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Abstract

European sea bass were fed four low FM/FO (10%/6%) diets containing galactomannan oli-

gosaccharides (GMOS), a mixture of garlic oil and labiatae plants oils (PHYTO), or a combi-

nation of both functional products (GMOSPHYTO) for 63 days before exposing the fish to

an intestinal Vibrio anguillarum infection combined with crowding stress. In order to evaluate

functional diets efficacy in terms of gut health maintenance, structural, cellular, and immune

intestinal status were evaluated by optical and electron microscopy and gene expression

analyses. A semi-automated software was adapted to determine variations in goblet cell

area and mucosal mucus coverage during the challenge test. Feeding with functional diets

did not affect growth performance; however, PHYTO and GMOS dietary inclusion reduced

European sea bass susceptibility to V. anguillarum after 7 days of challenge testing. Rectum

(post-ileorectal valve) showed longer (p = 0.001) folds than posterior gut (pre-ileorectal

valve), whereas posterior gut had thicker submucosa (p = 0.001) and higher mucus cover-

age as a result of an increased cell density than rectum. Functional diets did not affect muco-

sal fold length or the grade of granulocytes and lymphocytes infiltration in either intestinal

segment. However, the posterior gut fold area covered by goblet cells was smaller in fish fed

GMOS (F = 14.53; p = 0.001) and PHYTO (F = 5.52; p = 0.019) than for the other diets.

PHYTO (F = 3.95; p = 0.049) reduced posterior gut goblet cell size and increased rodlet cell

density (F = 3.604; p = 0.068). Dietary GMOS reduced submucosal thickness (F = 51.31;

p = 0.001) and increased rodlet cell density (F = 3.604; p = 0.068) in rectum. Structural

TEM analyses revealed a normal intestinal morphological pattern, but the use of GMOS

increased rectum microvilli length, whereas the use of PHYTO increased (p�0.10) Ocln,

N-Cad and Cad-17 posterior gut gene expression. After bacterial intestinal inoculation,
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posterior gut of fish fed PHYTO responded in a more controlled and belated way in terms of

goblet cell size and mucus coverage in comparison to other treatments. For rectum, the pat-

tern of response was similar for all dietary treatments, however fish fed GMOS maintained

goblet cell size along the challenge test.

Introduction

Fish intestinal mucosal surface is thought to be a potential route of entrance for pathogenic

bacteria [1] and consists of: (a) an extrinsic barrier, (b) a physical barrier and (c) a sub-epithe-

lial or immunological defense barrier [2]. The mucosal extrinsic barrier constitutes the first

line of defense against potential pathogens [3], protecting and lubricating the physical barrier

and facilitating transport between the luminal contents and the epithelial cells [2,4].

Fish intestinal mucus is produced by goblet cells and is composed of a matrix of mucin gly-

coproteins and several humoral immune factors, such as immunoglobulins, complement pro-

teins, C-reactive protein, lectins, lysozyme, proteolytic enzymes, and antimicrobial peptides

[5]. Mucus granules are stored apically in the goblet cells and secreted at a slow baseline rate to

maintain the mucus layer over the epithelial barrier [6–8].

The second line of the intestinal mucosal defense system is constituted by a simple epithelial

layer composed of intestinal epithelial cells (IECs) sealed among them by the lateral surface via

tight juntions (TJs), adherens junctions (AJs), and desmosomes, also including scattered goblet

cells and rodlet cells. TJs are located at the apical end of the lateral side of IECs and play a piv-

otal role in preserving intestinal permeability. TJs regulate nutrients, toxins, antigens, and

microbes trafficking through the paracellular channels, control proliferation and transcription

signals, link proteins to the filamentous cytoskeleton, and maintain cellular polarity [9]. AJs

are formed by clusters of cadherin molecules, and are immediately localized below TJs; their

main function is to mediate strong cell-cell adhesion. Similarly, desmosomes provide stronger

adhesion and intercellular communication between IECs [10].

Goblet cell density, intestinal mucus composition and its discharge rates, as well as IEC

structure and adhesion may vary in response to nutritional, physiological, immunological,

and/or microbiological factors. Moreover, despite the fact that the extrinsic and physical barri-

ers together being extremely operational in preventing contact among detrimental substances

and fish gut-associated lymphoid tissue (GALT), it is not possible to completely prevent con-

tact [11]. In fact, an exchange is desirable in order to establish tolerance to autochthonous

microbiota. GALT comprises a unique array of innate and adaptive immune cells and mole-

cules that act in concert to protect the host against pathogens [12]. Fish GALT mainly contains

intraepithelial lymphocytes (IELs), eosinophil intraepithelial granulocytes/mast cells (EGCs/

MCs), lamina propria lymphocytes/granulocytes, and macrophages, populations and distribu-

tion also possibly varying upon an inflammation-like status.

