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kth Power of a Partial Sum

Recently the following result appeared [1, Theorem 2.1].

Theorem 1. For any finite sequence of positive numbers
(
aj

)n

j=1 whose partial sums

are
(
Sj

)n

j=1 we have
n∑

j=1

(
a2
j + 2ajSj−1

)
= S2

n.

Here we prove the following extension of the previous result.

Theorem 2. For any finite sequence of positive numbers
(
aj

)n

j=1 whose partial sums

are
(
Sj

)n

j=1 and for all integers k ≥ 1 we have

n∑
j=1

k∑
m=1

(
k

m

)
Sk−m

j−1 am
j = Sk

n.

Proof. The proof follows by telescoping. Since Sj = Sj−1 + aj , we have

Sk
j − Sk

j−1 = (
Sj−1 + aj

)k − Sk
j−1 =

k∑
m=1

(
k

m

)
Sk−m

j−1 am
j .

Since S0 = 0, we have
n∑

j=1

k∑
m=1

(
k

m

)
Sk−m

j−1 am
j =

n∑
j=1

(
Sk

j − Sk
j−1

)
= Sk

n .

Corollary. For k = 3 we have
n∑

j=1

(
a3
j + 3a2

j Sj−1 + 3ajS
2
j−1

)
= S3

n.

Example. Let aj = F2j−1. It is well known that Sn =
n∑

j=1

F2j−1 = F2n. It follows

that a3
j + 3a2

j Sj−1 + 3ajS
2
j−1 = F 3

2j−1 + 3F2j−1F2j−2F2j , which implies

n∑
j=1

(
F 3

2j−1 + 3F2j−1F2j−2F2j

)
= F 3

2n.

Many other identities may be found and proved using Theorem 2.
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