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Abstract

This article studies the effectiveness of optical flow methods applied to short baseline image pairs
under different noise levels. New metrics have been developed to analyze the results because the
usual metrics are inadequate in a subpixel context. We have used the implementation of some
standard optical flow methods adapted to the stereo problem. Our experiments show that the
Brox et al. method produces the least errors, with a 60% success rate and a relative precision
at 1/100th of a pixel. On the other hand, our comparison shows that a discontinuity preserving
method, derived from Brox et al., also provides competitive results at the same time that it
yields disparities with more details and correct contours.

Source Code

Source codes of Lucas-Kanade 1D, Robust Optical Flow 1D and Robust Discontinuity Preserving
1D algorithms are provided in the web page of the article1.

Keywords: stereovision; subpixel; metric; optical flow; ROC curve

1 Introduction

Stereoscopic vision plays an important role in many areas such as autonomous robots, remote sensing
or industrial control processes. It relies on matching two views observed from two different sensors
or one sensor in motion.

In the case of fronto-parallel camera displacements, which is the setting that we will use in
the sequel, stereoscopic image pairs can always be rectified so that matching reduces to estimating
movements d (at each pixel) along the ~x axis between two images u and v

u(x) = v(x+ d), (1)

where x = (x, y)T and d = (d, 0)T .
Delon and Rougé [6] and Sabater et al. [20, 22, 21] analyzed the sources of the 3D reconstruction

imprecisions. The estimate of the triangulation accuracy is conventionally formulated from the
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Figure 1: Estimate of the depth H, of a point P, from two cameras C1 and C2, fronto-parallely shifted by a distance B.
The knowledge of the focal length f , and the projections of P on the focal planes F1 and F2, through the principal points
C1 and C2, at points x1 and x2, respectively, allows estimating the depth. When an error ǫ is introduced in the estimate
of x2 this yields a depth error ∆H in the reconstruction of the 3D point Q.

pinhole camera model assumption [20, chap. 1], which relies on Thales’ theorem. Based on the
notation introduced in Figure 1, we have the following relations

B

∆ǫ
=

H −∆H

∆H
and

H

f
=

∆ǫ

ǫ
, (2)

which lead to

ǫ =
B∆H

H −∆H

f

H
. (3)

When ∆H is small compared to H, the error is approximated as

ǫ ≃ B

H
· f
H
∆H, (4)

meaning that it linearly depends on the ratio B/H. In order to reduce the value of ∆H for a given
∆ǫ, Equation (4) leads to choose stereo pairs acquired in long baselines. This is done at the expense of
a loss of information due to occlusions, geometric deformations or illumination changes between the
images. However, choosing short baselines alleviates these problems because both images become
more similar, but may increase ∆H. The works by Delon and Rougé [6] and Sabater [20] have
theoretically shown the advantages of such an approach: the imprecision of the matching algorithms
is mainly due to noise.

The purpose of this study is to compare the previous theoretical results with realistic cases in
short baselines and for different levels of noise, in the context of fixed cameras. To that end, we
compare several algorithms and evaluate their precision. On the one hand, this study implies the
use of image databases with negligible noise levels and very accurate ground truths. Dagobert [5]
found that commonly used databases poorly met these requirements and proposed a new one, the
CMLA dataset. This database has the advantage of providing pairs of images created with different
baselines, which have virtually no residual noise and dense disparity maps, whose accuracy is very
high.

On the other hand, the comparisons require the use of metrics taking into account the influence
of different baselines and noise levels, as well as the density of the disparity maps. By density, we

1https://doi.org/10.5201/ipol.2019.217

330



Comparison of Optical Flow Methods under Stereomatching with Short Baselines

refer to the proportion of points for which there exists a solution that is close to the ground truth.
That is the reason for using new metrics better suited for this study, instead of the metrics used by
other evaluation platforms.

This article is organized as follows: Section 2 describes and justifies our assessment methodology
and the new metrics employed. Section 3 describes the 1D optical flow algorithms employed in this
study, in particular, the methods of Lucas and Kanade [13], Brox et al. [3] and Monzón et al. [17].
Section 4 deals with the set up of the experimental protocol. Then, we present the results obtained
by the stereoscopic and optical flow algorithms, using the CMLA database and a few pairs from the
Middlebury dataset [26]. Finally, we present the conclusions in Section 5.

2 Evaluation Methodology

2.1 Notation

We denote by Dtruth,l the exact dense disparity map, Otruth,l the exact occlusion map defined by
Otruth,l(x) = 0 if the pixel x = (x, y)T is visible in both images and Otruth,l(x) = 1, otherwise. The
exact sparse disparity map is then defined by

D̊truth,l(x) =

{

Dtruth,l(x) ⇔ Otruth,l(x) = 0

NaN ⇔ Otruth,l(x) = 1,
(5)

with the convention Dtruth,l(x) = NaN ⇔ Dtruth,l(x) 6∈ R̄. Equivalently, we denote by Dl the

estimated dense disparity map, D̊l the sparse estimated disparity and Ol the estimated occlusion
map obtained from the previous map by the following relation

Ol(x) =

{

1 ⇔ D̊l(x) 6∈ R̄,

0 ⇔ Dl(x) ∈ R̄.
(6)

In a similar way, Dr, Or are the maps associated with the right image v. The maps size is denoted
NI .

2.2 Classical Approach of Assessment

2.2.1 The Middlebury Example

The definition of objective metrics to evaluate and rank the effectiveness of a particular stereo
algorithm is a complex problem. The Middlebury benchmark database [27], which is the de facto
standard in the evaluation of stereo algorithms, is very representative:

• It offers no less than forty metrics: ten formulas, such as success rates with four precision
thresholds, RMSE, mean error and four quantiles of percentage of error;

• It contemplates two algorithmic properties. The first one based on density: the algorithm
indicates, for each pixel, the disparity associated to the left image and denoted as Dl(x) ∈ R.
The second one based on sparsity: the algorithm indicates a non numeric value at pixels where
it cannot evaluate the disparity, i.e. Dl(x) 6∈ R;

• It considers two configurations, depending on whether or not visibility or occlusion of pixels
are taken into account in both views.
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Among these metrics, as noted by Kostlivá et al. [12], the first family associated with a precision
threshold of one pixel and the two aforementioned configurations are typically the most used. These
precision criteria are very simple to use and give a relatively good idea about what an algorithm
must do: to accurately estimate displacements, or disparities in the stereo context, and provide dense
data.

