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Abstract: Hyperspectral/Multispectral imaging (HSI/MSI) technologies are able to sample from tens
to hundreds of spectral channels within the electromagnetic spectrum, exceeding the capabilities of
human vision. These spectral techniques are based on the principle that every material has a different
response (reflection and absorption) to different wavelengths. Thereby, this technology facilitates the
discrimination between different materials. HSI has demonstrated good discrimination capabilities
for materials in fields, for instance, remote sensing, pollution monitoring, field surveillance, food
quality, agriculture, astronomy, geological mapping, and currently, also in medicine. HSI technology
allows tissue observation beyond the limitations of the human eye. Moreover, many researchers are
using HSI as a new diagnosis tool to analyze optical properties of tissue. Recently, HSI has shown
good performance in identifying human diseases in a non-invasive manner. In this paper, we show
the potential use of these technologies in the medical domain, with emphasis in the current advances
in gastroenterology. The main aim of this review is to provide an overview of contemporary concepts
regarding HSI technology together with state-of-art systems and applications in gastroenterology.
Finally, we discuss the current limitations and upcoming trends of HSI in gastroenterology.

Keywords: hyperspectral imaging; multispectral imaging; clinical diagnosis; biomedical optical
imaging; gastroenterology; medical diagnostic imaging

1. Introduction

Hyperspectral/Multispectral (HS/MS) imaging (HSI/MSI), also known as Imaging Spectroscopy,
is a technology capable of overcoming the imaging limitations of the human vision based in white light
(WL). In fact, HSI combines the features provided by two technologies that have been, for decades
now, used separately i.e., digital imaging and spectroscopy. Digital imaging allows recording of the
morphological features of a given scene, extracting information of different objects in regards to shape
and textures. Spectroscopy deals with the interaction between the electromagnetic (EM) radiation and
matter. While the capabilities of the human vision are restricted to a certain region of the EM spectrum
(EMS), the visible spectrum that spans from 400 to 700 nm, most common HS commercial systems
expand this spectral range from 400 to 2500 nm. Although there are HS cameras able to cover the EM
up to 12 microns, such systems are restricted to certain applications that are out of the scope of this
manuscript. HSI provides information in regions of the EMS that the human eye cannot see, revealing
therefore substance properties that are normally unavailable to human beings. Furthermore, while the
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human eye is only capable of distinguishing three different wavelengths associated with the opsins of
the retina (Cianopsin sensitive to 430 nm -blue light-; Cloropsin sensitive to 530 nm -green light-; and,
Eritropsin sensitive to 650 nm -red light-), HS cameras can capture the EMS in hundreds of different
narrow wavelengths, largely increasing the resolution to over what humans can see. On the other
hand, MSI is based on the same principle of HSI with the main difference being that MSI is generally
characterized by a lower number of spectral channels [1].

An HS image is recorded in a data structure called HS cube, which contains both spatial and
spectral information from a given image. The information inside the HS cube can be visualized in
several different ways. If a single pixel from an HS image is selected, the spectrum related to this
pixel can be examined. Likewise, it is possible to visualize the entire spatial information for a given
wavelength. The observed information at various wavelengths represents different properties of the
matter. Figure 1 shows an HS cube, where both types of representations can be observed.
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Figure 1. Example of an HS cube from in-vivo human brain surface and spectrum from the pixel in red
(left). Several images at different wavelengths obtained from the HS datacube (right).

The spectral signature (also called spectral fingerprint) is the curve that links the EM radiation
with a certain material. The key point of this concept is that each material has its own interaction
with the EMS, hence the spectral signature of any given material is unique. By analyzing the spectral
signatures contained in an HS image, it is possible to distinguish between the different substances
that are present in the captured image. Nevertheless, to properly differentiate materials by using
the spectral signature information, some issues have to be addressed. First, the measured spectral
signature from the same material can present subtle variations, i.e., inter-sample variability. Second,
there are materials that present spectral similarities among them, being extremely challenging to
perform an automatic differentiation of such materials based only on their spectral signatures.

Many researchers have employed HSI technology for different applications [1] such as
non-invasive food quality inspection [2,3], improving recycling processes [4], or examining paintings
for accurate identification of the pigments used in order to refine their restoration [5,6]. Geologists use
HSI to identify the location of different minerals [7]. Furthermore, in agriculture this technology has
been used to quantitatively characterize the soil [8] or to identify the stress levels of plants [9].

Figure 2 presents an example of the spectral signatures of different tissues [10], where the
differences between the spectral signatures of primary (glioblastoma and oligodendroglioma grade III)
and secondary brain tumors (metastatic lung, renal and breast) are evident. Just a visual inspection of
the shape of the reflectance curve reveals that it is possible to identify the type of tissue present at each
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pixel of the image. The measured spectral signatures are mainly affected by illumination, the mixture
of different substances, and/or by noise.
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Figure 2. Spectral signatures of different brain tumor tissues in the VNIR (Visible and Near Infrared)
range [10]. The abscissa axis represents the different wavelengths, and the ordinate axis represents the
normalized reflectance. The continuous red line corresponds to Glioblastoma (GBM); the dashed blue
line corresponds to Oligodendroglioma grade III; the dashed black, green and cyan lines correspond to
a metastatic lung, renal and breast tumors, respectively.

In biomedical applications, the spectral signature is employed as an indicator of the different
biochemical constituents of different tissues [11]. The spectral signature is a useful tool to differentiate
among different tissues, and also to provide information useful to discriminate healthy from diseased
tissue [12]. Nevertheless, spectral signatures of the same tissue from different subjects present
differences due to biological variability. This fact is called inter-patient variability of data. Furthermore,
the spectral signatures measures from different parts of the same tissue also present subtle differences.
This is called intra-patient variability of data. Handling the intra- and inter-patient variability of data
is one of the most important challenges in biomedical HS image analysis.

Due to the large amount of information that HSI provides, it is necessary to process and analyze
the acquired HS images by using high-performance computational techniques, thus focusing on the
information that is more useful for a particular application. In this review, we briefly discuss the
different applications of HSI in the medical field and the HS systems and algorithms more commonly
used as well as the current investigations performed in the application of HSI to study and diagnostic
gastrointestinal (GI) diseases using in-vitro, ex-vivo and in-vivo samples.

2. Medical Hyperspectral Imaging

This section is intended to provide some context on the use of HS technology in the medical field
prior to analyzing details of the use on HS in GI medicine. However, for a deeper introduction about
the use of HSI in biomedical applications we strongly recommend the review articles published by
Li et al. [13], Lu et al. [14] and Calin et al. [15]. Furthermore, for a better understating about light
tissue interactions and how this information can be used in diagnostic applications, we recommend
the studies performed in [11,12].

In the first decade of the 21st century, HSI has attracted the interest of researchers in the medical
field for two main reasons. First, it has been proven that the interaction between the EM radiation
and tissues carries quantitative diagnostic information about tissue pathology [11,12]; and second,
because of the non-invasive nature of this technology. Recently, clinicians have started to use HSI in a
number of situations. Some aim to detect cholesterol by analyzing HSI of the face [16] or arthritis by
studying the skin reflectance [17]. HSI has also been used for detecting peripheral arterial disease [18],
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to enhance the visualization of blood vessels [19] or to achieve automatic differentiation between veins
and arteries during surgery [20]. This technology has also been used to measure the oxygenation levels
of retina [21], brain [22], or kidney [23].

In detection of neoplasia, the main aim of using HSI is to develop aid-visualization tools able to
accurately delineate the boundaries of the tumor in order to improve resection of cancerous lesions,
hence avoiding the unnecessary resection of healthy tissue. This technology has been successfully
applied in detecting prostate cancer [24], head and neck cancer [25,26] or breast cancer [27] in animal
models. In humans, this technology has been employed for the detection of tongue cancer [28], oral
cancer [29], skin tumors [30–32] or brain cancer [10,33].

In the field of histopathology, where the current diagnostic techniques are based on the
morphological analysis of tissue specimen slides, HSI can be employed as a complementary source
of information that may unburden the workload of the pathologists. Researchers have proven the
capabilities in detecting several diseases using this technology, such as examining retina sections for
the quantitative assessment and evaluation of the effect of medication [34], detecting cancer metastasis
in lung and lymph nodes tissue [35], identifying brain tumors [36] or lung cancer [37].

