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A hardware-friendly algorithm for compressing hyperspectral
images

Rail Guerra, Maria Diaz, Yubal Barrios, Sebastian Lopez, Roberto Sarmiento®

*University of Las Palmas de Gran Canaria, Las Palmas, Spain

ABSTRACT

The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the
main difficulties is that the compression of these images must be performed in the satellite which carries the
hyperspectral sensor, where the available power, time, and computational resources are limited. Moreover, it is
important to achieve high compression ratios without compromising the quality of the decompressed image for
the ulterior hyperspectral imaging applications. The HyperLCA compressor aims to fulfill these requirements,
providing an efficient lossy compression process that allows achieving very high compression ratios while pre-
serving the most relevant information for the subsequent hyperspectral applications. One extra advantage of the
HyperLCA compressor is that it allows to fix the compression ratio to be achieved. In this work, the effect of
the specified compression ratio in the computational burden of the compressor has been evaluated, also consid-
ering the rest of the input parameters and configurations of the HyperLCA compressor. The obtained results
verify that the computational cost of the HyperLCA compressor decreases for higher compression ratios, with
independence of the specified configuration. Additionally, the obtained results also suggest that this compressor
could produce real-time compression results for on-board applications.

Keywords: HyperLCA Compressor, hyperspectral compression, lossy compression, on-board compression, real-
time compression.

1. INTRODUCTION

The capability of the hyperspectral sensors, carried on satellites, for collecting information across the electromag-
netic spectrum provides very useful information for many applications related to the earth observation. However,
the huge amount of data collected by these sensors must be stored on-board and then sent to the earth surface.
Since the bandwidth of the connection is limited, as well as the memory available on the satellites, the on-board
hyperspectral image compression is a very important and challenging task. First of all, due to the amount
of data contained in these images, it is important to achieve high compression ratios, but without loosing too
much information. Secondly, the compression must be performed on-board by space qualified hardware, which
relies in area, time and power limitations. Due to these facts, the algorithms used for performing the on-board
hyperspectral image compression should be a parallel process with low computational burden.

The Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA)! has several features that
make it a very suitable option for the on-board lossy hyperspectral imaging compression. On one side, this
compressor is able to achieve very high compression ratios with relative high rate-distortion relations and perfectly
preserving the most different hyperspectral pixels of the data set. This benefits many ulterior hyperspectral
imaging applications, such as anomaly detection, unmixing or target detection, in which the most different pixels
of the data set are specially useful.>”” On the other side, the HyperLCA compressor is able to independently
process blocks of pixels of the image, without requiring any kind of spatial alignment of the pixels, what represents
an important advantage when using pushbroom or whishbroom sensors since the hyperspectral data can be
compressed as it is captured. Additionally, the HyperLCA compressor guaranties that the compression ratio
obtained will be at least the desired minimal compression ratio specified as an input parameter.
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Another important aspect of the HyperLCA compressor is its flexibility, which allows configuring different
compression behaviors and efficiency according to the input parameters. This work focuses on evaluating the
performance of the HyperLCA compressor according to the different input parameters, considering the impact of
the different possible configurations, not only in the quality of the compression results but also in the efficiency
and complexity of the algorithm.

2. HYPERLCA COMPRESSOR

The HyperLCA compressor divides the image in blocks of pixels which are independently compressed. The
compression process independently applied to each individual block consists of three main compression stages,
which are a spectral transform, a preprocessing stage and the entropy coding stage. The HyperLCA spectral
transform sequentially selects the most different pixels of the hyperspectral data set using orthogonal projection
techniques. The set of selected pixels is then used for projecting the hyperspectral image, obtaining a spectral
decorrelated and compressed version of the data. The HyperLCA preprocessing stage is executed after the
HyperLCA transform for adapting the output data for being entropy coded in a more efficient way. Finally, the
entropy coding stage manages the codification of the extracted vectors using a Golomb-Rice coding strategy.
Figure 1 graphically shows these three compression stages, as well as the data shared between them.
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v

| Initialization |

l Pmax, C

| HyperLCA transform |
c | P lV
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Figure 1: Diagram of the HyperLCA algorithm compression stages

The HyperLCA compressor uses three main parameters in oder to configure its compression performance:

1. Minimum desired compression ratio (CR), defined as the relation between the number of bits in the real
image and the number of bits of the compressed data.

2. Block size (BS), which indicates the number of hyperspectral pixels in a single block.

3. Number of bits used for scaling the projection vectors (Npits). This value determines the precision and
dynamic range to be used for representing the values of the V vectors.