2.2.2 Existing Assessment Metrics

Among the existing metrics, the success rate (or the mismatch rate) considered by Scharstein et
al. [26] with a fixed a priori accuracy threshold s is widely adopted. Two categories of pixels are
taken into account. The first one is the number of visible pixels defined by

Nvis =
∑

p

✶(Otruth,l(x) = 0). (7)

By convention, the authors consider that a disparity with a non numeric value (NaN) represents
either an occlusion or the impossibility for the algorithm to estimate the disparity. The second one
concerns the valid number of pixels defined by

Nval =
∑

p

✶(Otruth,l(x) = 0) · ✶(Dl(x) ∈ R). (8)

Finally, the total number of pixels with a mismatch error below s is

Sa(Dtruth,l, Dl) =
∑

p

✶(Otruth,l(x) = 0) · ✶(Dl(x) ∈ R) · ✶(|Dtruth,l(x)−Dl(x)| < s). (9)

Additionally, the authors define dense Sa/Nvis and non dense Sa/Nval success rates. The second ratio
is necessarily higher than the first one.

According to the Thales theorem, the reconstruction of point clouds from a disparity map Dtruth,l

under the hypothesis of a pinhole camera is

zC(x) =
fB

Dtruth,l(x)
, (10)

where zC(x) is the distance from point xC to the plane (OC , ~xC , ~yC), containing the focal point OC ,
and f is the focal length. Cabezas et al. [4] identified two elements that lack in the definition of
metric (9). The first is that it does not take into account the a priori error made on the depth zC
during the 3D reconstruction. The precision error ✶(|Dtruth,l(x)−Dl(x)| < s) implies that disparity
maps having similar success rates after equation (9), and using the same threshold s, can produce
3D reconstructions of very different qualities. The second shortcoming is that the metric (9) is a
function that depends on a threshold s whose value can influence the results.

To overcome these problems, Cabezas et al. derived from (10) the following metric, called SZE
(Sigma-Z-Error), that sums the differences between the estimated and exact depths on the entire
disparity map

SZE =
∑

x

∣

∣

∣

∣

fB

Dtruth,l(x) + µ
− fB

Dl(x) + µ

∣

∣

∣

∣

, (11)

where µ is a constant that avoids numerical instabilities due to missing disparity estimates. According
to the authors, this metric has the advantage of measuring the impact of the disparity error upon the
error depth and does not resort to any threshold that could introduce a bias. However, they do not
specify the value of µ. Their experiments on the Middlebury database and the Tsukuba sequence
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showed that the SZE metric is more efficient and accurate than metric (9) because it better reflects
the errors in the observed reconstruction.

The drawback of measure (11) is that it is absolute and depends on the scene itself. In fact, it
represents a kind of volume since the difference of depths is integrated over the entire surface of the
image. This makes it difficult to compare the results obtained from the same scene with various
baselines, or to average the results of different scenes to compute statistics. Furthermore, this metric
requires the use of an unspecified smoothing term µ.

2.3 Proposed Methodology and Metrics

Our goal is to compare the quality of disparity maps obtained by several algorithms according to
their density and accuracy with respect to varying baselines. A downside of this approach is that we
will compare success criteria obtained by the same algorithm but with different input data. Indeed,
if we denote by u a left reference image and by B1 and B2 two shifts between two optical centers for
the production of the respective right images, v(B1) and v(B2), test pairs (u, v(B1)) and (u, v(B2))
have a different informational content. This criticism is legitimate but must be minimized: we do
not only seek to assess algorithmic qualities but also two types of stereoscopic acquisition systems,
namely pairs with a small or a large baseline. In what follows, we present these metrics and their
suitability to this specific problem, together with the available ground truths.

In our opinion, the general behavior of an algorithm is better described using a range, S =
[smin, smax], of values rather than a fixed threshold s in Equation (9). As a consequence, the evaluation
should be represented in the less condensed form of ROC curves, where success rate is expressed in
terms of accuracy thresholds. The metrics we propose in what follows take into account a criterion
precision incorporated into a density measurement. These considerations let us propose metrics
which deal simultaneously with the accuracy and the density of the disparity maps.

Precision criterion. Equation (10) introduces the measure of the relative error on the depth
defined by

|z̃C(x)− zC(x)|
|z̃C(x)|

=

∣

∣

∣

∣

Dtruth,l(x)−Dl(x)

Dtruth,l(x)

∣

∣

∣

∣

, (12)

with z̃C(x) = fB/Dl(x) = fB/(Dtruth,l(x) + η), the term η being the error. This leads us to define
the indicator function of accuracy as

✶

(∣

∣

∣

∣

Dtruth,l(x)−Dl(x)

Dtruth,l(x)

∣

∣

∣

∣

< s

)

, ∀s (13)

with the convention that the ratio is zero if the terms Dtruth,l(x) and Dl(x) are zero simultaneously.
These relative precision criteria allow us to be independent of the considered baseline and to express
it as a percentage.

Density criterion. The definition of the metrics is based on the assumption that the area under
the pixel can only have two states: being visible on both images or hidden in one. It follows that the
exact and estimated occlusion maps present four possible Boolean relationships, r, namely

rkl(x) = (Otruth,l(x) = k) ∧ (Ol(x) = l), ∀(k, l) ∈ {0, 1} × {0, 1}, (14)

that verifies
∑

x

[✶(r00(x)) + ✶(r10(x)) + ✶(r01(x)) + ✶(r11(x))] = NI . (15)
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State r00 is associated to disparities that, if they exist, are estimated in non-occluded areas by a
matching process specific to the algorithm. On the other hand, state r10 corresponds to disparities
that, if they exist, are estimated by an inference process. More specifically, it is possible that, in order
to calculate the disparities of pixels visible in both images, the algorithm involves an interpolation
process, for example on a constant color area, and not only a matching process. In contrast, to
compute disparities of occluded pixels, the algorithm can only proceed from inference or interpolation.
This leads us to define the following three metrics.

2.3.1 Density Precision Metrics

Definition 1. The average density precision (ADP) metric, that compares the estimated disparity
D̊l with the true disparity Dtruth,l, is the success rate

TADP (D̊l, Dtruth,l, s) =
1

NI

∑

x

✶

(∣

∣

∣

∣

∣

Dtruth,l(x)− D̊l(x)

Dtruth,l(x)

∣

∣

∣

∣

∣

< s

)

, ∀s, (16)

with

✶

(∣

∣

∣

∣

∣

Dtruth,l(x)− D̊l(x)

Dtruth,l(x)

∣

∣

∣

∣

∣

< s

)

= 0, (17)

if D̊l(x) 6∈ R̄ or if D̊l(x) and Dtruth,l(x) are null simultaneously.

This definition represents the proportion of points that are close to the ground truth disparity map.
The ADP metric is computed over the non null regions of image DADP = Dtruth,l (see Figure 2).

Definition 2. The matching density precision (MDP) metric, relating to precision threshold s, com-
paring the estimated disparity D̊l with the exact dense disparity Dtruth,l and knowing the exact occlu-
sions Otruth,l is the success rate

TMDP (D̊l, Dtruth,l, s) =

∑

x

✶(Otruth,l = 0) · ✶
(∣

∣

∣

∣

∣

Dtruth,l(x)− D̊l(x)

Dtruth,l(x)

∣

∣

∣

∣

∣

< s

)

∑

x

✶(Otruth,l = 0)
, ∀s, (18)

with the same convention as Definition 1.

