nlc.

NAC - Nlc & Cadence: Design Flow Management in Cadence DFVV 11

#if def --NLC--
#include "x4000.h"
#endif

void
#if def --NLC--
teststatic(bitvect0r

bitvector
bitvector

#else
teststatic(bitvector

bitvector
bitvector

ina, bitvector inb,
incmd(21),
&outa, bitvector &outb)

ina, bitvector inb,
incmd ,
&outa, bitvector

static bitvector temp(2) ;

outa[O] = tempC01 inaC11 ;
for (i=i;i i++) {

outa[i] = ina[i-11 inaCi+ll ;

outaCi51 = inaCi41 tempCil ;

temp[O] = inaC151;
temp [i] = inaCO1 ;

3

The Bitvector C++ Library
A partial implementation of the bitvector class for C++ is listed below, and also a

test framework program:

bitvector.cc,v 1.1 1994/12/15 13:07:42 chris Exp
Bitvector class.

/ /
// onebit stuff
//

void
Add(onebit &x, onebit &y, onebit &r, onebit &c)
i.
if (x .value == X I I y .value == X I I c. value == X) (
r.value = X;
c.vahe = X;

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

return ;
3
int sum = (x .value - L) + (y. value - L) + (c .value - L) ;
r.value = (sum
c. value = (sum

onebit
0nebit::operator
<

switch (value)

case L:
r.value = H;
break;

case H:
r.value = L ;
break;

def ault :
r.value = X;

>
3

" 0 return r

// private methods
//

void
bitvector::adjust-size(size-t S)

<
if (S > len) .C
if (fixed) C
cerr << "ERROR: trying to grow a vector of fixed length
(" << len << ")\n" ;

return;
1

#if def TRACE
cerr << "Growing the vector from " << len <<" to "

<< S << "\nl';
#endif

size-t olen = len;
onebit *obit = bit;
len = S;

bit = new onebit Clenl ;
for (size-t j = O; j < olen; j++) (
bitCj1 = obit Cjl ;

NAC - N l c & Cadence: Design Flow Management in Cadence DFW 11

cerr << "WARNING: growing a reference vector.\nU;
ref = false;

1 else
delete [] obit ;

if (def)
while (j

/ /
// element extraction
/ /

bitvector
bitvector;:operator [l (size-t i) return r
.c
if (i >= len) (
if (fixed) (
cerr << "WARNING: accessing past the defined length
(" << len << ") of the vector.\nU;
r. adjust-size(1) ;
r.bit[O] = 0;
r.def = true;
r.fixed = true;
return;

1 else
adjust-size(i + 1);

1
r.len = 1;
r.def = true;
r . f ixed = true ;
r.ref = true;
r.bit = bit + i;

/ /
/ / assignments
/ /

bitvectork
bitvector::operator = (bitvector &v)
.c
if (v.len > len && !f ixed) <

NAC - Nlc 63' Cadence: Design Flow Management in Cadence DFW 11

size-t i = v.len;
while (i > len)
if (v.bit[--il != 0) {

adjust-size(i + 1) ;
break;

3

for (size-t i = O; i < len && i < v.len; i++)
bit[i] = v.bit[il;

for (; i < len; i++)
bit[il = O;

def = true;
return *this;

bitvectork
bitvector: :operator = (int i)

if (!fixed) (
size-t max = 0 ;

long temp = i;
while (temp != 0) (
temp = ((unsigned) temp) >> 1;
rnax += 1;

3
if (max == 0)

max = 1;
adjust-size(max) ;

3
for (size-t j = O; j < len; j++) (

bit [j] = (i & 1);
i = ((unsigned) i) >> 1;

1
def = true;
return *this ;

3

bitvectora
bitvector: : operator = (char *S)
C
onebit x, zero(O), one(1) ;

size-t max = strlen(s);
if (!fixed)
adjust-size (max) ;

for (size-t j = O, i = rnax - 1; j < len; j++, i--1 (

NAC - Nlc t3 Cadence: Design Flow Managernent in Cadence DFW 11

i f (j < max)
swi tch(s [i]) (
case ' O ' :

bi tCj1 = zero ;
break;

case '1 ' :
bi tCj] = one;
break;

de fau l t :
b i t [j] = x;