In the following sections, we briefly introduce the main concepts involved in medical HSI and the
use of HSI as a new technology for assessing the detection of GI diseases.

3. Hyperspectral Systems

HS acquisition systems present a challenge to engineers, who have to handle sophisticated optical
and electronic systems to generate an HS cube. There are several types of HS cameras, however
depending on how data are acquired the main categorization is in spatial scanning cameras and
spectral scanning cameras [38].

Spatial scanning cameras, based on the push-broom technique, are capable of acquiring
simultaneously a single spatial dimension (a narrow line of an image) and the whole spectral
information for a given scene. To capture an HS cube in this manner, it is necessary to perform
a spatial scanning, where either the camera or the captured object(s) shift their position while the
camera is capturing frames. The scanning can be also performed by using a mirror in front of the fore
optic, and moving the mirror to image the whole object. Although the use of mirrors allows developing
more compact instrumentation (hence more appealing in clinical circumstances), it is necessary to take
care regarding the geometric distortions mirrors can produce in the captured image. The core of these
cameras is an optical element that splits the incoming radiation into specific wavelengths values [39].

This type of camera has the advantage of capturing images with high spectral resolution, offering
also an excellent trade-off between spatial and spectral resolutions, compared to other HS cameras, in
the expense of performing scanning in order to acquire an HS cube. For this reason, in the medical
field these types of cameras are used in open surgical procedures, for in-vivo surface inspection or for
ex-vivo tissue analysis. It is not possible to directly attach this type of camera to medical apparatus,
like laparoscopes or intraoperative microscopes, due to their inability to perform spatial scanning.
Some examples of HS acquisition systems, based on push-broom cameras, can be found in Figure 3A,B,
while the intraoperative use of these systems are presented in [20,40]. Furthermore, it is possible to use
this kind of camera for registering pathological slides [41], as can be observed in Figure 3C.

On the other hand, spectral scanning cameras employ an optical element that filters the incoming
radiation, registering the entire spatial information of a single wavelength at each and every moment.
Capturing an HS cube requires change of the tuned wavelength of the filter in order to perform spectral
scanning. There are several types of spectral scanning cameras. The filter wheel cameras require the
manual shift of the optical filter, while the Liquid Crystal Tunable Filter (LCTF) or the Acousto-Optic
Tunable Filter (AOTF) are devices where the spectral transmission can be electronically controlled [42].
These cameras have lower spectral resolution than the push-broom cameras, and are not suitable
for applications where the captured object is moving, because the spatial information may vary for
different wavelengths. Nevertheless, these cameras can be easily attached to medical instruments and
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can offer high spatial resolutions. An example of HS acquisition system for medical applications using
these cameras is shown in Figure 3D [43].
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Figure 3. HS acquisition system used in medical applications. (A,B) HSI acquisition systems based
on push-broom cameras for in-vivo human brain tumor detection [40] and in-vivo pig abdominal
surgery [20]; (C) Liquid crystal tunable filter camera attached to an endoscope for cancerous
tissue detection [43]; (D) Microscope coupled to an HSI push-broom camera for pathological slides
registration [36].

The remaining type of HS cameras is called snapshot [44]. Snapshot technology is intended
to deal with the main limitation imposed by the previously described HS technologies: real-time
acquisition. It is not possible to collect HS or MS data in real-time using the above-mentioned HS
technologies for the requirement of performing a scan (either spatial or spectral). These technologies
are restricted to static situations, or scenarios where the object that is moving has a slightly lower speed
compared to the scan speed. For these reasons, where necessary to obtain HS data of non-static scenes
(e.g., living cell imaging) a snapshot camera must be employed. Furthermore, snapshot cameras can
be directly attached to clinical instrumentation, such as endoscopes or laparoscopes. Nevertheless,
both the spectral and the spatial resolution of the snapshot cameras are lower compared to the other
HS technologies. To the best of our knowledge, there is no current research in GI using snapshot
cameras, mainly because all preliminary exploration of HS technology in GI is focused to prove the
capabilities of the technology for diagnosis, and hence it is necessary to evaluate each scenario using
high performance spectral and spatial instrumentation.

4. Hyperspectral Image Analysis

As mentioned in the previous sections, HSI data facilitates the identification of different materials.
However, to successfully retrieve useful information from HS images, the application of appropriate
image analysis techniques is necessary. In this section, a brief overview of such techniques is provided.
They include pre-processing algorithms, e.g., for noise removal (HS images carry noise that may affect
information extraction) [45,46], HSI system calibration (with respect to the camera spectral range
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and resolution) [47], feature extraction [48], dimensionality reduction [49], classification [50], spectral
unmixing [51], and Normalized Difference Index (NDI) estimation [52,53].

Data acquired using HS instrumentation is highly biased by both the instrumentation and the
environmental conditions. In order to remove the influence of instrumentation (mostly the wavelength
dependencies of the sensor and grating efficiency and transmission of the lens), is common to perform
a calibration. The typical calibration procedure in HS and MS imagery consist of capturing a reference
image using a material that has a flat spectral response (e.g., Spectralon). This reference image
captures the spectral dependencies of the instrumentation and is used to remove the influence of the
instrumentation in the captured HS images.

To ameliorate the challenges imposed by the high dimensionality of HS data, feature extraction
and dimensionality reduction approaches are usually employed. Firstly, feature extraction (or band
selection) methods are used to select a subset of the original spectral data that contains the most
useful information for data exploitation. This reduced set of spectral bands strongly depends on the
nature of the specimens under study. Secondly, dimensionality reduction approaches aim to find a
representation of HS image data with a lower dimensionality than the original data, while maintaining
the most significant information. In HSI, data reduction techniques are widely used for finding new
data representations prior to the application of other data analysis techniques (such as classification).
This procedure reduces the complexity of the classification task, and it can also contribute to better
data visualization or compression [54,55].

One of the key topics in HS image analysis is classification, which aims for the identification of
the materials depicted within an HS image. HS data classification methods can be categorized into
supervised and unsupervised. Supervised classifiers require training using prior information on the
materials to be classified; hence, a mathematical model is optimized using this information. Then,
this model is able to infer predictions about new data. A recent review article by Ghamisi et al. [56]
analyzes the mostly extended supervised classifiers employed by the HS community. Unsupervised
classification methods (also known as clustering methods [57]) have the goal of grouping pixels
according to some spectral similarity criteria. Although these kinds of algorithms provide useful
information about the materials that are present in a scene, it is not possible to relate these groups of
similar pixels with their class membership. Recent studies have shown that the joint exploitation of
the spectral and the spatial information in HS images improves the classification performance [58].

Finally, spectral unmixing and NDI estimation have been used for HS image analysis. On the
one hand, spectral unmixing techniques, such as those based on Linear Mixture Models (LMMs),
make the assumption that each pixel of an HS image can be modeled as the weighted sum of
pure spectra elements (called endmembers). This technique tries to overcome the limited spatial
resolution that generally characterizes MS and HS imaging compared to the traditional RGB imaging.
Unmixing algorithms first find the endmembers and then estimate the abundance (proportion) of
each endmember in a single pixel [51]. On the other hand, NDI-based approaches try to establish
a combination of spectral channels that reveal some characteristics of the subject under study.
For example, the Normalized Difference Vegetation Index (NDVI) aims to assess the presence of
live vegetation in HS satellite images [52]. In the context of medical applications, a Melanoma
Identification Index has been proposed in [53] for identification of skin lesions in dermoscopic HS
images. Additionally, there are some researches that make use of Light Transport Models in tissue to
retrieve useful information about tissue diagnosis [16,17,59,60].

5. Hyperspectral Imaging in GI Diagnosis

HSI is an emerging technology still at an early application stage in the medical field. Therefore, the
number of publications regarding the use of this technology in gastroenterology is limited. This section
summarizes the main research works performed in this field, structured following the taxonomy
presented in Figure 4. This taxonomy divides the gastrointestinal HSI applications categorized by
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the type of application, the type of subject to study and the type of sample (i.e., the organ where this
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Figure 4. Taxonomy of the current gastrointestinal HSI applications.