In this case, the density is calculated as the proportion of points that are visible in both images
and their solution is close to the ground truth. We denote the visible ground truth disparity as
DMDP = ✶(Otruth,l = 0) ·Dtruth,l, where the MDP metric is computed over its non null regions (see
Figure 2).

Definition 3. The inference density precision (IDP) metric, relating to the precision threshold s,
comparing the estimate disparity D̊l with the exact dense disparity Dtruth,l, and knowing the exact
occlusions Otruth,l, is the success rate

TIDP (D̊l, Dtruth,l, s) =

∑

x

✶(Otruth,l = 1) · ✶
(∣

∣

∣

∣

∣

Dtruth,l(x)− D̊l(x)

Dtruth,l(x)

∣

∣

∣

∣

∣

< s

)

∑

x

✶(Otruth,l = 1)
, ∀s, (19)

with the same conventions as in Definition 1.

This definition stands for the proportion of occluded pixels for which the calculated disparity is close
to the ground truth. We denote the non-visible ground truth disparity map as DIDP = ✶(Otruth,l =
1) ·Dtruth,l, where the IDP metric is computed over its non null regions (see Figure 2).
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Left image u Right image v Otruth,l

DADP DMDP DIDP

Figure 2: Given a stereo pair (u, v), the associated occlusion map, Otruth,l, and the disparity map Dtruth,l; the ADP, MDP
and IDP metrics are respectively computed over the non-black areas of the DADP , DMDP and DIDP maps.

Remarks. To our knowledge, the assumption of the two-state visibility is valid in all current
academic test databases, i.e. there is no concept of transparency. However, the notion of occlusion
becomes quite unclear if there is an attempt to take the transparency phenomenon into account. The
formalization of this problem was deemed too complex to be treated here.

Some stereoscopic algorithms distinguish two categories of non-assessed pixels: occluded pixels
and non-assessable pixels. The latter property indicates that information is lacking to estimate
their disparity. The proposed metrics do not differentiate these algorithms from those that make no
discrimination. In both cases, the metrics consider that D̊l(x) 6∈ R̄.

Metrics (16) and (18) apply equally to dense or sparse algorithms. Unlike (9), the metric (18)
includes all the pixels of the images and not only the visible or valid pixels. This is consistent with our
goal to penalize the lack of information. The metric (19) only makes sense when assessing algorithms
providing dense maps and should only be used (in order to be statistically relevant) in cases where
the hidden pixels are numerous.

2.3.2 Consistency Criterion for Optical Flow Algorithms

In this work, we have included a post-processing to create sparse disparity maps D̊l(x) from dense
ones. We did this due to the fact that some stereoscopic algorithms may provide non-dense maps, but
this is not the case of the optical flow algorithms. Therefore, our intention is to avoid penalizing them
by introducing a disparity rejection criterion that corresponds to the left-right consistency check [9]
and that is based on the comparison between disparities estimated from the pairs (u, v) and (v, u).
We have, for all x, the condition

D̊l(x) 6∈ R̄ if











p+Dl(x) < 0,

p+Dl(x) > WI ,

✶(|Dl(x) + D̃r(x+Dl(x))| > θ),

(20)

where WI is the image width and D̃r is the map of estimated and interpolated disparities at non
integer positions x+Dl(x).

In the case of the Middlebury or Tsukuba [14] datasets for example, this consistency threshold
is usually set to 0 or 1, this is because the considered disparity maps take their values in the range
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[a, b], with 1 < a and b . 300. The choice of a θ threshold is more difficult in the subpixel context,
especially as the CMLA dataset provides disparity maps such that 0 ≤ a≪ 1 and b ≤ 50. The orders
of magnitude are thus very variable. In order to have a moderate rejection criterion, we propose to
use the relative error defined by

✶

(

2
|Dl(x) + D̃r(x+Dl(x))|
|Dl(x)− D̃r(x+Dl(x))|

> θ

)

, (21)

where the ratio is set to zero if Dl(x) and D̃r(x+Dl(x)) are zero simultaneously.

3 Description of Optical Flow Algorithms

In this section, we detail the 1D optical flow algorithms, which calculate non-rigid motions between
two consecutive images.

These methods are based on two general assumptions: the luminance is conserved between the
two images and their digital versions are correctly sampled in the sense of Shannon. It follows that,
in the case of horizontal displacements d between two images u and v,

u(x) = v(x+ d), ∀x ∈ Ω. (22)

Applying first order Taylor expansions to the second member, and neglecting its residue because of
the correctly sampled assumption, the gradient equation is

d ≃ u(x)− v(x)

vx(x)
. (23)

Raudies [19] has compiled a fairly comprehensive overview of optical flow methods — accompanied
by their code — that rely on this constraint and possibly adding others.

3.1 Lucas-Kanade Optical Flow

The Lucas and Kanade’s algorithm [13], in addition to the optical flow constraint (23), adds the
supplementary assumption that movement d(x) is constant in a neighborhood V of x. The authors
define an energy functional based on the quadratic error between the images, as

E(d) =
∑

w∈V(x)
(v(w + d)− u(w))2. (24)

By differentiating this functional, they get the following relation:

d ≃

∑

w∈V(x)
∂xv(w)(u(w)− v(w))

∑

w∈V(x)
(∂xv(w))2

. (25)

Over the decades, many contributions have appeared to improve the estimation of d. Baker et al. [1]
compile many of these variants; see also the implementation in [23].

The algorithm proposed in the evaluation is primarily used as a reference algorithm due to its
simplicity. This is a 1D multiscale version similar to the one by Bouguet [2]. A Gaussian filter,
Gσ1 , is applied at each scale to reduce image noise, as advocated by Rais et al. [18]. The algorithm,
however, differs from these methods in the consideration of the chromatic channels. In both previous
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cases, the input color images are converted to grayscale before being processed. The argument is
that the averaging of the RGB channels, resulting in the grayscale image, reduces noise and increases
the accuracy of the displacements estimate. Nevertheless, in the presence of very low noise, this
averaging mitigates the signal and uniformizes it. Our algorithm retains the three channels to
calculate displacements. Regarding the iterative process to estimate d, we opted for the method of
Hager et al. [10], called the inverse additive algorithm [1, Section 3.3], which accelerates calculations.
The algorithm is detailed in Algorithms 2, 3 and 4. We explain the main numerical schemes in the
next section.