Once that the HyperLCA compressor has been correctly configured, it firstly determines the number of pixels
vectors and projection vectors (pmax) t0 be extracted for each block, as shown in Equation 1, where DR refers to
the number of bits per pixel per band of the hyperspectral image to be compressed. The extracted pixel vectors
are referred as P and the projection vectors are referred as V in the rest of the paper. Once that py.x has been



obtained, the average pixel, also called centroid, ¢, is computed for each block of pixels to be compressed. This
data is used as inputs of the HyperLCA transform, which is the most relevant part of the HyperLCA compressor.

_ _DR-(Ny-(BS—CR) "
Pmax =GR (DR - Ny + Nows - bS)

The HyperLCA transform provides most of the compression ratio obtained by the HyperLCA compressor and
also most of its flexibility and advantages. Additionally, it is the only lossy part of the HyperLCA compression
process. The HyperLCA transform is detailed described in Algorithm 1. This pseudocode assumes that the
image block is stored as a matrix, M, with the hyperspectral pixels placed in columns.

First of all, the HyperLCA transform subtracts the average pixel to all the pixels of the block to be compressed,
obtaining the centralized image block (M.), as shown in line 1 of Algorithm 1. After doing so, the HyperLCA
compression process mainly consists of three steps which are sequentially repeated, as shown in Figure 2. First,
the brightest pixel in M, which is the pixel with more remaining information, p;, is selected. After doing so, the
vector v; is calculated as the projection of the image, M., in the direction spanned by p;. Finally, the information
of the image that can be represented with the extracted p; and v; vectors is subtracted from the M., as shown
in line 11 of Algorithm 1.

Algorithm 1 HyperLCA transform.

Inputs:

M = [r1,....,7N,], Pmax, €

Outputs: \/

P =1[c,p1, s Ppuae)s V = [01, o, Up ] Stopping condition initialization
Declarations: Line: 1

P = [p1, ., Ppoa); {Extracted pixels.} > v

V = [v1, ..., Upn..); {Projected image vectors.}
M. = [z1, ...,
Algorithm:
1: {Additional stopping condition initialization.}

xy,] {Centralized version of M}

2: for i =1 to ppax do

3: for j =1 to N, do
t

4: bj =x;" - x;

5: end for

6: Jmax = argmax(b;)
7 Pi = Tjmax

8: 4= Tjmax

9:

U= T (Tjar) Te)

10: v; = ul - M,

11: M.=M,—v;-q

12: {Additional stopping condition checking.}
13: end for

Pixel selection ( p,)
Lines: 2 -7

Projection vector calculation (v,)
i< Lines: 8 - 10
- pmax

Information subtraction
Line: 11

Stopping condition evaluation
Line: 12

\l

Figure 2: Flowchart describing the subprocesses
executed in the HyperLCA transform.

Accordingly, M. contains the information that is not representable with the already selected pixels, P, and
V vectors. Hence, the values of M, in a particular iteration, 7, would be the information lost in the compression-



decompression process if no more pixels p; and v; vectors were extracted. This fact makes it relatively simple to
add extra stopping conditions based on quality metrics such as the Mazimum Absolute Difference, MAD, or the
Signal to Noise Ratio, SNR, as shown in Figure 2. These metrics would check in every iteration of the HyperLCA
transform if the amount of information remaining in M, is high, and more p; and v; vectors are required, or if
it is low enough and the algorithm may stop.

Once that the HyperLCA transform stage finishes, the extracted vectors, P = [¢,P1,...;Dpy.,) and V =
[V1, ..; Up,ar)» are preprocessed and entropy coded, as described in Figure 1.

3. HYPERLCA CONFIGURATIONS TESTED IN THIS WORK

The HyperLCA compressor can be configured in many different ways in order to provide different compression
behaviors and efficiency with the goal of adapting its performance to the necessities of the targeted applications.
This work focuses on evaluating the performance of the HyperLCA compressor according to its different possible
configurations, measuring both the quality of its compression results and also its efficiency and complexity.

3.1 Basic configurations

As described in Section 2, the HyperLCA has three main input parameters that need to be set before starting
the compression process, the minimum desired compression ratio, CR, the block size, BS, and the number of
bits used for scaling the projection vectors, Npis. Once that these parameters have been fixed, the compressor
calculates the maximum number of p; and v; vectors to be extracted for each block of pixels, pmax, as shown
in Equation 1. Then, the HyperLCA transform performs an iterative process in which a p; and v; vectors are
extracted in each iteration. Different conclusions can be directly dragged from this process.