5.1. Surgical Assistance in Real-Time

One of the current target applications of medical HSI is in the field of surgical guidance. Such
applications are motivated by the non-invasive nature of HSI technology, and for its capability of
generating an alternative visualization of tissues, that can assist in the identification of several GI
diseases. In this section, we present the most important surgical guidance tools based on HSI developed
for GI use.

5.1.1. Abdominal Organs Differentiation

An illustrative use of HSI as a visual guide tool during surgery can be found in [61]. In this
research work, the authors collected and processed spectral signatures from various abdominal organs.
The experiment was performed during an open abdominal surgery on a pig. By processing the spectral
signatures of the small intestine, colon, peritoneum, bladder and spleen, a thematic map where each
organ is identified was generated. The results of this thematic map can be found in Figure 5, where
each organ is represented with a different color. The automatic identification of different tissues during
surgery may extend the surgeon’s visual capabilities, making possible examining larger areas of tissue,
and therefore saving surgical time.
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5.1.2. Colorectal Surgery

Colorectal surgeries have also been studied using HSI as a guidance tool during tissue resections.
Schols et al. [62] presented an explorative study aiming to collect and automatically differentiate five
different tissue types within the human abdomen: colon, muscle, artery, vein and mesenteric adipose
tissue (Figure 6). This tool could help surgeons to avoid ureteral injuries, which may lead to severe
complications such as intra-abdominal sepsis, renal failure or loss of renal functions. Near-infrared
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(NIR) fluorescence imaging has been also used to enhance the visualization of the ureters and arteries.
However, this technique requires the use of a contrast agent. HS images from 10 human patients were
collected and analyzed to verify whether HS images were a suitable tool for identifying arteries and
ureters intraoperatively. Although the spectral signatures collected from various organs presented
similarities, the authors reached promising results in the automatic discrimination between different
tissues. Therefore, the foundations for a non-invasive optical guidance tool that could be used
during colorectal surgery, enhancing the visualization of critical anatomy, have been laid. The same
research group also studied an approach to automatically identify different tissue types that can be
observed during laparoscopic colorectal surgery procedures [63]. Five types of tissue were recorded
from ex-vivo human resected specimens, i.e., mesenteric fat, blood vessels, ureter, colonic tissue and
tumorous colonic tissue. The data acquisition was carried out by using a spectrometer working in the
spectral range 440–1830 nm. Based on the measured spectral signatures, the authors posed that the
differentiation between tissues is possible by exploiting the spectral fingerprints of each tissue.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 8 of 21 

 

from various organs presented similarities, the authors reached promising results in the automatic 
discrimination between different tissues. Therefore, the foundations for a non-invasive optical 
guidance tool that could be used during colorectal surgery, enhancing the visualization of critical 
anatomy, have been laid. The same research group also studied an approach to automatically 
identify different tissue types that can be observed during laparoscopic colorectal surgery 
procedures [63]. Five types of tissue were recorded from ex-vivo human resected specimens, i.e., 
mesenteric fat, blood vessels, ureter, colonic tissue and tumorous colonic tissue. The data acquisition 
was carried out by using a spectrometer working in the spectral range 440–1830 nm. Based on the 
measured spectral signatures, the authors posed that the differentiation between tissues is possible 
by exploiting the spectral fingerprints of each tissue. 

 

Figure 6. Mean spectra per tissue type acquired during colorectal surgery in [62]. Average tissue 
spectra for ureter (green), mesenteric adipose tissue (dark blue), artery (red), colon (light blue), 
muscle (black), and vein (purple). 

The above-mentioned research consisted on analyzing the capabilities of HSI to differentiate 
between different types of tissue. Nevertheless, this technology has been also used for colon 
diagnosis applications. Malignant colorectal tumors, adenomatous polyps and different types of 
colorectal normal mucosa were analyzed in [64]. To collect in-vivo HS data, a contactless endoscopic 
diagnosis support system was attached to an HS camera. The endoscopic system was able to capture 
HS images in the wavelength range from 405 to 665 nm, acquiring 27 spectral bands using a filter 
wheel. A total of 21 HS cubes from 12 different patients were employed to assess an innovative band 
selection algorithm based on Recursive Divergence Method (RDFS). In order to evaluate the 
performance of the proposed algorithm, a supervised classification method based on a Support 
Vector Machine (SVM) classifier was used, with the manually labeled spectral samples of the 
different types of tissue acquired, to serve as a training set. Using only five bands from the original 
27, the HSI system was able to identify in real-time the colorectal tumors and outlining the region 
affected by the tumor with an average accuracy of 92.9 ± 5.4%. Furthermore, only these five bands 
were sufficient for the enhancement of the visualization of the microvascular network on the mucosa 
surface. Another approach for colonic cancer detection using HSI can be found in [65], where the 
authors study the identification of esophageal squamous neoplasm by using an HS endoscopic 
imaging system. 

Finally, although the work performed by Beaulieu et al. [66] cannot be considered strictly as 
HSI (they use a spectrometer, so there is no spatial information), they present an interesting 
discussion about which spectral range provides a better discrimination between tumor and normal 
colon tissues. After the analysis, they concluded that the inclusion of SWIR (Short-Wave InfraRed) 
spectral bands contribute to a better discrimination of malignant and normal tissue. 

5.1.3. Bowel Anastomosis 

Figure 6. Mean spectra per tissue type acquired during colorectal surgery in [62]. Average tissue
spectra for ureter (green), mesenteric adipose tissue (dark blue), artery (red), colon (light blue), muscle
(black), and vein (purple).

The above-mentioned research consisted on analyzing the capabilities of HSI to differentiate
between different types of tissue. Nevertheless, this technology has been also used for colon diagnosis
applications. Malignant colorectal tumors, adenomatous polyps and different types of colorectal
normal mucosa were analyzed in [64]. To collect in-vivo HS data, a contactless endoscopic diagnosis
support system was attached to an HS camera. The endoscopic system was able to capture HS images
in the wavelength range from 405 to 665 nm, acquiring 27 spectral bands using a filter wheel. A total of
21 HS cubes from 12 different patients were employed to assess an innovative band selection algorithm
based on Recursive Divergence Method (RDFS). In order to evaluate the performance of the proposed
algorithm, a supervised classification method based on a Support Vector Machine (SVM) classifier
was used, with the manually labeled spectral samples of the different types of tissue acquired, to
serve as a training set. Using only five bands from the original 27, the HSI system was able to identify
in real-time the colorectal tumors and outlining the region affected by the tumor with an average
accuracy of 92.9 ± 5.4%. Furthermore, only these five bands were sufficient for the enhancement of the
visualization of the microvascular network on the mucosa surface. Another approach for colonic cancer
detection using HSI can be found in [65], where the authors study the identification of esophageal
squamous neoplasm by using an HS endoscopic imaging system.

Finally, although the work performed by Beaulieu et al. [66] cannot be considered strictly as HSI
(they use a spectrometer, so there is no spatial information), they present an interesting discussion
about which spectral range provides a better discrimination between tumor and normal colon tissues.
After the analysis, they concluded that the inclusion of SWIR (Short-Wave InfraRed) spectral bands
contribute to a better discrimination of malignant and normal tissue.
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5.1.3. Bowel Anastomosis

The correct monitorization of oxygenation and blood volume fractions are key for success
in colorectal surgery. For this reason, some researchers have focused their attention on imaging
visualization tools that can prevent surgical complications such as intestinal anastomosis. In [67,68]
the authors proposed methods to derive both the oxygenation of tissue and the blood volume fraction
by using models for light transportation in tissue. The results are shown to surgeons as thematic
maps where these physiological parameters are presented (Figure 7A). The work presented in [69] go
beyond, and propose a method to suggest the optimal location of sutures for a better surgical outcome.
To generate such map (Figure 7B), the authors made use of the information about the blood-vessels
location and the tissue thickness (measured from a MS image). Although these research works have
been only tested in swine models, they show a promising methodology for improving colorectal
surgeries. Another interesting application of MSI in bowel anastomosis can be found on [70]. In
this research, authors noticed that the variations in the measured reflectance spectra using an MSI
laparoscope are coherent with biophysical changes during small bowel radiofrequency fusions.
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5.1.4. Biliary Anatomy Identification