3.2 Robust Optical Flow in 1D

The Brox et al. method [3] formulates the optical flow estimation as a continuous optimization
problem with a global energy functional that includes constraints for computing piecewise-continuous
optical flow fields. In the case of disparity maps, this energy is given by

E(d) =

∫

Ω

Ψ
(

(v(x+ d)− u(x))2
)

dx

+ γ

∫

Ω

Ψ
(

|∇v(x+ d)−∇u(x)|2
)

dx

+ α

∫

Ω

Ψ
(

|∇d|2
)

dx, (26)

where Ψ(s2) =
√
s2 + ǫ2, ǫ := 0.001 a small constant and d = (d, 0)T . The first term can be seen

as a continuous formulation of the Lucas-Kanade matching function. The second term allows to
find a solution where the gradients of both images are similar. This is interesting if there exist
constant brightness changes between the two images. The last term is a regularization constraint
that enforces the solution to be smooth. The use of robust functions, Ψ, allows to deal with problems
like image noise, occlusions and brightness changes, and, in the case of the regularization term, to
create piecewise-continuous motions with sharp edges. Parameters γ and α weight the gradient and
the smoothness terms, respectively.

The minimum of the previous energy functional can be found by solving the associated Euler-
Lagrange equations, given by

0 =Ψ′
D · (v(x+ d)− u(x)) · vx(x+ d)

+ γΨ′
G · [ (vx(x+ d)− ux(x)) · vxx(x+ d)

+ (vy(x+ d)− uy(x)) · vxy(x+ d)]

− α div (Ψ′
S · ∇d) , (27)

with Ψ′(s2) = 1
2
√
s2+ǫ2

and

Ψ′
D :=Ψ′ ((v(x+ d)− u(x))2

)

, (28)

Ψ′
G :=Ψ′ (|∇v(x+ d)−∇u(x)|2

)

, (29)

Ψ′
S :=Ψ′ (|∇d|2

)

. (30)

First order Taylor expansions are used to linearize v(x+ d, y) and its derivatives as follows

v(x+ dk+1) ≈v(x+ dk) + vx(x+ dk)∆dk, (31)

vx(x+ dk+1) ≈vx(x+ dk) + vxx(x+ dk)∆dk, (32)

vy(x+ dk+1) ≈vy(x+ dk) + vxy(x+ dk)∆dk, (33)
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with ∆dk = dk+1 − dk. We assume that dk is a close approximation to our unknown dk+1. The
disparity map is incrementally updated as dk+1 = dk +∆dk.

For more numerical details see Appendix A.2.

3.3 Discontinuity-Preserving Robust 1D Optical Flow

One of the problems of the Brox et al. method is that it often produces motion contours that do
not coincide with the object contours. A standard approach to overcome this problem is to include
a scalar decreasing function [16] in the regularization term in order to mitigate the smoothing when
the gradient of the image is high.

The energy functional is

E(d) =

∫

Ω

Ψ
(

(v(x+ d)− u(x))2
)

+ γ

∫

Ω

Ψ
(

|∇v(x+ d)−∇u(x)|2
)

+ α

∫

Ω

Ψ
(

Φ(∇u) · |∇d|2
)

dx, (34)

where Ψ (s2) is defined as in the previous section. The scalar decreasing function, Φ(∇ur), is the
only difference with respect to the previous model. It can be chosen as

Φ(∇u) = e−λ(x)|∇u|. (35)

For more numerical details see Appendix A.3.

4 Evaluation

4.1 Experimental Protocol

In our experiments, we used the optical flow methods described in Section 3 and several methods
specific to stereo. Among these, we selected those with representative and reproducible properties
and whose theoretical descriptions and digital implementations are very well detailed. By convention,
we will use the following acronyms:

• LKM: Lucas-Kanade 1D multiscale method;

• ROF1D: Robust Optical Flow 1D method;

• RDPOF1D: Robust Discontinuity Preserving Optical Flow 1D method;

• KZ: Kolmogorov-Zabih method [11];

• GF: Guided filter method [28];

• BWP: Bilaterally Weighted Patches method [29, 8];

• MGM: More Global Matching method [7].

The sequences used in this section belong to the CMLA dataset [5] and were produced by simulating
a fronto-parallel camera motion. The images have near-zero noise and their disparity accuracy is in
the order of 10−6. This dataset particularly includes four scenes with and without light reflections.
We will call these two configurations “case A” and “case B”, respectively. From this dataset, we
have extracted three groups of pairs, each consisting of 11 synthetic scenes:
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Figure 3: The above seven scenes of the Middlebury 2014 dataset were used for the benchmark. Their disparity maps were
obtained by laser scanning. They have a maximal precision of about 0.2 pixel.

• the group of pairs in “large” baseline, composed of viewpoints +000 and +050, where the
maximum disparity is 50 pixels and the baseline is about 1/50;

• the group of pairs in “moderate” baseline, composed of viewpoints +000 and +010, where the
maximum disparity is 10 pixels and the baseline is about 1/500;

• the group of pairs in “short” baseline, composed of viewpoints +000 and +001, where the
maximum disparity is 1 pixel and the baseline is about 1/2500.

We also compared the algorithms for seven stereo pairs (shown in Figure 3) from the Middlebury
2014 dataset [26], which we previously rectified and corrected (see Section 4.2).

4.2 Preprocessing of Middlebury 2014 Pairs

The stereo pairs of the Middlebury 2014 dataset [26] have the following characteristics:

• size of about 2800× 2000 pixels;

• disparities varying from 30 to 250 pixels;

• maximal disparity precisions of about 0.2 pixel;

• unknown but weak noise values.

We selected the seven stereo pairs presented in Figure 3. In order to compare the results from
this database with those of the synthetic pairs, both the pairs and the ground truths needed to be
preprocessed (see Algorithm 1).

We reduced the size of the images by a factor of 5, thereby further reducing the image noise, whose
left disparity maps have then a precision error of 0.04 consistent with a 0.075 precision limit (1/16th
pixel), and whose 50 pixel maximal disparities are comparable with those of the large baseline pairs of
the CMLA dataset. The raw disparity maps provided by Middlebury 2014 needed to be preprocessed
before use, because they contained invalid values that made it difficult downscaling the images and
computing the occlusion maps.

The occlusion map, denoted by Otruth,l, is calculated according to the formula

Otruth,l(x) = ✶ (|Dtruth,l(x) +Dtruth,r(x+Dtruth,l(x))| ≥ α) , (36)

where the threshold α is set to 0.2, to be consistent with the precision disparity maps provided by
Middlebury 2014. The value of Dtruth,r at the non-integer position (x+Dtruth,l(x)) is obtained by a
spline interpolation of order 5.

Taking into account invalid disparities in the success rate computation implies rewriting rela-
tion (16) as

T ′
M(D̊l, Dtruth,l, s) =

1

NV

∑

x

Vl(x)✶

(∣

∣

∣

∣

∣

Dtruth,l(x)− D̊l(x)

Dtruth,l(x)

∣

∣

∣

∣

∣

< s

)

, ∀s, (37)

where NV =
∑

x

Vl(x) is the number of valid pixels.
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Algorithm 1: Preprocess — Preprocessing applied on the images of the Middlebury 2014
dataset to obtain tractable stereo pairs and ground truths.