An inflammatory gut reaction can be induced by a variety of factors, such as infection,

stress or changes in feed composition [13–16]. In this latter perspective, the rational use of lim-

ited marine raw materials via replacements by vegetable meals (VM) and oils (VO) in feeds for

marine fish species is associated with variable side effects on fish gut health [17–24]. For Euro-

pean sea bass (Dicentrarchus labrax), in particular, feeding low fishmeal (FM) and fish oil (FO)

dietary content (10–5%FM/6-3%FO) results in a posterior gut inflammation-like status char-

acterized by: a swelling of the lamina propria and submucosa, an increased density of goblet

cells, an intestinal up-regulation of several inflammation related genes and altered microbiota

populations [23]. In this case, a proper description of the intestinal morphological and
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functional patterns arising from feeding diets with a high VM/VO content will provide a better

understanding of the underlying mechanisms, helping to predict the course of inflammation,

and serve as a guide for remedial interventions [25].

Accordingly, the use of functional additives simultaneously with a low FM/FO based diet

may help to buffer possible negative side effects on gut health. Prebiotic fibers and phytogenics

have been proposed as effective candidates to immunomodulate fish through the diet. Among

them, rich GMOS products obtained from different sources and phytogenics have been associ-

ated with enhanced fish production performance and health status [26–32].

Thus, the aim of the present study was to determine the effects of GMOS, a phytogenic

(mixture of garlic oil and labiatae plant extracts) and a combination thereof on European sea

bass juvenile’s disease resistance against an experimental intestinal Vibrio anguillarum infec-

tion combined with stress by confinement in relation to posterior gut and rectum status when

supplemented with low FM and FO diets. For that purpose, structural, cellular, and immune

intestinal dietary-associated alterations were evaluated by gene expression analyses and by

optical and electron microscopy studies, using a semi-automated software adapted to deter-

mine variations in the goblet cell area and percentage of mucosal surface covered by mucus

along the experimental intestinal Vibrio anguilarum infection.

Materials and methods

Ethics statement

Animal manipulation during these experiments complied with the guidelines of the European

Union Directive (2010/63/EU) and Spanish legislation (RD 53/2013) for animal experiments.

The Bioethical Committee of the University of Las Palmas de Gran Canaria approved all the

protocols performed in the present study (approval n. 007/2012 CEBA ULPGC). Fish handling

was performed under natural clove oil anesthesia (0.2 mL/L; Guinama S.L; Spain, Ref.

Mg83168), and discorfort, stress and pain to the experimental animals was avoided, as much

as possible, along the experiment. For sampling, fish were euthanized with and overdose of

natural clove oil (5mL/L; Guinama S.L; Spain, Ref. Mg83168).

Diets

Four experimental diets were prepared consisting of 10% FM and 6% FO and containing dif-

ferent additives: galactomannan oligosaccharides (GMOS; Delacon, Austria), a mixture of gar-

lic and labiatae-plants oils (PHYTO; Delacon, Austria), and a combination of the two additives

(GMOSPHYTO). The levels of GMOS (5000 ppm), PHYTO (200 ppm), and GMOSPHYTO

(5200 ppm) were chosen according to commercial recommendations (Delacon, Austria).

Diets were isoenergetic and isonitrogenous, covered all known nutritional requirements for

sea bass (Dicentrarchus labrax), and were manufactured by an extrusion process in the BioMar

Tech-Centre (Brande, Denmark). To ensure product stability GMOS was included in the diet

in the mix pre extrusion process and replacing standard carbohydrates, PHYTO was included

post extrusion process by vaccum coating and homogenized with the dietary fish oil. The sta-

bility of the phytogenic was evaluated previous to diet production, after production and at the

beginning of the feeding trial. Diet ingredients, analyzed proximate composition, and fatty

acid profiles are detailed in Tables 1 and 2.