Currently, the technologies used to delineate the anatomy of the biliary tree, such as the
Intraoperative Cholangiography (IOC) or the routine intraoperative ultrasonography, are not
sufficiently accurate. For this reason, the biliary anatomy has been also investigated using HSI
to accurately identify the different parts of the anatomic structure. Concretely, in [71] and [55], Zuzak
et al. proposed to use HSI to develop a visualization system capable of identifying the biliary trees
that do not depend on any prior dissection. The authors developed an acquisition system consisting of
an HS camera coupled with a conventional laparoscope that was intended to enhance the visualization
of the biliary anatomy. The spectral range of this device covers the EM spectrum from 650 to 1100 nm.
This technology may achieve a reduction of bile duct injuries during surgery. In order to test the
ability of HSI in detecting the bile tree, a study visualizing intraoperatively the abdominal organs of
pigs during close cholecystectomy procedures was carried out. The authors found that the measured
spectra of several anatomic structures are unique, allowing the differentiation of arterial vessels, venous
structures and bile duct. In [55], the HS images were processed using PCA (Principal Component
Analysis), which proves a visual enhancement of the different observed anatomical structures, i.e.,
the gall bladder and the liver. The correct identification of the tissue types was assessed by using
the morphological structures of each tissue. This research work shows that the visualization of the
biliary tree could be safely performed during surgical procedures without the need for prior imaging.
The inclusion of this technology may lead to eliminating the risk of the bile duct injury during
cholecystectomy, avoiding also the current need of injecting radioactive contrast agents.

In addition, dual-mode imaging systems have been using for this goal. Mitra et al. [72] used
a system composed by a Indocyanine-green-loaded (IGC) micro-balloon and an HS camera. The
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goal of this study was to identify the surrounding anatomy during IOC in real-time. This imaging
technique was tested over ex-vivo swine tissues, showing an accurate identification of the biliary
anatomy. The advantages of this imaging modality over IOC are its low cost, its real-time response,
and its independence of radiation agents. This type of visualization tool can be used for guidance
during surgical procedures. Furthermore, it can be used as an additional input to surgical robots, such
as the Da Vinci robot [73].

5.1.5. Intestinal Ischemia Identification

The intestinal ischemia can be defined as an inadequate blood flow to the intestine, causing an
inability to absorb food and nutrients, bloody diarrheal, infection and gangrene. In this sense, HS
technology has been also used for this application. Akbari et al. [74] developed a intraoperative HSI
tool capable of obtaining spectral signatures of intestinal ischemia acquired during a pig abdominal
surgery. Two cameras were used, covering from 400 to 1700 nm. The methodology followed in this
paper to process the HSI data consisted in finding an optimal NDI that allows the discrimination of
intestinal ischemia over other kind of tissue. This article demonstrated that the HS image analysis
is suitable for visualizing intestinal ischemia during surgical procedures. However, although this
study was performed with a wide spectral range and presents good analysis of the capabilities of
HSI technology, the instrumentation based on push-broom cameras is extremely outsized, being
inappropriate for clinical environments.

5.1.6. Gastric Cancer Identification

Other relevant research where HSI is used to study GI diseases can be found in [75], where
the authors describe the use of HSI for detecting human gastric cancer. This study was carried
out over ten patients who underwent a total gastrectomy. The HS images were captured ex-vivo
after the resection of a tumor using an HS camera covering the range from 1000 to 2500 nm.
After pathologic diagnosis, the real diagnosis was compared with the image processing results.
Although the data acquisition system was not appropriate to be used for endoscopic diagnosis
(it consisted on a proof-of-concept demonstrator), the data analysis enabled the identification of
wavelengths improving the differentiation between healthy and tumor tissues. These wavelengths can
be employed as specifications in the development of future laparoscopic HSI systems optimized for
gastric cancer detection.

Another application of HSI as a guidance tool during surgical procedures can be found in [76].
In this research work, the authors processed the HS data aiming to determine a combination of
wavelengths, highlighting the presence of ulcer regions in gastric tissue. Using different spectral
components from different types of tissue, the authors generated a thematic map where the
visualization of ulcer and erythematous regions of the image were able to be differentiated with
respect to the surrounding tissue. Other research works have also studied the in-vivo identification
of gastric ulcers using HSI [77] or gastric cancer employing a customized MSI video endoscopy
system capable of capturing multispectral video composed by six bands located in the visual spectral
range [78]. These research works suggest that HSI and MSI can be used as a guidance tool both for
diagnosing, and for delimitating the gastric tumor margins accurately.

5.2. Pathological Assistance

The research works previously presented investigate methods aiming to automatic identification
and visualization of different types of tissues, in the context of clinical diagnosis, mainly to facilitate
surgical procedures in real-time. Nevertheless, HS images have been also applied to the pathological
diagnosis of colonic diseases. The following papers describe the use of HSI for the identification of
tumorous tissues from in-vitro and ex-vivo human colon pathology samples.

The work described in [79] presents a study performed on biopsy slides of colon tissue aiming to
distinguish between normal and malignant cells through exploiting HSI. A morphological analysis of
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the HS images of biopsy slides with several microdots belonging to different patients was performed
employing a dimensionality reduction and cellular segmentation to describe the shape, orientation
and other geometrical attributes, using ICA (Independent Component Analysis) and the k-Means
algorithm. The segmentation maps obtained after the application of k-Means clustering algorithm allow
differentiating the malignant and benign cells by their morphological features. These morphological
features were then used as input to a classification process that differentiates between normal and
malignant cells. For this purpose, LDA (Linear Discriminant Analysis) algorithm was used due to
its reduced computational cost and acceptable performance. The images were captured with an HSI
system based on a tunable light source and a CCD (Charge-Coupled Device) camera coupled to a
microscope with a magnification of 400×, covering the spectral range between 450 and 850 nm. An
accuracy of up to 84% was obtained in the classification experiments, demonstrating that the use of
HSI facilitates the discrimination between normal and malignant cells of colon tissue by using its
morphological features.

Furthermore, Rajpoot et al. [80] employed an SVM to classify in-vitro samples of normal and
malignant human colon cells. Archival Hematoxylin and Eosin (H&E) stained micro-array tissue
sections of normal and malignant (adenocarcinoma) colonic tissue image data cubes were acquired at
microscopic level. The spatial dimensions of each HS cube were 1024 × 1024 pixels, having 20 spectral
bands covering the wavelength range from 450 to 640 nm. Multiscale morphological features such as
area, eccentricity, equivalent diameter, Euler number, extent, orientation, solidity, major axis length,
and minor axis length, were obtained from the segmented maps to be used in the SVM classification
procedure. The experiments carried out in this study reveal that an accurate discrimination (99.72%)
between normal and malignant tissue can be achieved.

Colon biopsy samples have also been studied by Masood et al. [81], where the authors propose
an algorithm for the automatic classification of colon biopsies based on spatial analysis of HS images
captured from colon biopsy samples. The aim of their work was to distinguish between benign
and malignant tissue. Although the authors collected HS cubes with 128 bands, they only use a
single spectral band. To this end, the processing framework consisted on selecting a single band and
performing a spatial analysis of this image by using Circular Local Binary Patterns (CLBPs). Then this
information is used by different supervised classifiers in order to retrieve diagnostic information from
colon biopsies. The maximum accuracy obtained was 90.6% for the SVM classification, with 87.5%
sensitivity and 93.7% specificity. A clear advantage of performing the spatial analysis on a single band
is to save acquisition, storage, and computational costs, but it is difficult to state that this algorithm
really makes use of the richness of information contained in the HS images. Although authors reached
good discrimination between malignant and benign tissue, the discrimination capabilities may increase
if more spectral channels are used.

HSI technology was also evaluated for differentiating normal and cancerous gastric cells in H&E
stained pathological slides [82]. In this case, the main motivation to perform the study was to analyze
the differences in pH levels between cancerous and normal cells. These pH differences were reflected
in the spectral signature of the different cells, providing good discrimination between malignant
and normal cells using only the spectral information of cell nuclei. Conversely, the work presented
by Hidovic-Rowe et al. [59,60] aimed to extract histological parameters from ex-vivo colon tissues
using HSI. The measured parameters were the blood volume fractions, the hemoglobin saturation
levels and the size of collagen fibers or the thickness of the mucosa layer. These parameters were
computationally estimated by using a light transportation model over colon tissue, identifying both
normal and tumor tissues.