Input: (u, v) stereo pair of dimensions HI ×WI , (Dl, Dr) disparity maps related to (u, v)
Output: (uc, vc) processed stereo pair, (Vl, Ol, Dl) left invalid, occluded and disparity maps

// Replacement of invalid values by median1

foreach w ∈ {Dl, Dr} do2

if w(x) 6∈ R̄ then wa(x)← median(w) else wa(x)← w(x)3

end4

// Left validity map creation5

Vl(x)← ✶(Da
l (x) ∈ R)6

// Left occlusion map creation7

Ol(x)← ✶ (|Da
l (x) +Da

r (x+Da
l (x))| ≥ 0.2)8

// Presmoothing by a Gaussian blur9

foreach w ∈ {u, v,Da
l , Vl, Ol} do wb ←Blur[w, σ = 4]10

// Downsampling by a factor S = 511

foreach w ∈ {ub, vb, Db
l , V

b
l , O

b
l } do12

for x ∈ J0,WI/SK× J0, HI/SK do wc(x)← wb(Sx)13

end14

// Binarization15

foreach w ∈ {V c
l , O

c
l } do wd ← ✶(wc < 0.5)16

{Vl, Ol, Dl} ← {V d
l , O

d
l , D

c
l }17

4.3 Algorithms Parameters

Stereo algorithms were tested with their default settings. While the GF, BWP and KZ methods
have pixel accuracy, MGM was adapted to reach a 1/4th pixel accuracy. The optical flow algorithms
were also applied with fixed parameters. The LKM algorithm was configured with a 5 × 5 pixel
neighborhood and a Gaussian blur kernel of standard deviation σ = 0.4. ROF1D was used with
αROF = 2 and γROF = 2 (respectively corresponding to parameters α and γ in [25, Eq. (3)]) from
observations made by Sánchez et al., while other parameters take default settings. RDPOF1D was
used with parameters αRDP = 25 and γRDP = 1 in automatic mode, the other parameters take the
default values. The consistency threshold θ of (21) applied to LKM, ROF1D and RDPOF1D was
set to 0.2.

4.4 Numerical Results

Robustness evaluation. We tested the robustness of the algorithms against the influence of a
growing additive Gaussian noise from σ = 0 to σ = 10. We used the metric ADP with a fixed
accuracy threshold s = 1. This choice must be explained. The relation (13) defining the relative
precision can be reformulated as |Dtruth,l(x)− D̊l(x)| < s|Dtruth,l(x)|, but the short baseline CMLA
pairs have disparities of approximatively one pixel, that is to say |Dtruth,l(x)| ≈ 1.

On the one hand, since discrete and pixel precise algorithms have no precision below one pixel,
the minimal errors |Dtruth,l(x) − D̊l(x)| are larger than 1. It is therefore not appropriate to set a
precision threshold s below 1. On the other hand, this threshold corresponds to a relative error of
100%. In the case of the long baselines CMLA pairs, there is no reason to increase the threshold.
Therefore, this choice is a compromise that allows to compare pixel and subpixel algorithms together
and under different baselines configurations. The results are shown in Figures 4 and 5, for the CMLA
dataset, and in Figure 9, for the Middlebury dataset.
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Globally, according to the graphics in Figures 4 and 5, we can observe behaviors depending on the
noise level. For σ in [0, 2], the results are in descending order from low to large baselines. Indeed, for
low noise levels the error caused by occlusions dominate, and this error is bigger for larger baselines.
When σ exceeds 2, the larger baselines become more robust. Thus, moderate baselines represent
the best compromise. The Middlebury 2014 and CMLA databases give, for large baselines, almost
the same algorithm ranking (see Figures 5 and 9). In descending order, we have: KZ, RDPOF1D,
ROF1D, MGM, LKM, BWP and GF. All baselines combined, RDPOF1D, ROF1D and MGM are
better than the others. The RDPOF1D rates are never lower than 90% on the CMLA dataset and
are at 85% on Middlebury, regardless of noise and baseline.
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Figure 4: Top line, success rates of each algorithm according to the ADP metric, averaged on the 11 CMLA scenes,
expressed as functions of an additive Gaussian blur σ and for a precision threshold of s = 1.00. This threshold is the
smallest to allow simultaneous comparison of pixel and sub-pixel algorithms. The settings for ROF1D, RDPOF1D and LKM
were set to identical values for the three baselines. Moderate baselines globally outweigh the large and low ones: occlusions
in large baselines are penalizing, while noise rapidly degrades the short baselines. The three best algorithms are ROF1D,
RDPOF1D and MGM whose success rates decrease more slowly than others depending on the noise.

We did the same tests for the sub-pixel algorithms LKM, ROF1D, RDPOF1D and MGM, with
an accuracy threshold s = 0.25. The results are shown in Figure 6 for the CMLA dataset and
Figure 9, for the Middlebury base. We observe the same phenomena as above: moderate baselines
perform better than the low and large ones, for a noise smaller than σ = 2. For higher values, high
and moderate baselines are similar, while in low baselines, only RDPOF1D is robust. ROF1D and
RDPOF1D are better than MGM and the LKM, on both datasets.

Accuracy evaluation. We investigated the accuracy limits of the optical flow algorithms, LKM,
ROF1D and RDPOF1D, with and without noise, by varying the threshold s from 1 to 10−4, combined
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Figure 5: Left column (resp. right), success rates of each algorithm according to the ADP metric,averaged on the 4 scenes of
the hotel without (resp. with) reflections, expressed as functions of an additive Gaussian blur σ and for a precision threshold
of s = 1.00. We could have expected the results with the reflections to be worse than without, in large baselines, due to
the areas of reflection that do not follow in appearance the real geometric displacements. However, this behavior does not
apply to all algorithms.

with the ADP and IDP metrics. The results are shown in Figures 7, 8 and 10.

Concerning the results of the latter, they must however be taken with some caution, because the
disparity errors of the “exact” disparity maps are about 0.04 pixel. Figure 7: in the absence of noise,
we clearly observe a threshold effect se, whatever the algorithm we choose. For precision values
s ≥ se, moderate baselines dominate whereas, for precision values s ≤ se, large baselines dominate.
This corresponds to the occlusion effects of the large baselines penalizing information density in
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Figure 6: Success rates of each algorithm according to the ADP metric and the different baselines, averaged on the 11
CMLA scenes, expressed as functions of an additive Gaussian noise σ and for a precision threshold of s = 1.00. This
threshold is the smallest to compare simultaneously all sub-pixel algorithms. The settings for ROF1D, RDPOF1D and LKM
were set to identical values for the three baselines. Moderate and large baselines globally outweigh the short ones. The
decrease in their success rate is quite slow. They only fall by 10 points between σ = 0 and σ = 10, while in the short
baseline case, success rates of LKM, MGM and ROF1D drop by more than 50 points. For a given baseline, ROF1D and
RDPOF1D algorithms are more robust to noise than MGM.

the first case, and to the triangulation improvement by these same baselines, in the second. The
thresholds of se of ROF1D, RDPOF1D and LKM are about 0.03, 0.01 and 0.15 respectively. The low
baselines here may have little interest because they decrease very rapidly whatever the algorithms
and the noise level.