First of all, as it can be seen in Equation 1, higher CR values produce smaller pp,.x values and less iterations
are carried out by the HyperLCA transform. Accordingly, the increment in the compression ratio decreases
the computational burden of the algorithm since less operations are to be executed. However, increasing the
compression ratio will also increase the amount of information lost in the compression-decompression process
within the HyperLCA compressor. The compression ratio obtained in the HyperLCA compression process will be
always higher that the introduced CR value, hence, the CR input parameter can be understood as the minimal
desired compression ratio.

Secondly, for the same CR and N5 values, increasing the number of hyperspectral pixels per block, BS, will
produce a higher ppax value. This means that more p; and v; vectors can be extracted for the same CR and
Npits values by increasing the block size. However, increasing BS may increase not only the number of iterations,
Pmax, 10 be executed by the HyperLCA transform, increasing the computational burden, but also the required
memory and the latency of the entire compression process.

Finally, according to Equation 2, for the same CR and BS, decreasing Np;ss will produce a higher py,., value.
This means that more p; and v; vectors can be extracted for the same compression ratio and block size by
decreasing the number of bits used for representing the values of the v; vectors. For a computational point of
view, increasing the py., value will increase the number of iterations to be executed by the HyperLCA transform
as well as its computational burden. However, increasing the ppax value may also improve the quality of the
compression results since more p; and v; vectors can be used for representing the data. It is also important to
consider that, reducing N5 will decrease the precision used for representing the values of the v; vectors what
may affect the quality of the compression results. Additionally, since the v; vectors have BS components, the
Npits value will have a higher impact for bigger block sizes (higher BS values).

These three parameters corresponds with the basic configuration of the HyperLCA compressor. According to
the specified values, the number of p; and v; vectors to be extracted for each block of pixels, pmax, is fixed. The
HyperLCA transform will extract the same number of p; and v; vectors (pmax) for every block of pixels if no more
stopping conditions are used. This kind of configuration provides a relatively uniform compression ratio among
the different blocks of pixels, however, this may not be the optimal solution in some situations. In example,
some blocks of pixels could be very homogeneous and could be accurately represented using a small number of p;
and v; vectors. However, other blocks of pixels of the same image could have a high entropy and would required
a higher number of p; and v; vectors for reducing the information lost during the compression-decompression
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process. Since the same pp,,x is used for all the blocks of the same image, if the pyax value is high, too many p;
and v; vectors will be used for the homogeneous blocks, decreasing the achieved CR. On the contrary, if the pyax
value is low, a higher compression ratio will be achieved but the more entropy blocks will not be so accurately
represented. In order to provide a better solution for these kind of situations, the HyperLCA compressor allows
introducing extra stopping conditions based on quality metrics as described in the next section.

3.2 Extra stopping conditions based on quality metrics

In addition to the basic configurations specified in Section 3.1, the HyperLCA compressor allows setting additional
stopping conditions based on quality metrics in a relative simple way. This is due to the fact that HyperLCA
transform keeps track of the information that will be lost in the compression-decompression process. As explained
in Section 2, the M, matrix contains the information that is not representable with the already selected, P, and
V' vectors. Due to this reason, the values of M, in a particular iteration, i, would be the information lost
in the compression-decompression process if no more p; and v; vectors were extracted. This can be used for
adding extra stopping conditions based on quality metrics. Three different quality metrics which are widely
used for evaluating the performance of the compression-decompression processes have been used in this work.
These metrics are the Mazimum Absolute Difference, (MAD), the Peak Signal-to-Noise Ratio, (PSNR), and the
Signal-to-Noise Ratio, (SNR). As shown in Figure 2, the values remaining in the M, matrix are evaluated in
each iteration according to the specified quality metric. Additionally, some initial calculation may be needed at
the beginning of the HyperLCA transform process. The process for adding these three metrics are described in
detail in Sections 3.2.1, 3.2.2 and 3.2.3.