Some current technologies used to improve colorectal exams are the White Light Endoscopy
(WLE), the Chomoendoscopy, Autofluorescence Imaging and Narrow Band Imaging. Nevertheless,
these technologies present limitations that motivate the finding of new technologies to this end.
Motivated by this fact, the work presented in [83] evaluated the initial feasibility of using HSI for
colonic adenocarcinoma identification using HSI fluorescence excitation-scanning for measuring
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changes in fluorescence excitation spectrum. To this end, an ex-vivo and in-vitro analysis of colonic
tissue was carried out, in order to determinate if HSI fluorescence can be used as an additional
endoscopy technology. A total number of eight patients were enrolled in that study. Specimens were
imaged using a custom HSI fluorescence excitation-scanning microscope system. As it can be seen in
Figure 8A, at short excitation wavelengths, the fluorescence total intensity of adenocarcinomas was
lower than normal tissue. However, fluorescence resulting from excitation at higher wavelengths
was increased, and in the S4 sample was higher than normal tissue, Figure 8B,C. Transmission and
absorbance spectral data indicate that adenocarcinoma displayed increased optical absorbance, as
compared to surrounding normal tissue (Figure 8D,E). These preliminary data suggest that there are
significant differences in the spectral signature of cancerous and normal tissue. In this sense, the
same research group continued the investigations and presented new results in [84,85]. These results
could pave the way towards advanced classification systems than can automatically identify tissues
attending to their spectral signatures.
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Figure 8. Spectral differences between normal and cancerous tissue for two specimen pairs: S4
and S5 presented in [83]. Preliminary data demonstrate the differences in spectral signature
between cancerous and normal tissue. Transmission and absorbance spectral data indicate that
adenocarcinoma displays increased optical absorbance, as compared to surrounding normal tissue,
with additional spectral differences that could be exploited to increase sensitivity and specificity for
tumor detection. Spectral scan types are as follows: (A) Fluorescence excitation scan from 390 to
450 nm; (B) Fluorescence excitation scan from 390 to 480 nm; (C) Fluorescence excitation scan from 390
to 550 nm; (D) Transmission scan from 390 to 700 nm; (E) Absorbance scan from 390 to 700 nm.

In addition to the studies presented before, there are other interesting and novel applications of
pathological assistance using MSI/HSI. For example, authors in [86] collected MS images from four
types of colorectal cells: viz. normal, hyperplastic polyps, tabular adenoma with low grade dysplasia
and carcinoma. After MSI analysis of different colorectal tissues, an accurate discrimination using
colorectal cells was achieved.

Finally, another less conventional approach, investigated in the context of HSI for GI pathological
assistance, presents a vocal synthesis model and its application to sonification of HS colonic tissue
images [87,88]. The authors state that sonification could be used as an intuitive means of representing
and analyzing high-dimensional and complex data. The high-dimensional data for sonification
have been obtained from HS scans of normal and abnormal colon tissue, the abnormal tissue being
potentially cancerous. The tissue images were collected in cooperation with the Department of Applied
Mathematics at Yale University. A series of slides were prepared from distinct patients, containing
more than 300 microdots each slide, and each microdot corresponding to a slice of colon tissue (roughly
0.5 × 0.5 mm in size). Each microdot may contain either normal or malignant colon tissue. A slide
was chosen and illuminated with a tuned light source (capable of emitting any combination of light
frequencies in the range of 450 to 850 nm), and the transmitted image was magnified 400× by a
Nikon Biophot microscope. An amount of 15 data cubes of normal colonic tissue and 46 data cubes
of abnormal colonic tissue were collected. Examples of pre-processed specimens are illustrated in
Figure 9. Initial experiments with a variety of vocal tract models suggest that human ability to easily
identify vowel-like sounds is promising for intuitive sonification.
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5.3. HSI Application Summary

Finally, in Table 1 we provide a summary of the most relevant research work in the field of
gastroenterology using HSI. This table is organized attending to: (1) the disease that has been
investigated; (2) the type of tissue involved in each study; (3) the subject of the research; (4) the
HSI technology employed to acquire the images; and (5) the data processing methods applied to
extract useful information from HS data.

Table 1. Summary of HSI applications in gastroenterology.

Application/Disease Spectral Range
(nm) HSI Technology Experiment

Type
Study

Subjects
Data Analysis Methods (Category

*/Method ¥) Reference(s)

Biliary tree visualization 650–1050 LCTF In-vivo Swine D, E/PCA [55]
Colon cancer detection 400–700 LCTF Ex-vivo Humans F, E/LPM [59,60]
Organs identification
during surgery 900–1700 Push-broom In-vivo Swine SA, P/DWT; C/SOM [61]

Identifying tissues during
surgery 350–1830 DRS In-vivo Humans SA, F/SGAD; C/SVM [62]

Tissue identification
during colorectal surgery 440–1830 DRS Ex-vivo Humans SA, C/TPCR [63]

Malignant colorectal
tumors and adenomatous
polyps

405–665 Filter Wheel In-vivo Humans R/RDFS; C/SVM [64]

Colon cancer detection 300–1800 Spectroscopy Ex-vivo Humans C/LDA; C/SVM [66]
Oxygenation measurement
(small bowel) 400–720 LCTF In-vivo Swine Ex/Linear light model [67]

Oxygenation measurement
(small bowel) 470–700 Filter-based In-vivo Swine Ex/Non-linear light model [68]

Suture recommendation
(intestinal anastomosis) 470–770 LED-based Ex-vivo Swine Ex/2D-filtering, SAM and composite

images from the multispectral image [69]

Monitoring
radiofrequency fusions in
small bowel

460–700 LCTF In-vivo Swine Ex/Linear light model [70]

Biliary trees identification 650–1100 LCTF In-vivo Swine D, E/PCA [71]
Biliary anatomy
visualization 650–700 LCTF Ex-vivo Swine S/LMM, R/PCA [72]

Intestinal ischemia
identification 400–1700 Push-broom In-vivo Swine I/Ischemia Index; C/SVM [74]

Gastric cancer detection 1000–2500 Push-broom Ex-vivo Humans I/Cancer Index; C/SVM [75]
Gastric ulcers 405–665 Filter Wheel In-vivo Humans R, E/DI [76]
Gastric cancer 400–800 N/A Ex-vivo Humans C/MDC [77,89]

Gastric cancer 400–650 Tunable Light Source In-vivo Humans C/SVM; C/RF; C/RobustBoost;
C/AdaBoost [78]

Colon cancer detection 450–850 Tunable Light Source In-vitro Humans R/ICA; R/PCA; C/k-Means; C/LDA;
C/SVM [79,80]

Colon cancer detection 440–700 Tunable Light Source In-vitro Humans F/CLBP; R/PCA; C/LDA; C/SVM [81]
Gastric cancer cell
identification 420–720 LCTF In-vitro Humans R/Manual band selection; C/ANNs [82]

Colonic adenocarcinoma
identification 390–700 LCTF Ex-vivo Humans SA [83]

Colon cancer detection 360–550 LCTF In-vitro Humans S/LMM; R/PCA [84,85]
Colorectal cell
differentiation 400–1700 LCTF In-vitro Humans F/LBP, C/RF [86]

Colon cancer detection 400–1000 Push-broom Ex-vivo Humans DR/SPA; C/LDA [90]

* Categories of data analysis methods: (P) Preprocessing; (F) Feature extraction; (C) Classification; (R) Data
Reduction; (S) Spectral Unmixing; (I) Normalized Difference Index; (E) Tissue Visualization Enhancement; (SA)
Spectral Signature Analysis; (Ex) Exploratory Data Analysis. ¥ Data analysis methods: (SGAD) Spectral Gradients
and Amplitude Differences; (SVM) Support Vector Machines; (DWT) Discrete Wavelet Transformation; (SOM)
Self-Organizing Maps; (CLBP) Circular Local Binary Patterns; (PCA) Principal Component Analysis; (LDA) Linear
Discriminant Analysis; (LPM) Light Propagation Modeling; (LMM) Linear Mixture Model; (ICA) Independent
Component Analysis; (RDFS) Recursive Divergence Feature Selection; (DI) Dependence of Information; (MDC)
Minimum Distance Classifiers; (TPCR) Total Principal Component Regression; (RF) Random Forest; (SAM)
Spectral Angle Mapper; (SPA) Successive Projection Algorithm; (LBP) Local Binary Pattern; (ANNs) Artificial
Neural Networks.
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6. Discussion