3
e l s e

b i t [j] = zero ;
3
def = t r u e ;
r e t u r n * t h i s ;

/ /
// ar i thmet ic operat ions
/ /

b i t v e c t o r

operator + (b i tvec tor &x, b i tvec to r &y) r e tu rn r

size-t rnax = (x . l en > y. len) ? x . l en : y . l en ;
r . adjust-size(max + 1) ;
onebit carry(0) , zero (0) ;
for (s i ze - t i = O; i < max; i++) 1

i f (i >= x. len)
Add(zero , y . b i t [i] , r . b i t [i] , carry) ;

e l s e i f (i >= y . l en)
Add(x. b i t Cil , zero , r . b i t [il , carry) ;

e l s e
Add(x.bit[i], y.bit[i], r.bi~[i], carry);

r . b i t [max] = car ry ;
3

b i tvec to r
operator + (b i tvec tor &x, long y) r e t u r n r

<
s i ze - t max = x . l en > LONG-BIT ? x . l en : LONG-BIT;
r .adjust-size(max) ;
onebit carry(01, zero(O), one(1);

NAC - Nlc @ Cadence: Design Flow Management in Cadence DFW 11

f o r (s i ze - t i = O ; i < x . l e n ; i++) (
i f (y & 1)

~ d d (x . b i t [i] , one , r . b i t [i] , carry) ;
e l s e

Add(x. b i t [i] , zero, r . b i t [i] , carry) ;
y >>= 1 ;

3
f o r (; i cmax; i++) (

i f (y % 1)
Add (zero, one , r .bit [i] , carry) ;

el s e

Add(zero, zero, r . b i t [i] , c a r ry) ;
y >>= 1;

b i tvec to r
operator + (long x , b i tvec to r &y) r e t u r n r (operator+(y , x))
{
3

b i tvec to r
operator - (b i tvec tor &x,. b i tvec to r &y) r e t u r n r
.t

s i z e - t max = (x . len > y. len) ? x . l e n : y. len ;
r .adjust-size(max + 1) ;
onebit carry(1) , zero (0) , one (1) ;
f o r (s ize- t i = O ; i < max; i++) {

i f (i >= x. len)
Add(zero, "y. b i t [il , r . b i t [il , carry) ;

e l s e i f (i >= y. len)
Add(x. b i t [i] , one , r . b i t [i] , carry) ;

e l s e (
Add(x. b i t [i] , "y. b i t [i] , r . b i t [i] , carry) ;

1
1
r . b i t [max] = car ry ;

3

b i tvec to r
operator - (b i tvec to r &x, long y) r e t u r n r (opera tor+(x , -y))
.t
>
bi tvec tor

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

o p e r a t o r - (long x , b i t v e c t o r &y) r e t u r n r
1

s i z e - t max = y . l e n > LONG-BIT ? y . l e n : LONG-BIT;
r . a d j u s t - s i z e (max) ;
oneb i t c a r r y (l) , zero(O), one(1) ;
f o r (s i z e - t i = O ; i < y . l e n ; i++) 1

i f (x % 1)
Add(one, "y . b i t [i] , r . b i t [il , c a r r y) ;

e l s e
Add(zero , "y. b i t [i] , r . b i t [i] , c a r r y) ;

x >>= 1;
3
f o r (; i < max; i++) 1

i f (x 8r 1)

Add(one , one , r . b i t [i] , c a r r y) ;
e l s e

Add (ze ro , one , r .bit [i] , c a r r y) ;
x >>= 1 ;

3
1

b i t v e c t o r
o p e r a t o r * (b i t v e c t o r &x, b i t v e c t o r &y) r e t u r n r

b i t v e c t o r
o p e r a t o r t (b i t v e c t o r &x, long y) r e t u r n r
<

r = ((long) x) * y ;
1

b i t v e c t o r
o p e r a t o r * (long x , b i t v e c t o r &y) r e t u r n r

r = x * ((long) y) ;
1

/ /
// increments and decrements
/ /

b i t v e c t o r t
b i t v e c t o r : :opera to r ++ ()