It is important to have in mind that, with independence of the quality metric used as extra stopping condition,
the maximum number of P and V' vectors, pmax, is determined by the basic input parameters, RC, BS and Npjs-
Due to this reason, the HyperLCA compressor will never produce a lower compression ratio than the specified CR
input parameter, even if the quality of the compression-decompression process, specified by the extra stopping
condition based on a quality metric, has not been achieved. However, the extra stopping conditions allow
using different number of p; and v; vectors, i, lower than pyay, for the different blocks. This fact may be
specially beneficial for images in which some blocks of pixels are very homogeneous and can be well compressed
using very few P and V vectors, but the other blocks have higher entropy and require more vectors for being
accurately compressed. This provides to additional ways of using the HyperLCA compressor according to the
input parameters:



1. Maximizing the compression ratio obtained for each block of pixels. When the targeted application does
not require a really accurate compression-decompression process, one extra stopping condition can be
used together with a high input CR value for optimizing the compression performance of the HyperLCA
algorithm and obtaining higher compression ratios for the homogeneous blocks. For doing so, the value
fixed for the quality metric used as stopping condition should indicate the maximum desired quality. Hence,
if the specified quality is achieved in the iteration i < ppax of the HyperLCA transform, the algorithm
would stop and a higher compression ratio would be obtained.

2. Minimizing the losses of information produced in each block in the compression-decompression process.
When the targeted applications requires an accurate compression-decompression process, the CR parameter
can be set with a small value, in such a way that a high number of P and V vectors could be used for
representing each block of pixels (high ppax value). Additionally, an extra stopping condition can be set
with the value that defines the desired quality for the compression-decompression process. The HyperLCA
transform will iteratively extract p; and v; vectors until the extra stopping condition is satisfied or until
the number of extracted vectors reaches the pyax value. If ppax is high enough, the desired compression-
decompression quality could be achieved for all the blocks of the image, however, the achieved compression
ratio could be low.

Finally, it is important to mention that the information lost in the compression-decompression process may
be positive for some applications. Most of the lossy compressors behaves as a low pass filters, reducing the
amount of noise in the image, what positively affects most of the ulterior hyperspectral imaging applications.®
The HyperLCA compressor is not the exception. However, the low pass filter behavior of the lossy compressor
typically results in losing the anomalous pixels or the image details, which are crucial for many hyperspectral
imaging applications such as anomaly detection, target detection or spectral unmixing.2”” In this sense, the
HyperLCA compressor provides an important advantage since the most different pixels of each block are preserved
without losses of information.

3.2.1 MAD based stopping condition

The MAD metric is widely used in hyperspectral compression applications for measuring the maximum absolute
error produced in the compression-decompression process. This error is the maximum absolute difference between
the original image and the compressed-decompressed one. The application of this metric as an extra stopping
condition to the HyperLCA transform is a pretty simple process, since the maximum absolute error that would
be obtained in a particular iteration, if no more iterations were performed, is directly the maximum absolute
value of M. According to the HyperLCA transform flowchart described in Figure 2, this metric does not require
any kind of initialization. The evaluation process consists in measuring the maximum absolute value of M, and
comparing it with the user defined MAD value.

3.2.2 PSNR based stopping condition

The PSNR metric is usually employed in compression applications for measuring the overall accuracy of the
compression-decompression process. It measures the average quadratic error in relation with the maximum
possible value that could be present in the image, as described in Equation 2, where M and M’ refer to the real
hyperspectral image and to the compressed-decompressed one, and IV, and Ny refer to the number of pixels and
the number of bands in the hyperspectral image, respectively. This metric is expressed in decibels.

(maximum possible value of M)?

N N,
Nb?Np : Zi:bl j:pl (Mi,j - Mz‘/,j)z

SNR = 10 - log, o ) (2)

According to the previously described characteristics of the HyperLCA transform, the difference between M
and M’ for each block of pixels corresponds to M,.. Hence, Equation 2 can be expressed as shown in Equation
3 for each block of the image.



(maximum possible value of M)?
1 N N,
N,-BS Eizbl j:pl(MCi,j)Q
In order to reduce the required calculations in each iteration of the HyperLCA transform when using the
PSNR as extra stopping condition, an initialization step can be used as shown in Figure 2. This initialization
consists in calculating the value that Zf\l’l Z;V:p1 (M, ;)* should achieved for reaching the specified PSNR value,

in such a way that just vazbl Z;V:pl (M., ,)? is calculated in each iteration of the HyperLCA transform and
compare with the obtained stopping value. This stopping value can be calculated as:

SNR = 10 - logy(

) (3)

1 (maximum possible value of M)? 4
N, - BS ’ 10(PSNR/10) (4)

stopping value =

3.2.3 SNR based stopping condition

Similarly to the PSNR metric, the SNR is also used for measuring the overall accuracy of the compression-
decompression process. It measures the average quadratic error in relation with the average quadratic value of
the original image, expressed in decibels. Equation 5 describes the calculation of the SNR metric, where M and
M’ refer to the real hyperspectral image and to the compressed-decompressed one, and N, and Ny, refer to the
number of pixels and the number of bands in the hyperspectral image, respectively.