In the presence of noise, large baselines globally dominate, whatever the algorithms. The effect
of threshold is observable only for RDPOF1D and is worth more than 0.1. In addition, RDPOF1D
is very robust. Regardless of the baseline considered, the drop in rates is much lower than the drop
observed for the LKM and ROF1D. In both cases, regardless of the baselines, ROF1D is better than
RDPOF1D and LKM without noise; it outweighs RDPOF1D by 10 points on average. It reaches
85% at s = 10−1 and 55% at s = 10−2.
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Figure 7: Success rates of optical flow algorithms according to the MDP metric, averaged on the 11 CMLA scenes, expressed
as functions of the precision threshold s. On the left, with no added noise, and, on the right, with a Gaussian noise of
σ = 10. In the absence of noise, optical flow methods get around 80% success at precision s = 0.1 and around 50% at
s = 0.01. The best rate is obtained by ROF1D with 85% and 60% for the previously mentioned thresholds. In the case of
a noise with σ = 10, large baselines win whatever the method. ROF1D and RDPOF1D are ahead but they do not exceed
75% to 25% success at s = 1/10 and s = 1/100, respectively.
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Figure 8: Success rate of optical flow algorithms according to the IDP metric averaged over the simulated pairs expressed
as functions of the precision threshold s. On the left, with no added noise, and, on the right, with a Gaussian noise of
σ = 10. The rates are very low because the algorithms do not use any inference method. However it is reasonable to think
that if this were the case, they would not exceed the visible pixel rate.

0 2 4 6 8 10
Noise ( )

0

10

20

30

40

50

60

70

80

90

100

Ra
te

Success rates according to the ADP metric
 on the Middlebury dataset (with threshold = 1)

0 2 4 6 8 10
Noise ( )

0

10

20

30

40

50

60

70

80

90

100

Ra
te

Success rates according to the ADP metric
 on the Middlebury dataset (with threshold = 0.25)

Figure 9: Left, success rates of each algorithm according to the ADP metric, averaged on the 7 Middlebury 2014 scenes,
expressed as functions of an additive Gaussian noise and for a precision threshold of s = 1.00. This threshold is the smallest
that allows to compare simultaneously pixel and sub-pixel algorithms. The baselines of these scenes are comparable to the
large baselines of the CMLA dataset. Algorithms ROF1D, RDPOF1D, LKM and MGM remain very stable against increasing
levels of noise, while KZ slightly decreases and the BWP and GF decrease very rapidly. Right, averaged success rates on the
set of Middlebury 2014,of the four sub-pixel algorithms for a precision threshold of s = 0.25. RDPOF1D won with around
7 points more than ROF1D and almost 15 points higher than the MGM.
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Figure 10: Top row, success rates of optical flow algorithms according to the MDP metric, averaged on the 7 Middlebury
2014 scenes, expressed as functions of the precision threshold s. On the left, with no added noise, and, on the right, with a
Gaussian noise of σ = 10. In the absence of noise, ROF1D and RDPOF1D methods get around 70% of success at precision
s = 0.1 and around 30% at s = 0.01. The best rate is obtained by the ROF1D with 75% and 40% respectively, for the
previously mentioned thresholds. In the case of a noise with σ = 10, large baselines win whatever the method. ROF1D
and RDPOF1D are ahead but they do not exceed 70% to 20% success at s = 1/10 and s = 1/100, respectively. Bottom
row, the success rate according to the IDP metric averaged over the scenes. On the left, with no added noise, and, on the
right, with Gaussian noise of σ = 10. The observed rates are higher than those of the synthetic scenes (see Figure 7). This
could be explained by the fact that disparities in the occluded areas, for ground truths, are obtained after an interpolation
process.
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4.5 Comparison

In this section, we compare some disparity maps obtained from the LKM, ROF1D and RDPOF1D
methods using some sequences from the moderate baseline of the CMLA dataset. Figures 11, 12
and 13 show the shiny versions of bastet, saloon and shrub sequences, while Figures 14 and 15 depict
the oranges and corridor scenes. In each figure, the top row shows the original pair of images and
the ground truth. The bottom row depicts, from left to right, the results for the LKM, ROF1D and
RDPOF1D methods, respectively. The parameters have been set as in the previous experiments.

According to these results, LKM correctly detects the objects but it fails in several homogeneous
areas. In contrast, the other two approaches achieve good results. On the one hand, the contour
of the objects are better preserved by the RDPOF1D method, although it introduces some flow
discontinuities in continuous regions that contain salient textures; on the other hand, ROF1D tends
to obtain smoother solutions but with rounding shapes at the borders.

Figure 11 bastet is a good example of this behavior. RDPOF1D properly detects several details
like the diadem, the pedestal and, the nose and the arms of the bastet. Besides, the lamp is well
preserved while the other approaches fail. However, this method has more problems distinguishing
the contours and the textures of the objects. This is more conpiscuous in the floor of Figure 15. The
smoothing behavior of the ROF1D method is better with textures. We also note that the leafs of the
shrub (Figure 12) are better detected with ROF1D than with the other approaches. Nevertheless,
the flowerpot is more similar to the ground truth using the RDPOF1D method and the regularization
in the floor is more satisfactory. Unfortunately, the problems with specular lights appear again in
this solution in front of the flowerpot.

In Figure 13 saloon, the details preserved with RDPOF1D are accurate, especially at the lamp
and the arm-chairs. However, the motion of the center table is not completely correct and there
are also some problems with the colored areas of the floor. This happens with the three methods.
Interestingly, the solutions of the oranges sequence in Figure 14 are quite precise and the estimated
motion in the background is very accurate for the RDPOF1D solution. Here, the LKM solution has
conflicts dealing with the textured areas of the background.

From these experiments, we conclude that the RDPOF1D method is usually the best preserving
the contours of the objects, but it also detect motion discontinuities inside some objects with promi-
nent textures. The solutions of the ROF1D method tend to be smoother, but it creates rounding
shapes at the contours and loses some details where the RDPOF1D method is successful. The lack
of a regularization strategy in the LKM method causes this technique to fail in several situations,
especially in homogeneous regions.

5 Conclusion

This study seems to support the hypothesis that, in the absence of noise, it is more advantageous to
use stereoscopic pairs acquired in short baselines, and to apply optical flow algorithms on them. To
this end, we proposed metrics to study the accuracy and density of stereo algorithms with pixel and
sub-pixel accuracy. We then tested 1D optical flow and stereo algorithms on the Middlebury 2014
and CMLA datasets, up to their operating limits.