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

-C
onebit carry(i) , zero(0) ;
for (size-t i = O; i < len; i++)
Add(bit [i] , zero, bit [i] , carry) ;

if (! f ixed && carry) {
adjust-size(1en + 1) ;
bit [i] = carry;

return *this;
>
bitvector
bitvector: :operator ++ (int i) return r(*this)
C
++(*this) ;

>
bitvector&
bitvector : : operator -- 0
t
onebit carry(0) , one(1) ;
for (size-t i = O; i < len; i++)
Add(bit [i] , one, bit [il , carry) ;

return *this;
3

bitvector
bitvector::operator -- (int i) return r(*this)

/ /
/ / comparisons
/ /

bool
operator == (bitvector &x, bitvector &&y)
t
size-+ max = (x.len > y.len) ? x.lon : y.len;
bool res = true;
for (size-t i = O; i < max; i++) (
if (i >= x. len)
res = res && y. bit Ci] == 0;

else if (i >= y.len)

NAC - Nlc 63 Cadence: Design Flow Management in Cadence DFW 11

r e s = r e s && x . b i t [i] == 0;
e l s e

r e s = r e s && x , b i t [i] == y. b i t [i] ;
3
r e t u r n r e s ;

bool
operator == (b i tvec tor &x, long y)

bool res = true;
f o r (s i ze - t i = O; i < x . l en ; i++) (

r e s = r e s && x . b i t [i l == (y & 1) ;
y >>= 1 ;

3
i f (y ! = O && ! (y == -1 && x . l e n > O && x . b i t

[x.len - 11 ?= 1))

r e s = f a l s e ;
r e t u r n r e s ;

bool
operator < (b i tvec tor &x, b i tvec to r &y)

C
s i ze - t max = (x . len > y. len) ? x . l e n : y. len ;
f o r (s i ze - t i = O , j = max - 1; i < max; i++, j--1 {

i f (j >= x. len) C
i f (y . b i t [j l == 1)

r e tu rn t r u e ;
3 e l s e i f (j >= y . l en) (

i f (x .b i t [j] != 0)
r e t u r n f a l s e ;

3 e l s e C
i f (x .b i t [j] == 1 && y . b i t [j l == 0)

r e t u r n f a l s e ;
e l s e i f (x.bitCj1 == O && y . b i t [j l == 1)

r e t u r n t r u e ;
3

>
r e t u r n f a l s e ;

>
bool
operator < (b i tvec tor &x, long y)

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

if ((((unsigned long) y) >> x. len) ! = 0)
return true;

for (size-t i = O, j = x.len - 1; i < x.len; i++, j--1
i
bool b = (((unsigned long) y) >> j) & 1;
if (x.bit [j] == 1 && ! b)
return false;

else if (x .bit [jl == O &% b)
return true;

return f alse ;
>
bool
operator < (long x, bitvector &y)
i

if ((((unsigned long) x) >> ~.len) != 0)

return false ;
for (size-t i = O, j = y.len - 1; i < y.len; i++, j--1

bool b = (((unsigned long) x) >> j & 1;
if (b %% y.bit [j] == 0)
return f alse ;

else if (!b %% y.bit[j] == 1)
return true;

1
return f alse ;

1

/ /
/ / converters
/ /

bitvector::operator const longo
l.
long r = 0;

for (size-t i = O; i < len && i < LONG-BIT; i++)
if (bit [i]
r l = (1 << 1);

return r;

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

ostreamk
operator << (ostream& S, const bitvectork x)

if (s.opfx0)
x.printon(s);

return S;

void
bitvector::printon(ostream& S) const
// FIXME: Does not respect s.width() !
'L

register streambuf* sb = s.rdbuf 0 ;
int i;

for (i = len -1; i > = O; i--1
C
sb->sputc (bit [i] . GetStateO) ;

test.cc,v 1.1 1994/12/15 13:07:47 chris Exp
Test framework.