Experimental conditions

Experiment I: Feeding trial. Nine hundred European sea bass juveniles reared in a local

farm (Aquanaria, Castillo del Romeral, Gran Canaria, Canary Islands, Spain) were transferred
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to the facilities of the Parque Cientı́fico-Tecnológico Marino (PCTM) at University of Las Pal-

mas de Gran Canaria (Telde, Canary Island, Spain) and adapted during 4 weeks to facility

water conditions (6.6–6.1 ppm dissolved O2, 18.2–20.2˚C). Afterwards, fish were randomly

distributed in 12 fiberglass tanks of 500 L (75 fish/tank) at an initial density of 3.5 kg�m3 (mean

weight±SD: 23.5±0.8g; mean length±SD: 12.00±0.15cm) in an open water system with natural

photoperiod (12L/12D). All groups were fed until apparent satiation 3 times a day, 6 days a

week for 63 days. Growth performance was evaluated at the end of the feeding trial. For sam-

pling, fish were caught and immediately euthanized with and overdose of natural clove oil

(5mL/L; Guinama S.L; Spain, Ref. Mg83168). Samples of posterior gut and rectum for optical

(n = 4 fish/tank) and electron morphology (n = 3 fish/tank) studies were also collected. For

gene expression analyses, posterior gut of 6 fish per diet was excised, washed in diethyl pyro-

carbonate (DEPC) water, placed into RNAlater™ (Sigma-Aldrich, Sant Louis, MO, USA) and

stored at 0˚C until RNA extraction.

Experiment II: Intestinal infection and stress challenge. After 63 days of feeding, 45

anesthesized fish/diet (0.2 mL/L natural clove oil) from Experiment I were transported pooled

from the on-growing facilities of the PCTM-ULPGC (Telde, Canary Islands, Spain) to the

Marine Biosecurity (MBS) facility situated in the same PCTM-ULPGC and exposed to an

Table 1. Main ingredients and analyzed proximate composition of the diets.

Diets

Ingredients (%) CONTROL GMOS PHYTO GMOSPHYTO

Fish meal1 10 10 10 10

Soya protein concentrate 18.9 18.9 18.9 18.9

Soya Meal 12.0 12.0 12.0 12.0

Corn gluten meal 25.0 25.0 25.0 25.0

Wheat 8.7 8.2 8.7 8.2

Wheat gluten 2.0 2.0 2.0 2.0

Guar Meal 8.0 8.0 8.0 8.0

Rapeseed extracted 3.0 3.0 3.0 3.0

Fish oil2 6.7 6.7 6.7 6.7

Rapeseed oil3 5.4 5.4 5.4 5.4

Vitamin and mineral premix4 3.7 3.7 3.7 3.7

Antioxidant 5 0.06 0.06 0.06 0.06

Galactomannan oligosaccharides6 0 0.5 0 0.5

Phytogenic7 0 0 200ppm 200ppm

Proximate composition (% of dry matter)

Crude lipids 19.91 20.44 20.47 20.72

Crude protein 49.30 49.27 49.76 49.85

Moisture 5.10 5.01 5.06 5.17

Ash 7.02 6.41 6.49 6.39

Gross Energy (MJ/kg, as is) 22.07 22.11 22.17 22.25

1 South-American, Superprime 68%.
2 South American fish oil.
3 DLG AS, Denmark.
4 Vilomix, Denmark.
5 BAROX BECP, Ethoxyquin.
6Delacon Biotechnik GmbH, Austria.
7Delacon Biotechnik GmbH, Austria.

https://doi.org/10.1371/journal.pone.0222063.t001
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Table 2. Fatty acid composition (% of total identified fatty acids) of the experimental diets.