Although HSI technology has shown its potential to be used as a diagnostic tool, the roadmap for
a new generation of HS medical devices is not clear yet. One of the most relevant challenges holds
in the acquisition system. The most appropriate technology to be used in the GI tract is not clear.
Although most of the state-of-art studies employ systems based on LCTF, acquisition systems based on
push-broom or tunable light sources have also been successfully employed to this end. Despite the fact
that higher spectral resolution is achieved using push-broom cameras, the spatial scanning required
to obtain an HS cube makes difficult the integration of such kind of cameras with standard medical
instrumentation, such as gastroscopes, colonoscopes, and laparoscopes. For this reason, LCTF can be
regarded as the most extended technology for the GI tract. On the other hand, a novel study has been
recently performed to identify in-vivo esophageal squamous neoplasia in human patients by using
a RGB-HSI combined system [65]. In this study, authors developed a system capable of artificially
generating an in-vivo HS image in the visual range by merging the information of a RGB endoscopic
image with the spectral information obtained from a 30 Macbeth color checker tile measured with
a spectrometer.

Concerning the optimal spectral range for GI diagnosis, the answer is still unclear. Although most
of the studies in the state-of-art use images in the VNIR spectral range, there are several research works
reporting successful detection of diseases using a spectral range beyond 1000 nm. In the upcoming
years, the research community should assess the optimal spectral range for diagnostic applications.
Depending on this spectral range, the directions on medical HS acquisition systems will possibly vary.
On the one hand, if the VNIR spectral range is optimal for disease detection in the GI tract, the future
medical HS images will be probably based on LCTF or snapshot cameras, that provide lower spectral
resolution and a limited spectral range compared with push-broom cameras, but they are easily
adapted to conventional medical instrumentation. On the other hand, if the spectral range increases
beyond 1000 nm, the identification of diseases will probably improve due to the richer amount of
available spectral information. However, push-broom cameras have to be used, and the engineering
challenge will be the adaptation of the push-broom cameras to conventional medical instrumentation.

Recently, pioneering HSI-enabled flexible endoscopes and concept capsule endoscopes have been
proposed [47,91,92], indicating the feasibility of incorporating HSI in clinical practice for colorectal
cancer detection. Future challenges of HSI in gastrointestinal endoscopy are mainly associated with its
application for the detection and characterization of various different kinds of abnormalities.

There are other interesting applications of MSI/HSI that are closely related to gastroenterology,
but they are out of the scope of this manuscript. For example, in a recent study performed
by Bhutiani et al. [93], the authors studied the in-vivo detection of AF-680 dye encapsulated PLA
(Polylactic Acid) using an MSI laparoscope. The exploitation of such type of information has a
potential use for in-vivo characterization of drug delivery.

Besides, on a recent review regarding current trends in endoscopic imaging, Joshi et al. [94]
mentioned two novel applications of MSI that are relevant to be mentioned in this review. The first
application is related to the use of dual-channel fluorescence images from in-vivo cross sections
using a confocal microendoscope [95]. This research points out that in-vivo cross section images
can be captured with a similar orientation as the corresponding histological sample. The same
methodology could be applied with MSI/HSI instead of fluorescence. The second application presented
by Joshi et al. [96] used a multispectral endoscope to simultaneously collect three fluorescence images
(DEAC, 6-TAMRA and CF633). They were able to acquire images from colonic adenoma stained with
two different peptides at the same time, providing sharp visualization of the lesion margins.

Structured light and MSI were used to simultaneously extract information about reflectance
and surface structure of tissue during small bowel surgery [97]. Although this research was just a
proof-of-concept, the incorporation of an additional spatial dimension to MSI/HSI can lead to better
discrimination among different tissues.
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Other spectral technologies based on Raman spectroscopy and Quantum Cascade Lasers (QCL)
have been applied to assist pathological analysis. First, Raman spectroscopy has been employed to
detect alterations in the biomedical composition of intestinal tissue biopsies, which can reveal coeliac
disease [98]. Although more research is needed to confirm the hypothesis, Raman spectroscopy is
also presented as a promising alternative for coeliac disease detection. Furthermore, several research
works have been performed in the literature with the goal of diagnosing histological slides without
requiring stains using QCL acquisition systems. These systems are able to acquire hyperspectral images
beyond five microns. Firstly, in [99], Kröger-Lui et al. had the goal of detecting goblet cell regions in
colonic epithelium using unstained histological sections, instead of conventional H&E stained samples.
They demonstrated a strong correlation between the contents obtained with HS unstained images
and the corresponding stained section using H&E. Secondly, in [100], Petersen et al. presented a
proof-of-concept following a similar methodology, demonstrating that the mid-infrared information
could be also useful for diagnosis purposes. In this pilot study, the authors found valuable information
about protein rich amide regions of colonic crypts, the musin secretions and the surface epithelium
walls that could be extracted from unstained colon sections using this spectral range (beyond 2500 nm).

As far as the data analysis techniques are concerned, there is not a generalized framework for
processing HS data. Table 1 summarizes the data analysis methods currently used in GI HS applications.
Actually, most techniques aim to get an enhanced visualization of tissues, with dimensional reduction
techniques, such as PCA, LDA or ICA, being the most popular HS data processing methods. Another
interesting trend is the definition of some normalized difference indexes to retrieve some characteristics
of tissues, such as the proposed Normalized Difference Ischemia Index (NDII) or the Normalized
Difference Cancer Index (NDCI). Although the use of such types of indices is handy, their use is still
limited. As far as classification methods are concerned, in contrast to other HSI applications (such as
precision agriculture or food quality analysis) the classification approaches used in the context of GI
endoscopy imaging are limited, mainly based on SVMs. Maybe the slow raise of HS data classifiers for
GI HS data is motivated by the difficulties to collect sufficiently large labeled datasets, allowing the
generation and evaluation of reliable classification models. A relevant challenge for the analysis of
medical HS data would be to investigate adaptation or enhancements of the current state-of-art HS
data classification approaches (mainly coming from the Remote Sensing community) for the analysis
of GI endoscopy data.

7. Conclusions

This survey is intended to provide a useful introduction to HSI in the medical field, paying special
attention to the applications in gastroenterology. HSI has been limitedly explored for clinical purposes
in GI endoscopy; moreover, the study of the literature indicates that it is a novel imaging modality with
a high potential to improve several current medical procedures. For instance, HSI can contribute to
make gastric surgical procedures safer by avoiding bile duct injury or ureteral injuries. Furthermore, it
can contribute in a more accurate determination of tumor boundaries, facilitating a complete resection
of the tumor tissue. Detection of malignant tissue, beyond the limitations of the contemporary white
light imaging remains an area where properly employed HSI could lead to precision diagnosis. Further
use of HSI technology has to face limitations of space and applicability [101].
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60. Hidović-Rowe, D.; Claridge, E.; Ismail, T.; Taniere, P.; Graham, J. Analysis of multispectral images of the
colon to reveal histological changes characteristic of cancer. Med. Image Underst. Anal. MIUA 2006, 1, 66–70.

http://dx.doi.org/10.1016/j.patrec.2012.07.020
http://dx.doi.org/10.1117/1.OE.52.9.090901
http://dx.doi.org/10.1109/TGRS.2010.2075937
http://dx.doi.org/10.1109/TGRS.2012.2185054
http://dx.doi.org/10.1117/1.3574756
http://www.ncbi.nlm.nih.gov/pubmed/21639573
http://dx.doi.org/10.1080/10408398.2013.871692
http://www.ncbi.nlm.nih.gov/pubmed/24689555
http://dx.doi.org/10.1109/JSTARS.2012.2194696
http://dx.doi.org/10.1175/WCAS-D-11-00059.1
http://dx.doi.org/10.1111/j.1600-0846.2011.00571.x
http://dx.doi.org/10.1021/ac070367n
http://dx.doi.org/10.1109/MGRS.2016.2616418
http://dx.doi.org/10.1109/TNN.2005.845141
http://www.ncbi.nlm.nih.gov/pubmed/15940994
http://dx.doi.org/10.1109/JPROC.2012.2197589


J. Clin. Med. 2019, 8, 36 19 of 21

61. Akbari, H.; Kosugi, Y.; Kojima, K.; Tanaka, N. Wavelet-Based Compression and Segmentation of
Hyperspectral Images in Surgery. In Lecture Notes in Computer Science; Springer Nature: Berlin, Germany;
pp. 142–149.