int
main(int argc , char *argv [])
i
bitvector a(lO), b(5);
bitvector c, d;
long 1;

a = O ; b = 9 ;
cout << "a = O (" << a << "); b = 9 (" << b <<")\nl';
a = 9 ; b = 0 ;
cout << "a = 9 (" << a << ") ; b = O (Ir << b <<")\nl';
c = a;
1 = (long) c;
cout << I1c = a [= 91 (" << c << ") ; 1 = (long) c = " << 1 << "\n";
1 += 8;
c = l ; d = l ;
cout << "c = 1 [=17] (" << c << ") ; d = 1 [=17] (" << d << ") \nU;

.
= A A A A 11

n n n (0Ui = n n ~ n = - A = W (0 r \ n
W c D r c D n W W ' W W V i r - ~ W - -

M 1 I n
+ + + + O (0 1 I -4 I G + + w e + + + + A * W W I O W V i + A
(0 0 P I - - I W U I + W W + ~ - r
v v r - 4 0 0 w W a + + W w 0 N C D - 4 d
/ / w - a s S u / / - - / / m 9 P --

A

- - = ". = s. ". ". ".
?+? "= 9z

e - -. .. -. -. -. n +
-4
u .. .

O Unlversldsd de Lar Palmar de Gran Canaria Bibliotem Digital, 2003

NAC - Nlc & Cadence: Design Flow Management in Cadence DFW 11

cout << "a (" << a << ") == 9\nI1;
if (a != 9)

cout << "a (" << a << ") != 9\n1';
if (10 < a)

cout << "10 < a (" << a << ") \ n U ;
if (9 < a)

cout << "9 < a (" << a << ")\nW4
i f (8 < a)
" C O U ~ << "8 < a (" << a << ") \ n N ;

3

Limitations of nlc
Some things like multiply and divide are unimplemented yet. The mechanism for the

library description is not general enough yet.
N

The compiler should handle more cases of undefined operators and more cases of g
O

addition and comparison operators. For example, it can only handle add operators with ; -

carry in and carry out, however, most hard macros don? have carry in and/or carry out.
O

The generated netlist could be better optimized. E
n

The bitvector C++ class isn't complete yet ...
a E

The documentation is being written.. . 2

n

NAC - Nlc éY Cadence: Design Flow Management in Cadence DFW 11

Help on XNF to Verilog and Viewing Verilog

XNF to Verilog / View Verilog

XNF to Verilog

If you want to generate Verilog netlists from XNF netlists, then at the fol16wing
screen:

...y ou must replace the example of the format with the name of your file. N.13. You
must have the file extension .xnf. m

D

-
=

To check you have the correct format of file name, the following message box appears: -
-
0'

If you have used the correct format, click on Yes, if not, then click on No and you ;
can change the file name as required. O

E

Two xterm windows will appear which contain calls to two procedures (xnf2edzf and
-

edif2verilog), to generate the Verilog netlists. a

View Verilog 3 O

If you want to view the Verilog netlists and the schematic, then a t the following
screen:

...y ou must replace the exaniple of the format with the name of your file. N.B. You
must have the file extension .net.

To check you have the correct format of file name, a message box appears, similar to
the one above.

If you have used the correct format, click on Yes, if not, then click on No and you
can change the file name as required.

A window will appear listing the Verilog netlists, and a built-in Cadence form entitled
Verilog In. You must fill in the appropriate information and it will bring up the schematic
view in a graphics window.

Bibliography

[l] Adidev Jain Daniel C. Liebisch. Jessi common framework design management - the
means to configuration and execution of the design process. Jessi Common Framework,
pages 553 - 557, 1992.

[2] Cadence Online Documentation. SKILL Language User Guide. Cadence Online Li- 8. -
brary, 9401 edition. m

O

!
-
0

[3] Pieter 'van der Wolf Olav ten Bosch, Peter Bingley. Design flow management in the
nelsis ic design system. November 1992. O E

n

[4] Tddd J . Scallan. Cad framework initiative - a user perspective. CAD Framework g
Initiative, (40.2):672 - 675, 1992. 29th ACMIIEEE Design Automation Conference.

n

[5] A. Richard Newton Rick L. Spickelmeir Timothy J. Barnes, David Harrison. Electronic $
CAD Frameworks. Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht,
The Netherlands, 1992.