CONTROL GMOS PHYTO GMOSPHYTO

14:0 3.28 2.91 3.02 2.92

14:1n-5 0.03 0.02 0.02 0.02

14:1n-7 0.13 0.12 0.12 0.12

15:0 0.27 0.24 0.25 0.25

15:1n-5 0.02 0.02 0.02 0.02

16:0ISO 0.05 0.04 0.05 0.05

16:0 13.45 12.58 13.03 12.95

16:1 n-7 3.46 3.27 3.35 3.27

16:1n-5 0.14 0.13 0.13 0.13

16:2n-6 0.00 0.00 0.00 0.01

16:2n-4 0.29 0.30 0.31 0.30

17:0 0.28 0.31 0.31 0.29

16:3n-4 0.17 0.14 0.16 0.14

16:3n-3 0.08 0.07 0.07 0.08

16:3n-1 0.04 0.04 0.03 0.03

16:4n-3 0.36 0.40 0.37 0.35

16:4 n-1 0.00 0.00 0.00 0.00

18:0 2.78 2.66 2.77 2.76

18:1 n-9 31.75 31.40 31.74 31.68

18:1 n-7 2.66 2.63 2.70 2.76

18:1 n-5 0.14 0.13 0.13 0.13

18:2n-9 0.08 0.04 0.04 0.04

18:2 n-6 17.09 18.98 18.81 19.17

18:2n-4 0.11 0.11 0.11 0.10

18: 3n-6 0.12 0.09 0.09 0.10

18:3n-4 0.08 0.07 0.07 0.06

18:3 n-3 4.53 4.66 4.56 4.53

18:3n-1 0.02 0.01 0.02 0.01

18:4 n-3 0.99 1.03 0.95 0.95

18:4 n-1 0.05 0.05 0.05 0.05

20:0 0.39 0.42 0.43 0.48

20:1 n-9 0.27 0.25 0.25 0.24

20: 1n-7 2.73 2.49 2.53 2.51

20: 1n-5 0.16 0.13 0.14 0.13

20: 2n-9 0.05 0.07 0.05 0.07

20:2 n-6 0.21 0.17 0.17 0.17

20:3n-9 0.02 0.02 0.02 0.03

20:3 n-6 0.05 0.05 0.05 0.05

20:4 n-6 0.36 0.37 0.37 0.36

20: 3n-3 0.07 0.06 0.06 0.06

20:4 n-3 0.29 0.32 0.29 0.29

20:5 n-3 4.39 4.82 4.45 4.38

22:1 n-11 3.04 2.82 2.85 2.82

22:1 n-9 0.37 0.33 0.33 0.33

22:4 n-6 0.05 0.05 0.05 0.05

22:5 n-6 0.03 0.04 0.04 0.03

22:5 n-3 0.59 0.63 0.59 0.59

22:6 n-3 4.46 4.52 4.07 4.14

(Continued)
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intestinal bacterial challenge combined with a confinement stress panel for 7 days. Anesthe-

sized fish were infected by intestinal inoculation of Vibrio anguillarum (105 cfu�ml-1 per fish;

strain 507, isolated from a clinical outbreak in Canary Islands), as described in ref. [33]. The

dose inoculated was previously determined in similar dietary and culture conditions by gradi-

ent of bacterial concentration. The dose inoculated was selected by common linerazitation of

sigmoidal curves. Immediately after inoculation and still anesthesized, fish were subjected to a

confinement stressor by increasing the feeding trial culture density by ten fold (final challenge

density = 35 kg/m3) in small cages (15 fish/cage; 3 cages/diet). For sampling, fish were caught

and inmediately euthanized with and overdose of natural clove oil (5mL/L; Guinama S.L;

Spain, Ref. Mg83168). Samples of posterior gut and rectum (n = 6 fish/diet) were taken for

optical microscopy at 2h, 24h, and 7 days of confinement. For the duration of the experiment,

fish were fed with their respective diets three times a day. Naturally dead fish were collected,

necropsied and V. anguillarum confirmed as the causative agent of death recorded by standard

biochemical procedures. Relative percent survival (RPS) was calculated as described in ref.

[34], following the equation: RPS = [1- Mortality of fish fed supplemented diet (%) / Mortality

of fish fed control diet (%)] � 100.

Biochemical composition of diets

Feed biochemical composition was analyzed according to standard procedures [35]. Dry mat-

ter content was determined after drying in an oven (110ºC) to constant weight and ash content

by combustion in a muffle furnace (600˚C, 12h). Crude lipid was extracted as described in ref.

[36] and crude protein content (Nx6.25) by using the Kjeldahl method. Fatty acid methyl esters

were obtained by transmethylation with 1% sulfuric acid in methanol as described in ref. [37]

and separated by gas chromatography (GC-14A, Shimadzu, Japan). A GC Supercolovax-

10-fused silica capillary column (Supelco, Bellefonte, USA) was used for the separation with

helium as a carrier gas, applying the conditions described in ref. [38]. Fatty acid methyl esters

were quantified by flame ionizator detector and identified by comparing them with external

and well-characterized fish oils standards (EPA 28, Nippai, Ltd. Tokyo, Japan).

Morphological studies

Fish posterior gut and rectum were dissected out and separated as pre-ileorectal valve and

post-ileorectal valve segments as detailed in Fig 1. From each segment, three to six transverse

sections (Nfeeding = 12 fish per diet; Nchallenge = 6 fish per diet and sampling point) were taken

and fixed at 4˚C in 4% paraformaldehyde. After 48 hours, samples were dehydrated and

embedded in paraffin. Sections of 4μm were stained with hematoxylin and eosin (H&E) for

Table 2. (Continued)