62. Schols, R.M.; Alic, L.; Beets, G.L.; Breukink, S.O.; Wieringa, F.P.; Stassen, L.P.S. Automated Spectroscopic
Tissue Classification in Colorectal Surgery. Surg. Innov. 2015, 22, 557–567. [CrossRef]

63. Schols, R.M.; Dunias, P.; Wieringa, F.P.; Stassen, L.P.S. Multispectral characterization of tissues encountered
during laparoscopic colorectal surgery. Med. Eng. Phys. 2013, 35, 1044–1050. [CrossRef] [PubMed]

64. Han, Z.; Zhang, A.; Wang, X.; Sun, Z.; Wang, M.D.; Xie, T. In vivo use of hyperspectral imaging to develop a
noncontact endoscopic diagnosis support system for malignant colorectal tumors. J. Biomed. Opt. 2016, 21,
016001. [CrossRef] [PubMed]

65. Wu, I.-C.; Syu, H.-Y.; Jen, C.-P.; Lu, M.-Y.; Chen, Y.-T.; Wu, M.-T.; Kuo, C.-T.; Tsai, Y.-Y.; Wang, H.-C. Early
identification of esophageal squamous neoplasm by hyperspectral endoscopic imaging. Sci. Rep. 2018, 8,
13797. [CrossRef]

66. Beaulieu, R.J.; Goldstein, S.D.; Singh, J.; Safar, B.; Banerjee, A.; Ahuja, N. Automated diagnosis of colon
cancer using hyperspectral sensing. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1897. [CrossRef]

67. Clancy, N.T.; Arya, S.; Stoyanov, D.; Singh, M.; Hanna, G.B.; Elson, D.S. Intraoperative measurement of
bowel oxygen saturation using a multispectral imaging laparoscope. Biomed. Opt. Express 2015, 6, 4179.
[CrossRef]

68. Wirkert, S.J.; Kenngott, H.; Mayer, B.; Mietkowski, P.; Wagner, M.; Sauer, P.; Clancy, N.T.; Elson, D.S.;
Maier-Hein, L. Robust near real-time estimation of physiological parameters from megapixel multispectral
images with inverse Monte Carlo and random forest regression. Int. J. Comput. Assist. Radiol. Surg. 2016, 11,
909–917. [CrossRef] [PubMed]

69. Cha, J.; Shademan, A.; Le, H.N.D.; Decker, R.; Kim, P.C.W.; Kang, J.U.; Krieger, A. Multispectral tissue
characterization for intestinal anastomosis optimization. J. Biomed. Opt. 2015, 20, 106001. [CrossRef]
[PubMed]

70. Clancy, N.T.; Arya, S.; Stoyanov, D.; Du, X.; Hanna, G.B.; Elson, D.S. Imaging the spectral reflectance
properties of bipolar radiofrequency-fused bowel tissue. In Proceedings of the Clinical and Biomedical
Spectroscopy and Imaging IV, Munich, Germany, 21–25 June 2015; Volume 9537.

71. Zuzak, K.J.; Naik, S.C.; Alexandrakis, G.; Hawkins, D.; Behbehani, K.; Livingston, E. Intraoperative bile duct
visualization using near-infrared hyperspectral video imaging. Am. J. Surg. 2008, 195, 491–497. [CrossRef]
[PubMed]

72. Mitra, K.; Melvin, J.; Chang, S.; Park, K.; Yilmaz, A.; Melvin, S.; Xu, R.X. Indocyanine-green-loaded
microballoons for biliary imaging in cholecystectomy. J. Biomed. Opt. 2012, 17, 116025. [CrossRef] [PubMed]

73. Davies, B. Robotic Surgery—A Personal View of the Past, Present and Future. Int. J. Adv. Robot. Syst. 2015,
12, 54. [CrossRef]

74. Akbari, H.; Kosugi, Y.; Kojima, K.; Tanaka, N. Detection and analysis of the intestinal ischemia using visible
and invisible hyperspectral imaging. IEEE Trans. Biomed. Eng. 2010, 57, 2011–2017. [CrossRef]

75. Akbari, H.; Uto, K.; Kosugi, Y.; Kojima, K.; Tanaka, N. Cancer detection using infrared hyperspectral imaging.
Cancer Sci. 2011, 102, 852–857. [CrossRef]

76. Gu, X.; Han, Z.; Yao, L.; Zhong, Y.; Shi, Q.; Fu, Y.; Liu, C.; Wang, X.; Xie, T. Image enhancement based
onin vivohyperspectral gastroscopic images: A case study. J. Biomed. Opt. 2016, 21, 101412. [CrossRef]
[PubMed]

77. Ogihara, H.; Hamamoto, Y.; Fujita, Y.; Goto, A.; Nishikawa, J.; Sakaida, I. Development of a Gastric Cancer
Diagnostic Support System with a Pattern Recognition Method Using a Hyperspectral Camera. J. Sens. 2016,
2016, 1–6. [CrossRef]

78. Hohmann, M.; Kanawade, R.; Klämpfl, F.; Douplik, A.; Mudter, J.; Neurath, M.F.; Albrecht, H. In-vivo
multispectral video endoscopy towards in-vivo hyperspectral video endoscopy. J. Biophotonics 2017, 10,
553–564. [CrossRef] [PubMed]

79. Masood, K.; Rajpoot, N.; Rajpoot, K.; Qureshi, H. Hyperspectral Colon Tissue Classification using
Morphological Analysis. In Proceedings of the International Conference on Emerging Technologies,
Peshawar, Pakistan, 13–14 November 2006; pp. 735–741.

http://dx.doi.org/10.1177/1553350615569076
http://dx.doi.org/10.1016/j.medengphy.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23391740
http://dx.doi.org/10.1117/1.JBO.21.1.016001
http://www.ncbi.nlm.nih.gov/pubmed/26747475
http://dx.doi.org/10.1038/s41598-018-32139-1
http://dx.doi.org/10.1002/rcs.1897
http://dx.doi.org/10.1364/BOE.6.004179
http://dx.doi.org/10.1007/s11548-016-1376-5
http://www.ncbi.nlm.nih.gov/pubmed/27142459
http://dx.doi.org/10.1117/1.JBO.20.10.106001
http://www.ncbi.nlm.nih.gov/pubmed/26440616
http://dx.doi.org/10.1016/j.amjsurg.2007.05.044
http://www.ncbi.nlm.nih.gov/pubmed/18304512
http://dx.doi.org/10.1117/1.JBO.17.11.116025
http://www.ncbi.nlm.nih.gov/pubmed/23214186
http://dx.doi.org/10.5772/60118
http://dx.doi.org/10.1109/TBME.2010.2049110
http://dx.doi.org/10.1111/j.1349-7006.2011.01849.x
http://dx.doi.org/10.1117/1.JBO.21.10.101412
http://www.ncbi.nlm.nih.gov/pubmed/27206742
http://dx.doi.org/10.1155/2016/1803501
http://dx.doi.org/10.1002/jbio.201600021
http://www.ncbi.nlm.nih.gov/pubmed/27403639


J. Clin. Med. 2019, 8, 36 20 of 21

80. Rajpoot, K.; Rajpoot, N. SVM Optimization for Hyperspectral Colon Tissue Cell Classification. In Medical
Image Computing and Computer-Assisted Intervention (MICCAI) 2004; Springer Nature: Berlin, Germany, 2004;
pp. 829–837.

81. Masood, K.; Rajpoot, N. Texture based classification of hyperspectral colon biopsy samples using CLBP.
In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; Institute of Electrical and
Electronics Engineers (IEEE): Piscataway, NJ, USA, 2009.