N, N,
Zi:bl Zj:1(Mi,j)2
N, N,
Zi:bl Zj:1(Mi,j - Mil,j)z

The SNR metric for each block of pixels of the image can be calculated during the HyperLCA transform
process using the M. values too. Equation 6 describes this calculation.

SNR = 10 - logo( ) (5)

N, N,

Zizbl Zj:l (Mi,j)2
N, N,

Zi:bl j:pl(MCi,j)2

As it is done for the PSNR, in order to reduce the amount of operations executed by the HyperLCA transform
in each iteration when using the SNR as additional stopping condition, an initialization step can be used. This
initialization consists in calculating the value that va:bl j-vz”l(MCi’j )2 should achieved for reaching the specified
SNR value, in such a way that just Zf\i’l Zjvz”l (M., ;)?* is calculated in each iteration of the HyperLCA transform
and compare with the obtained stopping value. This stopping value can be calculated as described in Equation
7, where M™* refers to the original values of each block of pixels processed by the HyperLCA transform.

SNR = 10 - log( ) (6)

N Np *
1 21:’)1 j=1(Mi,j)2 7
N,-BS ~ 10(PSNR/10) (7)

stopping value =

3.2.4 Computational complexity of the additional stopping conditions based on quality metrics

The used of extra stopping conditions based on quality metrics may considerably improve the compression
performance of the HyperLCA algorithm, specially in situations in which different blocks of the image have very
different entropy levels. However, the use of these kind of metrics may also notably increase the complexity and
computational requirements of the HyperLCA transform. Within the three metrics tested as additional stopping
conditions in this work, the MAD represents the less computational demanding one. First of all, this metric does
not require any kind of initialization. Furthermore, the additional calculations required in each iteration of the
HyperLCA transform consist just in evaluating the maximum absolute value of the M, matrix. On the other
hand, the additional calculations required in each iteration of the HyperLCA transform due to the use of the
PSNR and SNR metrics involve the calculation of the addition of all the squared values of M., which is more
computational demanding. Furthermore, these two metrics also require an extra initialization that involve using
relatively complex operations in relation with the operations used in the rest of the algorithm. Additionally, the
addition of all the squared values of M* is also required in the initialization step when using the SNR metric.



4. EXPERIMENTS AND RESULTS

Several experiments have been carried out in this work in order to evaluate the performance of the HyperLCA
compressor according to the different input parameters, considering the impact of the different possible con-
figurations, not only in the quality of the compression results but also in the efficiency and complexity of the
algorithm. Two different hyperspectral images, collected by two different sensors, have been used for such pur-
pose. On one side, the Lunar Lake image from the well known Airbone Visible/Infrarred Imaging Spectrometer
(AVIRIS)? has been selected. This sensor captures 224 spectral bands in the wavelength range of 400 to 2500
nm, coding each pixel value using 16 bits.® This image has been cropped to a portion of 512x512 pixels. Figure
3 graphically shows a false color representation of this image. On the other side, the Lake Monona image from
the Hyperion sensor'? have been used. The Hyperion sensor produces 242 spectral bands between 355.59 and
2577.08 nm, coding the image values using 12 bits. This image is uncalibrated, what makes the compression
process more challenging. Figure 3 shows a gray scale representation of the Lake Monona image. This image
has been cropped to a portion of 512x256 pixels.

These two images have been compressed with the HyperLCA compressor using a wide range of configurations.
The quality of the obtained compression results has been evaluated using the Mazimum Absolute Difference,
MAD, the Peak Signal to Noise Ratio, PSNR, and the Signal to Noise Ratio, SNR, metrics. It is important
to clarify that these metrics have been calculated for the entire image in the evaluation process, not block by
block. However, when these metrics are used by the HyperLCA transform during the compression process, the
HyperLCA transform independently measures them for each single block. In order to measure the computational
burden introduced by the different possible configurations the time required for compressing the entire images
has been measured.