[6] Pieter van der Wolf. CAD Frameworks - Principies and Architecture. Kluwer Academic
Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands, 1994.

NAC - Nlc & Cadence

User Manual

Contents

1 Getting Started

2 Working with the Flow Browser Window 5 p -
-
m

. 2.1 Banner Buttons 5 e -
-
0

. 2.2 Pop-üp Menu 7
O . 2.3 Design Step Cornrnands 8 5

3 Working with the Flowchart Steps

. 3.1 Step 1 - Create Directory

. 3.2 Step 2 - Edit File

. 3.3 Step 3 - C++ Debugger 11

. 3.4 Step 4 - nlc Compiler 12

. 3.5 Step 5 - Verilog 19

. 3.5.1 Step 5a - XNF to Verilog 20

. 3.5.2 Step 5b - View Verilog 21

. 3.6 Step 6 - Xilinx Design Manager 22

4 Exiting the System 2 3

Before You Start

About This Manual This manual is for al1 users of the Design Flow. It can be accessed
online from NAC via the System Help button on the banner of the Flow Browser window
that it appears in.

Int roducing t he Design Flow

Overview The NAC - Nlc &' Cadence system is presented in a flowchart which guides
you through the series of steps. It enables you to, first create a new directory, then edit an
existing C++ file or create a. new one. l t goes on to generate XNF netlists from a C++
program and convert them to Verilog netlists. You can then view the Verilog netlists and 8 -
the schematic, and finally cal1 the Xilinx Design Editor to further implement the logical d : design. - O

m

E

O
E

The Steps in the Manual See figure 0.1 for a flowchart of the steps in the manual. d

NAC Gser Manual

Getting Started - Chapter I 1
Working with the Flow Browser Window - Chapter 2 c

Working with the Flowchart Steps - Chapter 3

Step 1 - Create Directory c
Step 2 - Edit File c

Step 3 - C++ Debugger r
Step 4 - nlc Compiler c

/ Step 5b - View Verilog

r I

1 Step 6 - Xilinx Derign Manager 1

Step 5 - Verilog

Exiting the System - Chapter 4

Stxp 5a - XNF tu Verilog 1
1 I

Figure 0.1: Flowchart of the Steps in this Manual

Chapter 1

Getting Started

At the Command Interpreter Window (CIW) command line, type

load "desproj.ilU

The NAC system will appear in a Flow Browser Window as in figure 1.1.

NAC User Manual

Figure 1.1: The NAC system flowchart in a Flow Browser window

Chapter 2

Working with the Flow Browser
Window

2.1 Banner Buttons
E

The Flow Browser window has 4 buttons on the banner. Two are automatically
created with a Flow Browser window and two have been created for this design flow (see
figure 1.1). 3

O

(1) System - the System pull-down menu is automatically created and contains 4 menu
items:

(i) Save Flowchart - encrypts and saves the information associated with the dis-
played flowchart in the Flow Browser window as a cellview in the design library. The cell
name is the name of the displayed flowchart, and the view name is fEowchartInst.

(ii) Switch to New Design - displays another flowchart instance you specify
from the same design library or from a different design library in the same Flow Browser
window. This command displays a form and the Library Browser to help you select a new
design. If you do not enter any information into this form, the flowchart instance that is
curently displayed is redisplayed.

(iii) Redraw - redisplays the Aowchart that is already displayed in the Flow
Browser window.

NL4C User Manual

(iv) Close Window - saves the displayed flowchart and closes the Flow Browser
window .

(2) Help - the Help button provides by the Cadence environment informs the user to
cal1 "openbook" , the Cadence online documentation.

(3) Reset - contains one menu item to Reset All S teps of the design flow. When you
click on this, it first displays a warning dialog box to inform the user the only if al1 the
steps have been set to Done (ie, by each step being correctly finished, or Bypassed), can
then whole system be reset.

Click on Yes to reset al1 the steps (including those in the subflowchart). Click on No or
Cancel to stop the systern from being reset.