82. Zhu, S.; Su, K.; Liu, Y.; Yin, H.; Li, Z.; Huang, F.; Chen, Z.; Chen, W.; Zhang, G.; Chen, Y. Identification
of cancerous gastric cells based on common features extracted from hyperspectral microscopic images.
Biomed. Opt. Express 2015, 6, 1135–1145. [CrossRef] [PubMed]

83. Leavesley, S.J.; Walters, M.; Lopez, C.; Baker, T.; Favreau, P.F.; Rich, T.C.; Rider, P.F.; Boudreaux, C.W.
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection. J. Biomed. Opt. 2016, 21,
104003. [CrossRef] [PubMed]

84. Leavesley, S.J.; Deal, J.; Martin, W.A.; Lall, M.; Lopez, C.; Rich, T.C.; Boudreaux, C.W.; Rider, P.F.; Hill, S.
Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning. In Optical
Biopsy XVI: Toward Real-Time Spectroscopic Imaging and Diagnosis; Alfano, R.R., Demos, S.G., Eds.; SPIE:
Washington, DC, USA, 2018; Volume 10489, p. 19.

85. Deal, J.; Harris, B.; Martin, W.; Lall, M.; Lopez, C.; Boudreaux, C.; Rich, T.; Leavesley, S.; Rider, P. Demystifying
autofluorescence with excitation scanning hyperspectral imaging. In Imaging, Manipulation, and Analysis of
Biomolecules, Cells, and Tissues XVI; Farkas, D.L., Nicolau, D.V., Leif, R.C., Eds.; SPIE: Washington, DC, USA,
2018; Volume 10497, p. 40.

86. Kunhoth, S.; Al Maadeed, S. Building a multispectral image dataset for colorectal tumor biopsy. In
Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference
(IWCMC), Valencia, Spain, 26–30 June 2017.

87. Cassidy, R.J.; Berger, J.; Lee, K.; Maggioni, M.; Coifman, R.R. Analysis of hyperspectral colon tissue images
using vocal synthesis models. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2004.

88. Cassidy, R.J.; Berger, J.; Lee, K. Auditory Display of Hyperspectral Colon Tissue Images using Vocal Synthesis
Models. In Proceedings of the ICAD 04óTenth Meeting of the International Conference on Auditory Display,
Sydney, Australia, 6–9 July 2004.

89. Kiyotoki, S.; Nishikawa, J.; Okamoto, T.; Hamabe, K.; Saito, M.; Goto, A.; Fujita, Y.; Hamamoto, Y.;
Takeuchi, Y.; Satori, S.; et al. New method for detection of gastric cancer by hyperspectral imaging: A pilot
study. J. Biomed. Opt. 2013, 18, 26010. [CrossRef] [PubMed]

90. Yuan, X.; Zhang, D.; Wang, C.; Dai, B.; Zhao, M.; Li, B. Hyperspectral Imaging and SPA–LDA Quantitative
Analysis for Detection of Colon Cancer Tissue. J. Appl. Spectrosc. 2018, 85, 307–312. [CrossRef]

91. Kumashiro, R.; Konishi, K.; Chiba, T.; Akahoshi, T.; Nakamura, S.; Murata, M.; Tomikawa, M.; Matsumoto, T.;
Maehara, Y.; Hashizume, M. Integrated Endoscopic System Based on Optical Imaging and Hyperspectral
Data Analysis for Colorectal Cancer Detection. Anticancer Res. 2016, 36, 3925–3932.

92. Lim, H.-T.; Murukeshan, V.M. A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging
applications. Sci. Rep. 2016, 6. [CrossRef]

93. Bhutiani, N.; Samykutty, A.; McMasters, K.M.; Egilmez, N.K.; McNally, L.R. In vivo tracking of
orally-administered particles within the gastrointestinal tract of murine models using multispectral
optoacoustic tomography. Photoacoustics 2019, 13, 46–52. [CrossRef]

94. Joshi, B.P.; Wang, T.D. Emerging trends in endoscopic imaging. Nat. Rev. Gastroenterol. Hepatol. 2016, 13,
72–73. [CrossRef]

95. Qiu, Z.; Khondee, S.; Duan, X.; Li, H.; Mandella, M.J.; Joshi, B.P.; Zhou, Q.; Owens, S.R.; Kurabayashi, K.;
Oldham, K.R.; et al. Vertical Cross-sectional Imaging of Colonic Dysplasia In Vivo With Multi-spectral Dual
Axes Confocal Endomicroscopy. Gastroenterology 2014, 146, 615–617. [CrossRef]

96. Joshi, B.P.; Miller, S.J.; Lee, C.M.; Seibel, E.J.; Wang, T.D. Multispectral Endoscopic Imaging of Colorectal
Dysplasia In Vivo. Gastroenterology 2012, 143, 1435–1437. [CrossRef]

97. Clancy, N.T.; Lin, J.; Arya, S.; Hanna, G.B.; Elson, D.S. Dual multispectral and 3D structured light laparoscope.
In Proceedings of the Multimodal Biomedical Imaging X, San Francisco, CA, USA, 7–12 February 2015;
Volume 9316, p. 93160C.

http://dx.doi.org/10.1364/BOE.6.001135
http://www.ncbi.nlm.nih.gov/pubmed/25909000
http://dx.doi.org/10.1117/1.JBO.21.10.104003
http://www.ncbi.nlm.nih.gov/pubmed/27792808
http://dx.doi.org/10.1117/1.JBO.18.2.026010
http://www.ncbi.nlm.nih.gov/pubmed/23389679
http://dx.doi.org/10.1007/s10812-018-0649-x
http://dx.doi.org/10.1038/srep24044
http://dx.doi.org/10.1016/j.pacs.2018.11.003
http://dx.doi.org/10.1038/nrgastro.2015.214
http://dx.doi.org/10.1053/j.gastro.2014.01.016
http://dx.doi.org/10.1053/j.gastro.2012.08.053


J. Clin. Med. 2019, 8, 36 21 of 21

98. Fornasaro, S.; Vicario, A.; De Leo, L.; Bonifacio, A.; Not, T.; Sergo, V. Potential use of MCR-ALS for the
identification of coeliac-related biochemical changes in hyperspectral Raman maps from pediatric intestinal
biopsies. Integr. Biol. 2018, 10, 356–363. [CrossRef] [PubMed]

99. Kröger-Lui, N.; Gretz, N.; Haase, K.; Kränzlin, B.; Neudecker, S.; Pucci, A.; Regenscheit, A.; Schönhals, A.;
Petrich, W. Rapid identification of goblet cells in unstained colon thin sections by means of quantum cascade
laser-based infrared microspectroscopy. Analyst 2015, 140, 2086–2092. [CrossRef] [PubMed]

100. Petersen, C.R.; Prtljaga, N.; Farries, M.; Ward, J.; Napier, B.; Lloyd, G.R.; Nallala, J.; Stone, N.; Bang, O.
Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett.
2018, 43, 999. [CrossRef] [PubMed]

101. Iakovidis, D.K.; Sarmiento, R.; Silva, J.S.; Histace, A.; Romain, O.; Koulaouzidis, A.; Dehollain, C.; Pinna, A.;
Granado, B.; Dray, X. Towards Intelligent Capsules for Robust Wireless Endoscopic Imaging of the Gut.
IEEE Int. Conf. Imaging Syst. Tech. 2014, 95–100.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C8IB00028J
http://www.ncbi.nlm.nih.gov/pubmed/29756143
http://dx.doi.org/10.1039/C4AN02001D
http://www.ncbi.nlm.nih.gov/pubmed/25649324
http://dx.doi.org/10.1364/OL.43.000999
http://www.ncbi.nlm.nih.gov/pubmed/29489770
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Medical Hyperspectral Imaging 
	Hyperspectral Systems 
	Hyperspectral Image Analysis 
	Hyperspectral Imaging in GI Diagnosis 
	Surgical Assistance in Real-Time 
	Abdominal Organs Differentiation 
	Colorectal Surgery 
	Bowel Anastomosis 
	Biliary Anatomy Identification 
	Intestinal Ischemia Identification 
	Gastric Cancer Identification 

	Pathological Assistance 
	HSI Application Summary 

	Discussion 
	Conclusions 
	References