On the one hand, 1D optical flow methods, using regularization terms on the displacement fields,
appear to be more accurate than stereo algorithms, regardless of the noise level and the baseline. In
the absence of noise, it is possible to obtain a relative error of 1% with a pixel density of 50% for
baselines around a few tens of pixels (≤ 50) with optical flow algorithms.
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Left image u Right image v Ground truth

LKM ROF1D RDPOF1D

Figure 11: Results of the bastet shiny scene. Upper row: Left and right images using the moderate baseline and the ground
truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with their default parameters, respectively.
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Left image u Right image v Ground truth

LKM ROF1D RDPOF1D

Figure 12: Results of the shrub shiny scene. Upper row: Left and right images using the moderate baseline and the ground
truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with default parameters, respectively.
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Moreover, the results validate the use of a short baseline, up to a certain limit. In the absence
of noise, and for a given accuracy, it may be more beneficial in terms of density, to work with a
baseline of the order of 1/250 rather than 1/50. However, the use of stereo pairs, whose disparities
are less than, or equal to, the pixel (i.e. with baseline of about 1/2500), is ineffective when we want
to get high accuracy. In the presence of noise, only large baselines (1/50) offer the best compromise
between density and precision.

Left image u Right image v Ground truth

LKM ROF1D RDPOF1D

Figure 13: Results of the saloon shiny scene. Upper row: Left and right images using the moderate baseline and the ground
truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with default parameters, respectively.

Left image u Right image v Ground truth

LKM ROF1D RDPOF1D

Figure 14: Results of the oranges scene. Upper row: Left and right images using the moderate baseline and the ground
truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with their default parameters, respectively.
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Left image u Right image v Ground truth

LKM ROF1D RDPOF1D

Figure 15: Results of the corridor scene. Upper row: Left and right images using the moderate baseline and the ground
truth. Bottom row: Disparity maps using LKM, ROF1D and RDPOF1D with default parameters, respectively.
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A Numerical Schemes

A.1 Numerical Scheme of the Lucas-Kanade Algorithm

Given S, the number of scales, we denote by us = (us
R, u

s
G, u

s
B) (resp. vs), the left color (resp.

the right) image at scale s. These images have a size of Ws × Hs pixels at scale s; we denote by
Is = J0,WsJ×J0, HsJ the discretized digital image.

Neighborhood. The neighborhood V(x) consists of pixelsw such that V(x) = {w ∈ J0;WsJ×J0;HsJ,
‖x−w‖∞ < ǫ} for a given ǫ. The size of the neighborhood is fixed regardless of the considered scale.

Multiscale structure. The scaling of color images u and v from s to s + 1 is done by blurring
the images with a Gaussian kernel, Gσ2 , of standard deviation σ2 = 1.2, to reduce aliasing, and by
subsampling them using bicubic interpolation. This is formulated, considering only u, as

us+1(x) = (K1 ∗Gσ2 ∗ us)(x/ρx, y/ρy) ∀x ∈ Is+1, (38)

where K1 is the bicubic interpolation kernel and ρx, ρy the scale factors set at ⌊Ls/2⌋−1
Ls−1

and ⌊Hs/2⌋−1
Hs−1

,
respectively. Each image us is then blurred by Gσ1 , where σ1 = 0.4, as

ŭs(x) = Gσ1 ∗ us(x), ∀x ∈ Is. (39)

This convolution is performed in the Fourier domain. The upscaling from the disparity map Ds+1
l ,

estimated at scale s+ 1, to the disparity map Ds
init at scale s, is performed by bilinear interpolation

as

Ds
init(x) =

1

ρx
(K2 ∗Ds+1

l )(ρxx, ρyy), ∀x ∈ Is, (40)

where K2 is the bilinear interpolation kernel. (Bilinearity prevents the sign of the displacement
direction to change whereas higher order interpolation may not.)

Differentiation. As the right images vs are blurred at each scale s, the derivative v̆sx is calculated
using ∂xGσ1 as

v̆sx(x) = (∂xGσ1 ∗ vs)(x), ∀x ∈ Is, (41)

where

∂xGσ1(x) = −
x

2πσ4
1

exp
−
(

‖x‖22
2σ2

1

)

. (42)

This convolution is performed in the Fourier domain.

Iterative displacement estimation. In the original article [13], the resolution of (25) is per-
formed iteratively according to a Newton-Raphson scheme which has the disadvantage of having to
calculate the interpolated values of (25) at each iteration and for all w in V(x). Hager et al. [10]
proposed an improvement by reformulating the energy (24) from the point of view of elementary
displacements dk [10, Eq. (7)] and showed that, in the particular case of translation along x [10,
Eq. (26)], the scheme is

d0 = 0,

dk+1 = dk +
Ak

B
, (43)
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where

Ak =
∑

c∈{R,G,B}

∑

w∈V(p)
ŭs
x,c(w)[ŭs

c(w)− (K1 ∗ v̆sc)(w +Dinit(w) + dk)], (44)

B =
∑

c∈{R,G,B}

∑

w∈V(p)
(ŭs

x,c(w))2. (45)

Algorithm 2: LKM — Multiscale Lucas-Kanade optical flow 1D algorithm.

Input: (u1, v1, σ1, vx, vy, T, S) with : u1 reference image; v1 shifted image; σ1 standard
deviation of Gaussian blur kernel Gσ1 ; T maximum number of iterations; S number of
scales.

Output: Dl estimated disparity map of u1

// computation of (us, vs) at different scales s1

for s← 2 to S do2

us ← Reduce[us−1]3

vs ← Reduce[vs−1]4

end5

// initial disparity6

DS
l ←M(LS×HS)(0)7

for s← S to 1 do8

// image blurring9

ŭs ← Blur(us, Gσ1)10

v̆s ← Blur(vs, Gσ1)11

// computation of x-derivative of reference image12

ŭs
x ← Blur(ŭs, ∂xGσ1)13

for x ∈ J0,WsJ×J0, HsJ do14

// displacement estimation15

d0 ← 016

dinit ← Ds
init17

for k ← 0 to T do18

d←

∑

c∈{R,G,B}

∑

w∈V(p)
ŭs
x,c(w)[ŭs

c(w)− (K1 ∗ v̆sc)(w +Dinit(w) + dk)]

∑

c∈{R,G,B}

∑

w∈V(p)
(ŭs

x,c(w))2
19

dk+1 = dk + d20

end21

Ds
l (x)← dT22

end23

// disparity map initialization at next scale (40)24

Ds−1
init (x, y)← γx(K2 ∗Ds

l )(x/γx, y/γy)2626

end27

return D1
l28

A.2 Numerical Scheme of Robust Optical Flow Algorithm

An efficient way to solve (27) is through an iterative scheme like the Gauss-Seidel or SOR methods.
The Brox method [3] is implemented by two fixed point iterations: a set of iterations is used to
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Algorithm 3: Reduce — Function of reduction used for multiscale construction.