Image Input CR Input BS Input Nbits
Lunar Lake (AVIRIS) 12 1024 12

Input Outputs

CR Pmax CR bpppb MAD PSNR SNR  Time (s)
8 28 10.55 1.52 42 85.91 51.23 13.42

12 19 15.50 1.03 49 84.69  50.01 10.02

16 14 20.98 0.76 64 83.54  48.86 7.58

20 11 26.67 0.60 113 82.34 47.66 6.27

BS Pmax CR bpppb MAD PSNR SNR  Time (s)
1024 19 15.50 1.03 49 84.69  50.01 10.01
512 15 16.68 0.96 67 83.90 49.22 8.06

256 10 18.85 0.85 120 82.62 47.94 5.70
Nbits Pmax CR bpppb MAD PSNR SNR  Time (s)
16 15 14.75  1.09 64 83.86  49.18 8.26

12 19 15.50 1.03 49 84.69  50.01 10.08

8 25 17.65 0.91 49 81.94  47.26 12.89

Table 1: Compression results obtained for the Lunar Lake image, collected by the AVIRIS sensor, using different
configuration parameters.

The first performed experiments focus on evaluating the behavior of the HyperLCA compressor in its basic
configuration and the impact of the CR, BS and M5 input parameters. For doing so, each of these parameters
has been modified while keeping the rest of them stable. The default stable values that have been used for
these parameters are CR = 12, BS = 1024 and Nps = 12 for the AVIRIS Lunar Lake image, and CR = 12,
BS = 1024 and Ny;ts = 8 for the Hyperion Lake Monona image. The CR values have been varied to 8, 12, 16



and 20. The BS values has been set to 1024, 512 and 256, and the Nyt to 16, 12 and 8, what results in a total
of 10 different basic configurations for each hyperspectral image used.

Image Input CR Input BS Input Nbits
Lake Monona (Hyperion) 12 1024 8

Input Outputs

CR Pmax CR bpppb MAD PSNR SNR Time (s)
8 33 11.52 1.04 44 60.29 45.56  8.62
12 22 17.51 0.69 148 59.35 44.62 5.84
16 16 24.34 0.49 184 58.62 43.90 4.35
20 13 30.12  0.40 203 58.12 43.40 3.57
BS Pmax CR bpppb MAD PSNR SNR Time (s)
1024 22 17.51 0.69 148 59.35 44.62 5.69
512 17 17.51  0.69 169 59.30  44.57 4.51
256 11 18.37 0.65 197 58.83  44.10 3.08
Nbits Pmax CR bpppb MAD PSNR SNR Time (s)
16 12 15.67 0.77 203 57.93 43.21  3.37
12 16 15.79 0.76 186 58.67  43.94 4.49
8 22 17.51  0.69 148 59.35 44.62 5.71

Table 2: Compression results obtained for the Lake Monona image, collected by the Hyperion sensor, using
different configuration parameters.

Tables 1 and 2 show the results obtained for the AVIRIS Lunar Lake and Hyperion Lake Monona images,
respectively. As it can be seen in both tables, when decreasing the specified CR for the same BS and Ny values,
the number of extracted P and V' vectors, pmax, increases and so does the quality of the compression results
and the time required for compressing the image. On the contrary, the obtained compression ratio decreases
(higher bpppb and lower output CR). This makes totally sense since more P and V vectors are being used for
representing each block of pixels of the image. Additionally, it is also important to highlight that the obtained
CR is always slightly higher than the specified.

The values displayed in Tables 1 and 2 also show that increasing the BS for the same CR and Ny values
allows extracting more P and V vectors for each block of pixels (higher pmax). This results in slightly higher
compression accuracy but lower compression ratio (higher bpppb). Despite the BS value does not have a strong
impact in the compression performance, it has a higher impact in the time required for compressing the images.
Higher BS and ppax require more time for carrying out the compression of the images, also increasing the
required memory and the latency of the compression process.

Tables 1 and 2 also show the impact of the M5 parameter in the HyperLCA compression process. In
general, decreasing the My value increases pmax, using more P and V vectors for representing the data, but
using less precision for storing these V' vectors. The best compression results seems to be obtained using Npits
values slightly lower than the number of bits used for representing the values of the real hyperspectral images.
In example, Np;s = 12 produces the best compression results for the Lunar Lake image, collected by the AVIRIS
sensor, which is represented using 16 bits per pixel per band. However, Ny;s = 8 produces the best results for
the Hyperion Lake Monona image, which is represented using 12 bits per pixel per band. Additionally, since
decreasing the Nyt results in higher ppax values, it also results in higher computational times.