CONTROL GMOS PHYTO GMOSPHYTO

S Saturates 20.51 19.16 19.85 19.69

S Monoenes 44.90 43.73 44.31 44.16

S n-3 15.75 16.51 15.40 15.37

S n-6 17.92 19.75 19.58 19.94

S n-9 32.54 32.10 32.44 32.39

S n-3HUFA 9.79 10.34 9.45 9.46

S n-6HUFA 0.50 0.51 0.51 0.50

EPA+DHA 8.85 9.33 8.52 8.52

n-3/n-6 0.88 0.84 0.79 0.77

https://doi.org/10.1371/journal.pone.0222063.t002
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optical examination, with Alcian Blue (pH = 2.5) in order to differentiate goblet cell secreting

acid mucins, and with May-Grünwald/Giemsa (MGG) for studing leukocyte populations dis-

tribution [39]. Afterwards, slides were digitally scanned in a digital scanner Olympus VS120

(Optic system BX61VS, Tokyo, Japan) equipped with VC50 and VS-XM10 cameras and

acquired with Olympus VS software (VS-NIS-SQL-V2.6, Tokyo, Japan).

Posterior gut and rectum morphometrical and mucus production studies. For poste-

rior gut and rectum morphometry H&E/MGG-stained sections were used (Nfeeding = 12 fish

per diet; Nchallenge = 6 fish per diet and sampling point). Mucosal fold height, width, and sub-

mucosal thickness were analyzed using the measurement tool of the image analysis program

cellSens Dimension Desktop 1.16 (Olympus Iberia, Spain). The measurements of each variable

were replicated 45 times for each fish. Two scientists unaware of the experimental treatments

evaluated separately the cellular infiltration level of eosinophilic granulocytes (ECGs) and lym-

phocytes in both the lamina propria within the intestinal folds and the submucosa on the digi-

talized images. The scientists used MGG-stained sections and assigned a histological score (on

a range from 0–3) to each feature based on a previously established histological scoring system

Fig 1. Nomenclature used for the gut segments used in this study. (A) Gut of European sea bass (Dicentrarchus labrax) juvenile, posterior gut (preileorectal valve

segment) and rectum (postileorectal valve segment) regions sampled for morphological, morphometric, and immunohistochemical analyses. (B) Detailed micrograph of

posterior gut stained with Alcian Blue (pH = 2.5); observe the shorter folds and higher density of goblet cells. Scale bar 200 μm; (C) Detailed micrograph of the ileorectal

valve separating European sea bass posterior gut and rectum. Scale bar 500 μm. (D) Detailed micrograph of European sea bass rectum stained with Alcian Blue (pH = 2.5);

observe the longer and thinner folds, the lower density of goblet cells, and the wider muscular layer. Scale bar 200 μm.

https://doi.org/10.1371/journal.pone.0222063.g001
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[8]. The score 0 was assigned for no observed infiltration, 1 for low, 2 for moderate, and 3 for

high infiltration.

For determining of mucus production related parameters, an Alcian Blue (pH = 2.5) section

was used. CellSens Dimension Desktop 1.16 (Olympus Iberia, Spain) was specifically cali-

brated to determine the number of goblet cells, goblet cell area (μm2), goblet cell minimum

diameter and perimeter (μm), and the % of mucosal surface (fold) covered by mucus (%) in a

in a semi-automated way for each intestinal section.

Posterior gut and rectum structure study. Fish intestines were dissected out; the posterior

gut and rectum separated as pre-ileorectal valve and post-ileorectal valve segments (n = 9 dietary

treatment) were cut in small pieces and immediately fixed at 4˚C in 2.5% glutaraldehyde in

0.15M HEPES buffer (pH = 7.4), rinsed in HEPES buffer, post fixed at 4˚C in 2% osmium tetrox-

ide and 2% uranyl acetate, dehydrated in graded ethanol series, and embedded individually in an

Embed 812 (Electron Microscopy Sciences (EMS), PA, USA) resin block. Semithin (1 μm) serial

transverse sections (N = 3 per individual fish) were contrasted with toluidine blue and examined

under light microscopy [40]. Ultrathin (50 nm) sections were contrasted with lead citrate and

examined with a JEOL JEM-1011 Transmission Electron Microscope (TEM; JEOL USA, Inc,

USA) equipped with a digital camera MegaView III soft imaging system CCD Camera (EMSIS

GmbH, Germany). Scientists who were unaware of the experimental treatments qualitatively

evaluated the intestinal membrane lining appearance, cytoplasmatic electrondensity, enterocytes

packaging, TJ structure, and level of infiltrated leukocytes. Microvilli length and cell dimensions

were measured with cellSens Dimension Desktop 1.16 (Olympus Iberia, Spain).

Gene expression analysis

Total RNA extraction and cDNA synthesis. Total RNA was extracted from fish gut

using an automatic system (Maxwell1 16 Instrument, Promega) and a total RNA purification

kit (Maxwell1 16 LEV simplyRNA Tissue). The RNA was quantified by using NanoDrop™
spectrophotometer (Thermo Scientific, Italy) and reverse transcribed into cDNA following the

protocol of the SuperScript III Reverse Transcriptase kit (Invitrogen, Milan, Italy).