(4) Sys tem Help - contains one menu item, System Help. When you click on this, it
first displays a question dialog box to ask you if you require help on this system.

Click on Yes if you do and this manual in its online form will appear via the html
browser.

X.4C User Manual

2.2 Pop-Up Menu

Each design step contains a Pop-Up Menu which is activated by clicking and holding
the middle mouse buttor, over the design step. By default this menu has two commands,
Run Step and Reset Step. Al1 design steps that are created have these two commands asso-
ciated with them. Some of the steps in this system have other buttons added to the pop-up
menu. Each of the six primary steps in the design flow have an extra conimand called
Bypass Step, and the "Verilog" design step also has a Push to Subjlowchart cornmand.

1 Push to Subflowchart

Bypass Step

Figure 2.1: Pop-Up Menu on a Design Step

(1) Run Step - runs the design step. Click and hold the middle mouse button in the
design step box and place the cursor over Run Step in the pop-up menu to run the design
step.

(2) Reset Step - resets the design step. Click and hold the middle mouse button in
the design step box and place the cursor over Reset Step in the pop-up menu to reset the
design step.

(3) Push to Subflowchart - displays a subflowchart referenced by the design step.
Click and hold the rniddle mouse button in the design step box and place the cursor over
Push to Subflowchart in the pop-up menu to display the subflowchart. This action can
only be invoked if the design step references a subflowchart.

(4) Bypass Step - bypasses the design step, ie sets the step to Done without having
to first run the step. Click and hold the middle mouse button in the design step box and
place the cursor over Bypass Step in the pop-up menu to bypass the design step.

NAC User Manual

2.3 Design Step Commands

At the top of each design step there are two but,tons, Run and Props . On a design
step which has a subflowchart attached, there is a downward arrow on the design step.

(1) Run - runs the design step. Place the cursor over Run in the design step and click
right with the mouse to run the design step (see figure 1.1).

(2) Props - displays the run-time properties of the design step. Place the cursor ovet
Props in the design step and click right with the mouse to run to display the run-time
properties. The properties are displayed in a text window (see figure 1.1).

m

(3) Down Arrow - displays a subflowchart referenced by the design step. Place the
cursor over down arrow in the design step and click right with the mouse to display the j
subflowchart (see figure 1.1). E

O
E

Chapter 3

Working with the Flowchart Steps

3.1 Step 1 - Create Directory
-
m
O :
-
0

m

~ h & you run this step a question dialog box appears acking you if you wish to
create a new directory . C1

E
a

Click on Yes if you do, and a form will appear for you to input the name of the
directory to be created.

Enter the name of the new directory and click on OK. The directory will be created
and the design step is set to Done.

N-4C User Manual

3.2 Step 2 - Edit File

When you run this step a question dialog box appears asking you if you
or create a C++ file.

wish to edit

Click on Yes if you do, and a form will appear for you to enter the name of the fil&
Enter the name of the file and click on OK. The file will appear in a text window with
the text editor. The design step sets itself to Done.

NAC User Ma,nual

3.3 Step 3 - C++ Debugger

When you run this step a question dialog box appears asking you if you wish to
debug a C++ file.

Click on Yes if you do, a~id a for~rl will appear for you to enter the name of the file.

When you enter the name of the file a dialog box appears to check you have given a file
name in the specified format.

If you have, then click on Yes, if not then click on No and you will be returned to
the file name input line. When you have entered a file name in the correct format, click
on OK and the debugger will be invoked. The design step sets itself to Done.

N,4C User Manual

3.4 Step 4 - nlc Compiler

When you run this step, t.he "nlc Netlist Compiler Main hlenu" appears.

For online help on this step, click on the nlc Help button on the banner of the form
and the following dialog box appears

Please note that the following nlc compiler options may be used in any combination.

File name:

- You must enter the name of the C (or C++) soizrce file you wish to compile
(the format of the file name is given)

- The following message box will then appear:

- If you have specified the file name in the correct format, click on Yes, if not,
then click on No and you can retype the file name.