After evaluating the behavior of the HyperLCA compressor in its basic configuration and the impact of the
CR, BS and Ny parameters, additional experiments have been carried out for evaluating the performance of
the compressor when using extra stopping conditions based on the MAD, PSNR and SNR quality metrics. For



Image Input CR Input BS Input Nbits

Lunar Lake (AVIRIS) 12 1024 12

Input Outputs

Reference Pmax CR bpppb MAD PSNR SNR Time (s)
19 15.50 1.03 49 84.69  50.01 10.02

MAD Pmax CR bpppb MAD PSNR SNR Time (s)

50 19 25.48 0.63 53 82.52 47.84 6.69

100 19 33.19 048 101 80.97  46.29 5.34

150 19 52.26 0.31 152 76.28  41.60 3.95

200 19 78.96 0.20 203 71.72  37.04 294

PSNR Pmax CR bpppb MAD PSNR SNR Time (s)

75 19 61.52 0.26 488 76.45 41.77  4.72

80 19 37.10 043 179 80.35 45.67 7.56

85 19 16.03 1.00 52 84.58  49.90 15.00

90 19 15.50 1.03 49 84.69  50.01 15.14
SNR Pmax CR bpppb MAD PSNR SNR Time (s)
40 19 63.25 0.25 488 75.99 41.31  4.52

45 19 37.99 0.42 194 80.04  45.36 6.83

50 19 17.54 0.91 64 84.19 49.52 13.54

55 19 15.50 1.03 49 84.69  50.01 15.19

Table 3: Compression results obtained for the Lunar Lake image, collected by the AVIRIS sensor, using different
stopping criteria based on quality metrics.

doing so, the CR, BS and Ny parameters have been fixed to CR = 12, BS = 1024 and Npys = 12 for the
AVIRIS Lunar Lake image, and CR = 12, BS = 1024 and Nyys = 8 for the Hyperion Lake Monona image.
When using the MAD metric as extra stopping condition, its input value has been set to 50, 100, 150 and 200,
which are relatively low values in relation with the possible values of the images (2!¢ — 1 for the AVIRIS Lunar
Lake image and 2'? — 1 for the Hyperion Lake Monona one). When using the PSNR metric as extra stopping
condition, its input value has been set to 75, 80, 85 and 90 for both images. These values are more restrictive
for the image collected by the Hyperion sensor since the maximum possible value of this image (22 — 1) is
considerably smaller than the maximum possible value of the image collected by the AVIRIS sensor (216 — 1).
Finally, when using the SNR metric as extra stopping condition, its input value has been set to 40, 45, 50 and
55. Tables 3 and 4 show the obtained results. Row labeled as Reference in these two tables refers to the results
obtained with the default configuration parameters without using any extra stopping condition.

Different conclusions can be dragged from the results displayed in Tables 3 and 4. First of all, it can be
observed that when an extra stopping condition based on a quality metric is used, using an unachievable value,
the compression performance is the same as without using any extra stopping condition, but the time required
for compressing the image increases due to the extra calculations. An example of this behavior is when specifying
PSNR =90 or SNR = 55 for the Lunar Lake image, or PSNR > 75 and SRN > 45 for the Lake Monona
one. On the contrary, when specifying very easily achievable values, the compression ratio drastically increases,
but the quality of the compression-decompression process decreases according to the specified value. This is due
to the fact that very few P and V vectors (much less than pn.x) are being used for each block of the image.
Accordingly, since much less iterations are being executed by the HyperLCA transform, the time required for
the compression also decreases. An example of this behavior can be seen when using the MAD metric as extra
condition, specifying an input value of M AD = 200, for both images. This behavior is specially useful when



Image Input CR Input BS Input Nbits

Lake Monona (Hyperion) 12 1024 8

Input Outputs

Reference Pmax CR bpppb MAD PSNR SNR  Time (s)
22 17.51 0.69 148 59.35  44.62 5.84

MAD Pmax CR bpppb MAD PSNR SNR Time (s)

50 22 52.52 0.23 148 56.07  41.35 2.33

100 22 78.03 0.15 148 52.45  37.73 1.77

150 22 102.06 0.12 152 47.73  33.00 1.49

200 22 133.95 0.09 200 45.10  30.37 1.25

PSNR Pmax CR bpppb MAD PSNR SNR Time (s)

75 22 17.51 0.69 148 59.35  44.62 9.43

80 22 17.51 0.69 148 59.35  44.62 9.67

85 22 17.51  0.69 148 59.35  44.62 9.38

90 22 17.51  0.69 148 59.35  44.62 9.35

SNR Pmax CR bpppb MAD PSNR SNR  Time (s)

40 22 62.30 0.19 148 55.34  40.61 3.09

45 22 18.59  0.65 148 59.22 4450 8.93

50 22 17.51 0.69 148 59.35  44.62 9.42

55 22 17.51 0.69 148 59.35  44.62 941

Table 4: Compression results obtained for the Lake Monona image, collected by the Hyperion sensor, using
different stopping criteria based on quality metrics.

high compression ratios (low bpppb) are desired and when the accuracy of the compression process required for
the ulterior hyperspectral imaging applications is not hight. The minimal required compression accuracy should
be the specified as an extra stopping condition based on the desired quality metric.