Primer design, amplification, and molecular cloning and sequencing of 7 target genes. The

primers used for the amplification of Ocln, ZO-1, Cad-17, E-Cad, N-Cad, α-Tub, and Vim genes

are reported in Table 3. They were designed based on the orthologous sequences of Salmo salar
(Genbank acc. nr. XM_014123589.1), Sparus aurata (KF861990.1), and Fundulus heteroclitus
(XM_021308001.1) for Ocln; S. aurata (KF861994.1), and Maylandia zebra (XM_004567665.3)

for ZO-1; S. aurata (KF861996.1), F. heteroclitus (XM_021308835.1), and Oreochromis niloticus
(XM_003450934.3) for Cad-17; S. aurata (KF861995.1), O. niloticus (XM_019357299.1), and

Oncorhynchus mykiss (AB787267.1) for E-Cad gene; F. heteroclitus (XM_012875420.2), O. niloticus
(XM_005476357.3), S. salar (XM_014123187.1), and Labrus bergylta (XM_020635352.1) for

N-Cad; Dicentrarchus labrax (AY326429.1) for α-TUB; S. aurata (KF857332.1), S. salar
(NM_001140475.1), and O. mykiss (NM_001124729.1) for Vim gene.

An aliquot of cDNA obtained by reverse transcription was amplified by PCR using the

designed primer sets for each gene and GoTaq Green Master Mix (Promega, Milan, Italy), as

described in ref. [41]. The plasmid was finally purified using the NucleoSpin1 Plasmid kit

(Macherey-Nagel Milan, Italy) and then sequenced in both directions (T7 and SP6).

One-step TaqMan1 real-time RT-PCR for mRNA copies quantification of

7 target genes

Generation of synthetic mRNAs. Based on the cDNA sequences of D. labrax’s Ocln, ZO-
1, Cad-17, E-Cad, N-Cad, α-Tub and Vim genes, forward and reverse primers were designed
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for each gene (Table 4). The forward primers were designed to contain the sequence of the T3

or T7 RNA polymerase promoter necessary for in vitro transcription of the mRNAs of each

target gene at the 5’ end. The T3/T7 forward primers and their respective reverse primers were

used in a conventional PCR reaction. The PCR product was then cloned and sequenced and its

molecular weight was determined using the formula described in ref. [41]:

In vitro transcription was performed using T3 or T7 RNA polymerase and other reagents

supplied in the RiboProbe InVitro Transcription System kit (Promega, Italy) according to the

manufacturer’s protocol.

Generation of standard curves. The in vitro transcribed mRNAs of each target gene were

used as quantitative standards t analyze experimental samples [41]. The sequences of primers

and Taqman1 probes used for RT-PCR quantification are shown in Table 5. Taqman1 PCR

reactions were performed on a Bio-Rad1 CFX96™ System. The raw data of Taqman1 PCR

runs were collected by CFX™ Software.

Table 3. Primers used for the molecular cloning of the target genes.

Gene Primer Nucleotide sequence (5’- 3’)

Ocln Forward CATGGTGTGTGGATTCCTGGT

Reverse CGTCTCTTGCCCCTGTTGG

ZO-1 Forward GGCCATGAAACCGCAGTCAG

Reverse ATCTTTTCTCCACTGGGCTCAC

Cad-17 Forward AGAGGAGCTGGACAGAGA

Reverse CAGAGGCAGCTCATTGTTGA

E-Cad Forward TACACTGTGGTCCTGAGGGT

Reverse GTGCTGTCGGGTCATTGTCA

N-Cad Forward CGAACGCCATCAACATCAC

Reverse TAGACGGCGGATTCCCAC

α-Tub Forward AACTCCATCCTGACCACC

Reverse CCATCTGATTGGCTGGCTCA

Vim Forward TGCAGAGCTTCAGACAGGAT

Reverse GGCCATCTCGTCCTTCATGT

https://doi.org/10.1371/journal.pone.0222063.t003

Table 4. Primers used for the synthesis of standard mRNAs.