NAC User Manual

N.B. If you want to view the version information only, then a file name is not
necessary, so simply delete the file name format and click No on the message box
(and select the Print k r s i o n Inforrnutior~ oy lion) .

m

e Alternat ive CPP command:(the default is "gcc -E -x c++ -D-NLC -") = m
O :

- If you select this option you can specify another C++ compiler -
0

m

E

Define symbols for CPP: O E
n

E - If you select this option, you can specify symbols a

2

o Additional search paths for include files for CPP: n

- If you select this option, you can enter the search path of any include files
necessary for your program

e Select m e n u option(s):

- All, one, two or none of these options can be selected

NAC User Manual

Interna1 Information Options Form

-
m

If you select this option from the main menu, you can then selcct as as many or as $ -
few of the options that appear on the form.

-
0

m

E

NAC User Manual

Netlist & Syrnbols Options Form

If you select this option from the main menu, you can then select as many or as few
of the options that appear on the form.

e Select option(s):

- You can select one, both, or neither of these options

e Select which directory netlists are written to:

- You can select one of these. If you select xnf then you cannot select wir, and
vice versa.

e Directory symbols are written to: (the default is already given)

- If you want to write to stdout, replace the default with a dash (-)

N.B. Ensure the name of the directory is three characters long, as in the default
shown.

e The extension for symbols: (the default is already given)

- If you do not want an extension, replace the default with a dash (-)

e Change the bitvector size: (the defaiilt is already given)

- This may be changed to the size you require

O

5
W J O ~ uo $do d ~ o p a ~

2
m

m = (-) yssp e y q ~ qlnqap aq? aX1dal 'uoysua;xa u.i~ ?ueM qou op noli $1 -
B ;
m (ua@ ilpeaqz SI qnejap ay?) :sqsg.jau JOJ uo!suaqxa ay& e
O

NAC User Manual

- If you do not want an extension, replace the default with a dash (- j

Version Informat ion Message

If you select this option only, a file name is not necessary as it simply prints the
5 : version of nlc.
- O m

nlc Compiler Output Options Form

NAC User Manual

If you wish to view the nlc compiler output files, then click on Yes and the following
screen will appear:

You can choose t u view une, two, all, or noue of the uulput Eles. N.B. Yuu cau üuly
view the netlist and symbol files if the directories have been specified in the Netlist @ :

-

Symbols Options Form, otherwise the following warning messages will appear: = m
O :
-.

N.B. If you have specified that the netlist and/or syrnbol directories are to be written
to the stdout, then then output can be viewed via the command tool window.

Once this step is finished, it is set to Done.

NAC User Manual

3.5 Step 5-Verilog

By clicking on the Push to Subflowchart button on the pop-up menu, or clicking on
the down arrow, the "Verilog" subflowchart appears

NAC User Manual

3.5.1 Step 5a - XNF to Verilog

When you run this step a question dialog box appears asking you if you wish to
generate Verilog netlists from XNF netlists.

Click on Yes if you do, and a form will appear for you to enter the name of the file.

Click on verilog Help for online help and the following dialog box will appear

Enter the name of the file and click on OK and the XNF netlists are translated to
Verilog netlists, via EDIF.

This step on the design flow is step to Done when completed.

NAC User Manual

3.5.2 Step 5b - View Verilog

When you run this step a question dialog box appears asking you if you wish to view
the Verilog netlists and the schematic.

Click on Yes if you do, and a form will appear for you to enter the name of the file.

Click on v e d o g Help for online help and the following dialog box will appear asking
you if you require help

Enter the name of the file and click on OK and a view file with the netlists will
appear and also the Cadence "Verilog In" form.

This step on the design flow is step to Done when completed.

NhC User Manual

3.6 Step 6 - Xilinx Design Manager

When you run this step a question dialog box appears asking you if you wish to start
the Xilinx Design Manager.

Click on Yes if you do, and the Xilinx Design Manager will be invoked.

This step on the design flow is step to Done when completed.

Chapter 4

Exiting the System

m

Once you are finished using NAC, you can either Reset AEE Steps from the banner
m

button to ready the system for the next time, or simply type O :

e x i t

a t the CIW command line.