Finally, the third possible situation is that in which the value specified for the extra stopping condition are
only achievable by part of the blocks of pixels of the image. In this situation, the very homogeneous blocks are
rapidly compressed using very few P and V vectors, preserving a high compression quality, while very entropy
blocks are compressed using the maximum possible number of P and V' vectors, pmax- In average, the compression
performance in this situation seems to be much better, since much higher compression ratios are obtained (lower
bpppb values) but without decreasing too much the accuracy of the compression results. Additionally, the extra
time required by the calculation of the extra stopping conditions is compensated by the iterations saved by
the HyperLCA transform in the homogeneous blocks. An example of this behavior can be seen when using
MAD = 50 or MAD = 100 for both images. Additionally, it can also be observed that the use of the MAD
metric as extra stopping condition in the HyperLCA transform produces lower computational times than the
use of the PSNR and SNR metrics. This makes totally sense due to the higher computational complexity of the
PSNR and SNR metrics.

All these results have been obtained using a regular Intel Core 17-4790 Processor, which is far from being the
kind of hardware available on-board satellites. Nevertheless, the differences in the compression time obtained
using the different configurations of the HyperLCA algorithm provides a clear idea of the differences in their
computational burden. Additionally, it is worth to mention that these results have been obtained using a standard
C++ code without any kind of parallelization. The slower results obtained in the simulations, 15.19 seconds for
the Lunar Lake image and 9.67 seconds for the Lake Monona one, correspond with a compression data rates of
7.37 MB/s and 4.69 MB/s, respectively. The fastest results, 2.94 and 1.25 seconds for the Lunar Lake and Lake



Monona images, correspond with compression data rates of 38.2 and 36.3 MB/s. These values are relatively high
in relation with the regular acquisition rates of the hyperspectral sensors. According to these results, and due
to the low computational complexity and high level of parallelism of the HyperLCA algorithm, it is considered
that this compressor could be efficiently parallelized and implemented for hyperspectral imaging compression
on-board satellites.

5. CONCLUSSIONS

The HyperLCA compressor is a lossy compression solution with multiple advantages for compressing remote
sensed hyperspectral images. In particular, this algorithm presents a high level of parallelism and low computa-
tional complexity that could make it a viable option for hyperspectral imaging compression on-board satellites.
One extra advantage of the HyperLCA compressor is that the minimum desired compression ratio can be fixed in
advance. Additionally, this compressor can be configured in many different ways according to the input param-
eters, what provides a high flexibility with the goal of adapting its performance to the requirements of different
applications.

In this work, the effect of the specified compression ratio in the computational burden of the compressor and
the quality of the compression results has been evaluated, also considering the rest of the input parameters and
configurations of the HyperLCA compressor. These configurations have been tested using two different remote
sensed hyperspectral images with very different characteristics, the Lunar Lake image and the Lake Monona
one, collected by the AVIRIS and Hyperion sensors, respectively. The quality of the obtained results have been
measured using the MAD, PSNR and SNR metrics. The computational cost of the different configurations of
the HyperLCA algorithm has been compared according to the time required for compressing the images.

The obtained results verify that the computational cost of the HyperLCA compressor decreases for higher
compression ratios, with independence of the specified configuration. Additionally, it has been proved that the
different configuration parameters can be used for adapting the performance of the compressor to the requirements
of the targeted applications. In example, the size of the blocks of pixels in which the image is divided, BS, can be
decreased for reducing the required memory and computational burden of the algorithm, while the precision used
for representing the values of the extracted V vectors, Npits can be decreased for performing more iterations and
achieving more accurate compression results. Additionally, the use of extra stopping conditions has been also
tested. As demonstrated by the experiments, these extra stopping conditions can be very powerful for optimizing
the performance of the compressor according to the necessities of the application. Finally, the obtained results
also suggest that this compressor could produce real-time compression results for on-board applications.
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