Gene Primer Nucleotide sequence (5’- 3’)

Ocln T7 Forward taatacgactcactatagggTGGGTGAACAATGTGGAGGA

Reverse CGTCTCTTGCCCCTGTTGG

ZO-1 T7 Forward taatacgactcactatagggCCATGAAACCGCAGTCAG

Reverse ACGGCGATCAAAGTAGGACA

Cad-17 T7 Forward taatacgactcactatagggAGAGGAGCTGGACAGAGA

E-Cad T3 Forward caattaaccctcactaaaggg TACACTGTGGTCCTGAGGGT

Reverse GTGCTGTCGGGTCATTGTCA

Reverse CAGAGGCAGCTCATTGTTGA

N-Cad T7 Forward taatacgactcactatagggCGAACGCCATCAACATCAC

Reverse TAGACGGCGGATTCCCAC

α-Tub T7 Forward taatacgactcactatagggAACTCCATCCTGACCACC

Reverse CCATCTGATTGGCTGGCTCA

Vim T7 Forward taatacgactcactataggg TGCAGAGCTTCAGACAGGAT

Reverse GGCCATCTCGTCCTTCATGT

https://doi.org/10.1371/journal.pone.0222063.t004
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Statistical analyses

Statistical analyses followed the methods described in ref. [42]. All data presented were tested

for normality and homogeneity of variance. If necessary, data were transformed. Means and

standard deviations (SD) were calculated for each parameter measured. Significant differences

were considered when p�0.05. Differences between dietary treatments were established by

one-way ANOVA. When F values showed significance, individual means were compared

using post hoc Tukey for multiple means comparison. The individual effects of prebiotic and

phytogenic were analyzed by two-way ANOVA analyses, where GMOS and PHYTO were

established as fixed factors. P values obtained for each evaluated parameter are reported in the

corresponding results tables. Morphological and immunohistochemical findings, which were

based on a range scale evaluation, were analyzed by paired comparisons among them (Mann-

Whitney U test). Similarly, for morphometric analyses, posterior and rectum sections were

compared by T student or Mann-Whitney U test, depending on the normality of the data.

Analyses were performed using the SPSS Statistical Software System v21.0 (SPSS, Chicago, IL,

USA) and PRIMER 7 with PERMANOVA complement (Auckland, New Zealand).

3. Results

Experiment I: Feeding trial

Growth parameters and biometry. After 63 days of feeding, fish grew properly and pre-

sented a 2.6x increase in body weight along the 63 days of feeding, representing a relative

growth (%) of a 158.8±16.3, however the utilization of GMOS, PHYTO, or a combination of

both functional products did not induce differences (p>0.05) in fish growth or diet utilization,

in terms of final body weight (59.0±1.8), total length (16.7±0.1), specific growth rate (1.5±0.1),

Table 5. Primers and probes used for one-step Taqman real-time RT-PCR.

Gene Primer Nucleotide sequence (5’- 3’)

Ocln Forward GGACGAAGACGACAACAACGA

Reverse CCATGGGAGAAAGCCTCTGA

Taqman Probe TACTCAGAGAGAACCACGAGCCGGCC

ZO-1 Forward CGGCCTGCAGATGTTCCTAA

Reverse GCTGAGGGAATTGGCTTTGA

Taqman Probe CCTGCGAGTGCACCTGGCCC

Cad-17 Forward TGCCCACCTGACTTACATCATC

Reverse TTCCAGTGGCAGCATCAATG

Taqman Probe CCGGATGATTCAGCAACCAAAACCTTCT

E-Cad Forward CGGAGAGGATGATCAGGACTATG

Reverse TACTGTGGAGCTGGCATGAAGT

Taqman Probe TTCACCGTGGTCTGGACAACCGA

N-Cad Forward CGTGCTGCTGTTTGTGGTATG

Reverse CTCACATCATCCTCTGGATCGA

Taqman Probe AAGAACGTCAGGCGAAGCAGCTCCTC

α-Tub Forward AGGCTCATTGGCCAGATTGT

Reverse CAACATTCAGGGCTCCATCA

Taqman Probe TCTTCAATCACAGCCTCGCTTCGCT

Vim Forward GATGTCCGCCTGCAGTATGA

Reverse GGTGAGGTCAGCAAACTTGGA

Taqman Probe AACCTGGCCTCCAAAAACATCCATGAG

https://doi.org/10.1371/journal.pone.0222063.t005
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or feed conversion ratio (1.2±0.1). The recorded mortality during the feeding trial was negligi-

ble (<1%) and not associated to an specific diet.