Input: u image of dimension HI ×WI

Output: w reduced image by factor 4

// aliasing attenuation by a Gaussian blur1

v ← Blur [u, σ = 1.0]2

ρx ← ⌊LI/2⌋−1
LI−13

ρy ← ⌊HI/2⌋−1
HI−14

// bicubic interpolation of kernel K15

for (x, y) ∈ J0,WIJ×J0, HIJ do6

w(x, y)← (K1 ∗ v)(x/ρx, y/ρy)7

end8

Algorithm 4: Blur — Blur algorithm.

Input: u image of dimension HI ×WI

Input: G Gaussian blur image of dimension HI ×WI

Output: v blurred image

// symmetrization of u in the 4 directions1

for (x, y) ∈ J0,WIJ×J0, HIJ do2

U(WI + x,HI + y)← u(x, y)3

U(WI + x,HI − y)← u(x, y)4

U(WI − x,HI + y)← u(x, y)5

U(WI − x,HI − y)← u(x, y)6

end7

// convolution using Fourier transform F8

U ← Re(F−1(F(U)F(G))9

// suitable part of the image10

for (x, y) ∈ J0,WIJ×J0, HIJ do11

v(x, y)← U(WI + x,HI + y)12

end13

account for the Taylor expansions (index k), and a set of iterations for the nonlinearities of the
robust functions Ψ

(

(v(x+ d)− u(x))2
)

(index l); see [25] for more details. Using an index s to
represent the iterations of the SOR method, the numerical scheme for updating d is given by

dk,l,s+1 := (1− w) dk,l,s + w

(

A+ α div(∆d)k,l,si±1,j±1

)

D
, (46)

with w ∈ (0, 2) the SOR relaxation parameter (w := 1.9 by default). In this equation, A and D are
given by

A :=− (Ψ′
D)

k,l (v(x+ d)− u(x)) vx(x+ d) + α div(d)k,li±1,j±1

− γ (Ψ′
G)

k,l[ (vx(x+ d)− ux(x)) vxx(x+ d)

+ (vy(x+ d)− uy(x)) vxy(x+ d)],

D :=(Ψ′
D)

k,lv2x(x+ d) + γ (Ψ′
G)

k,l
(

v2xx(x+ d) + v2xy(x+ d)
)

+ α Ck,l
i,j . (47)
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Partial derivatives are approximated using central differences and expressions like v(x + dk,l) are
computed using bicubic interpolation. The discretization of the divergence can be separated in three
parts by

div ((Ψ′
S) · ∇(d+∆d)) =div ((Ψ′

S) · ∇d) + div ((Ψ′
S) · ∇∆d)

≈ div(d)k,li,j + div(∆d)k,l+1
i±1,j±1 − Ck,l

i,j ·∆dk,l+1
i,j (48)

where

div(d)k,li,j :=
(Ψ′

S)
k,l
i+1,j + (Ψ′

S)
k,l
i,j

2

(

dk,li+1,j − dk,li,j

)

+
(Ψ′

S)
k,l
i−1,j + (Ψ′

S)
k,l
i,j

2

(

dk,li−1,j − dk,li,j

)

+

(Ψ′
S)

k,l
i,j+1 + (Ψ′

S)
k,l
i,j

2

(

dk,li,j+1 − dk,li,j

)

+
(Ψ′

S)
k,l
i,j−1 + (Ψ′

S)
k,l
i,j

2

(

dk,li,j−1 − dk,li,j

)

, (49)

div(∆d)k,l+1
i±1,j±1 :=

(Ψ′
S)

k,l
i+1,j + (Ψ′

S)
k,l
i,j

2
∆dk,l+1

i+1,j +
(Ψ′

S)
k,l
i−1,j + (Ψ′

S)
k,l
i,j

2
∆dk,l+1

i−1,j+

(Ψ′
S)

k,l
i,j+1 + (Ψ′

S)
k,l
i,j

2
∆dk,l+1

i,j+1 +
(Ψ′

S)
k,l
i,j−1 + (Ψ′

S)
k,l
i,j

2
∆dk,l+1

i,j−1 , (50)

and

Ck,l
i,j :=

(Ψ′
S)i+1,j + (Ψ′

S)
k,l
i,j

2
+

(Ψ′
S)i−1,j + (Ψ′

S)
k,l
i,j

2
+

(Ψ′
S)i,j+1 + (Ψ′

S)
k,l
i,j

2
+

(Ψ′
S)i,j−1 + (Ψ′

S)
k,l
i,j

2
. (51)

Equation (46) is iterated until convergence of the method to a steady state solution or until the
number of iterations exceeds a maximum.

1

N

∑

i,j,k

(

dus+1
i.j,k − dus

i.j,k

)2
+
(

dvs+1
i.j,k − dvsi.j,k

)2
< ε2, (52)

with N the number of pixels and ε the stopping criterion threshold. Upon convergence, the method
passes to the next iteration, l + 1, and recomputes the variables in (47). A coarse-to-fine approach,
similar to the one explained in Section 3.1 or in [15, 24], can be used to estimate large displacements.
At the coarsest scale, the disparity map is initialized to zero and this numerical scheme is applied to
find a solution for that scale. The disparity map is then upgraded and solved at each finer scale.

The work in [25] explains this method and its implementation in detail and analyzes its perfor-
mance with respect to the parameters.

A.3 Numerical Scheme of Discontinuity-Preserving Robust Optical Flow

Algorithm

The associated Euler-Lagrange equation of (34) is
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0 =Ψ′
D · (v(x+ d)− u(x)) · vx(x+ d)

+ γΨ′
G · [ (vx(x+ d)− ux(x)) vxx(x+ d)

+ (vy(x+ d)− uy(x)) vxy(x+ d)]

−α div (Ψ′
S · ∇d) , (53)

with

Ψ′
D :=Ψ′ ((v(x+ d)− u(x))2

)

,

Ψ′
G :=Ψ′ (|∇vc(x+ d)−∇uc(x)|2

)

,

Ψ′
S :=Φ(∇u) ·Ψ′ (Φ(∇u) · |∇d|) . (54)

Provided that Ψ′
S is the only place where the discontinuity-preserving function is used, we note

that the numerical scheme for this method can be very similar to the Brox method. Therefore, the
numerical scheme in (46) and the discretizations in (47) and (48) can be replicated.

As shown in [16], and implemented in [17], a good choice for λ(x) is given by

λ(x) :=
− ln(ξ) + ln(α)

|∇u(x)| . (55)

with ξ a small constant and α the regularization parameter. This choice allows us to avoid some
instabilities that appear when the function approaches zero and adapts the smoothing strength based
on local information.

However, when the gradient of the image is close to zero, λ tends to ∞. Thus, this formulation
must discriminate whether a pixel belongs to a homogeneous regions or not. The value of λ is
calculated in each pixel as

λf (x) := min{λΩ, λ(x)}, (56)

with

λΩ :=
− ln(ξ) + ln(α)

|∇u(x′)| , (57)

where x′ is such that |∇u(x′)| is the rank τ × |Ω| among the image gradients, with τ := 0.94 a
suitable value; see [16].
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