

JNIVERSIDAD DE LAS PALMAS

Jellyfish respiration from biochemistry

Theodore T. Packard¹, Daniel R. Bondyale-Juez¹, Vanesa Romero-Kutzner¹, Mayte Tames-Espinosa¹, Natalia Osma², Igor Fernández-Urruzola², Ico Martínez¹, and May Gómez¹

¹Marine Ecophysiology Group (EOMAR), IU- ECOAQUA. Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira. Las Palmas de Gran Canaria. Canary Islands, Spain. ²Millenium Institute of Oceanography (IMO), University of Concepción, Barrio Universitario s/n, Concepción- Chile.

ECOAQUA

PREMISE

1. Jellyfish metabolism needs incorportion (sensu oceanography) in marine ecosystems models.

2. Putting a few jellyfish in bottles and measuring their O₂ use (sensu marine biology) will not provide adequate data.

3. Biochemical sensing, kinetic analysis, and computer modeling must be employed to give requisite data acquisition rates.

VISION

By extrapolating understanding from biochemical experiments on respiratory control in other organisms we can develop hypotheses about respiratory control in Jellyfish.

VISION BACKGROUND

1. Accordingly, we know from the respiratory ETS (Fig. 1) experiments of

Fig. 1. ETS complexes (4) & ATP-producing enzymatic motor found in <u>all living cells</u>. This is the respiratory Electron Transport (transfer) System. Note proton pumping by 3 complexes and proton re-entry via the motor (ATPase).

State	[O ₂]	ADP level	Substrate level	Respiratio rate	n Rate-limiting substance
1	>0	low	low	slow	ADP
2	>0	high	~0	slow	substrate
3	>0	high	high	fast	respiratory cha
4	>0	low	high	slow	ADP
5 E Graine		high	high 8 (2001) 277-297	0	oxygen

Chance and Williams (Box 1), Jacobus et al., and Gnaiger (Figs. 2 & 3) that ADP levels in the vicinity of cytochrome oxidase stimulates respiration (J₀₂) when O₂, substrate (NADH, Fig. 4) are present. In this situation, ADP (Fig.5), as the index of metabolic demand, drives J_{02} (Fig. 2 & 3). Analogy: "Demand-side" economics.

2. Pyridine nucleotide availability (mainly NADH) represents the "supply-side" of respiratory control and was explored through modelling (Packard et al., 1996). A theoretical enzyme-kinetic model of Pyridine nucleotide availability in bacteria cultures shifting from nutrient-sufficiency through nutrient-limitation to nutrientstarvation (Fig. 6) successfully predicted J_{02} in all physiological phases

Fig. 3. Caption: Linear relation between the ADP phosphorylation rate (J_{ADP}) & the respiration rate (J_{02}) . This permits calculation of the J_{ADP} from respiration. Note that J_{ADP} is equivalent to the Heterotrophic Energy **Production (Packard et al.,** 2015).

REFERENCES

Aguiar, B. et al., 2012. JEMBA, 412:1 Chance, B. and Williams, G.R. 1956. Adv. Enzymol. 17:65. Gainger, E., 2001 Resp. Physiol. 128:277. Gainger, E. et al, 2019 Resp. Physiol. 128:277. Jacobus, W.E. et. al. , 1983. J.B.C., 257 (5):2397.

FUTURE MODELLING

Modelling respiration with an EKM until nutrient limitation becomes extreme is the way to start. Then, the model must include an additional, ADPdependent term that is activated at zero nutrients.

Hypothesis

Respiration is controled by the ETS respiratory capacity when ETS substrate levels are not limiting, but when starvation commences, respiration is substrate controlled. Later when the externally

Mitchell, P. 2011. Biochim. Biophys. Acta. 1807:1507.

Packard, T.T. et. al., 1996. J. Plankton Res. 18 (10):1819.

It would mean that ETS activity (Fig. 8), ADP (FIG.

5), NADH (Fig. 4), and their K_ms would need to be

measured in seawater.

derrived substrates are exhausted, ADP controls the