Posterior gut and rectum morphometrical and mucus production. Morphological eval-

uation of H&E/MGG-stained sections of fish posterior gut and rectum segments showed a

well-organized folding pattern, lack of cell debris, and an intact intestinal epithelial barrier for

all the fish experimental groups. In general terms, by comparing posterior gut (preileorectal

valve segment) and rectum (postileorectal valve segment), the latter presented longer

(p = 0.001) folds than posterior gut (Table 6, Fig 1B vs 1D). In terms of mucus production, pos-

terior gut presented a greater fold area covered by mucus as a result of an increased cell density

(Table 6, Fig 2A and 2B), since posterior gut goblet cells were smaller (p = 0.001) than goblet

cells located in rectum (Table 6, Fig 2C vs 2D). In addition, goblet cell distribution along the

folds varied between intestinal segments. In European sea bass posterior gut, a higher density

of goblet cells on the mid and basal fold regions was found than in the apical fold region (Fig

3A), whereas in European sea bass rectum goblet cell density was higher on the apical and mid

regions than in the basal zone (Fig 3B). Furthermore, rectum segment presented a thinner sub-

mucosa (p = 0.001) than the posterior gut (Table 6, Fig 3C).

Evaluation of morphometrical characteristics in relation to the dietary treatment revealed

no differences (p>0.05) in mucosal fold length. However, fish fed the control diet showed

the highest percentage of fold area covered by mucus compared to fish fed the other diets

(Table 6). Additionally, functional additives affected the morphological characteristics of

Table 6. Posterior intestine and rectum morphometric parameters for European sea bass (Dicentrarchus labrax) juveniles at the end of the feeding trial (63days).

Dietary treatments Two-way ANOVA

C GMOS PHYTO GMOSPHYTO GMOS PHYTO GMOS�PHYTO Posterior vs Rectum

Fold length (μm)

Posterior gut 440.1±39.1 381.1±52.6 366.0±10.4 406.1±74.2 NS NS NS p = 0.001

Rectum 668.4±59.4 645.1±19.9 645.9±66.2 706.5±51.0 NS NS NS

Fold area covered by mucus (%)

Posterior gut 10.3±0.2 8.8±1.5 9.2±0.9 8.7±2.4 NS NS NS p = 0.001

Rectum 6.4±0.5 5.2±0.7 6.6±2.1 6.6±0.7 NS NS NS

Goblet cell area (μm2)

Posterior gut 81.5±15.2a 61.3±10.3b 56.2±8.2b 66.2±10.2ab NS F = 3.95;

p = 0.05

F = 8.73;

p = 0.006

p = 0.001

Rectum 114.5±4.0a 86.8±20.4b 96.8±26.7ab 109.6±8.4ab NS NS F = 10.05;

p = p = 0.003

Goblet cell minimum diameter (μm)

Posterior gut 6.5±0.6 5.7±0.5 5.4±0.6 5.9±0.8 NS NS F = 4.67;

p = 0.038

p = 0.001

Rectum 8.3 ±0.3 7.1±1.2 7.6±1.3 8.3±0.4 NS NS F = 6.39;

p = 0.017

Submucosa thickness (μm)

Posterior gut 34.8±0.8 34.4±3.0 36.1±2.0 34.1±0.4 NS NS NS p = 0.001

Rectum 25.3±5.0a 19.2±0.9c 24.0±4.9a 21.4±3.3b F = 51.31; p = 0.001 NS F = 6.09;

p = 0.014

Diets: C (control diet), GMOS (5000 ppm galactomannan oligosaccharides), PHYTO (200ppm phytogenic), GOSPHYTO (5000 ppm galactomannan oligosaccharides

+200ppm phytogenic). Posterior gut (preileorectal valve segment) and rectum (postileorectal valve segment) as detailed in Fig 1. Data presented as mean ± SD. N = 4x3

(fish x tank). Different letters within a row denote significant differences among dietary treatments (p�0.05; one-way ANOVA; Tukey). Two-way ANOVA analyses

(p<0.05). NS = No significant. Quantitative differences between posterior and rectum segments, were calculated using T student or U Mann-Whitney tests (p<0.05).

https://doi.org/10.1371/journal.pone.0222063.t006
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goblet cells. For posterior gut, fish fed GMOS and PHYTO diets presented smaller (p<0.05)

goblet cells than fish fed the control diet (Fig 4A vs 4B), whereas for the rectum segment, only

fish fed GMOS diet presented reduced (p<0.05) goblet cell area in comparison to fish fed the

control diet (Table 6, Fig 4C vs 4D). Despite these differences, dietary treatments did not affect

(p>0.05) the pattern of goblet cell distribution along the folds in posterior gut or rectum seg-

ments, where the highest goblet cells density was observed in apical and mid regions rather

than in the basal zone, as described in Fig 3B. No differences (p>0.05) were found in mini-

mum cell diameter in the two intestinal segments studied (Table 6). Fish fed GMOS and

GMOSPHYTO diets presented a thinner (p<0.05) rectum submucosa than fish fed the control

and PHYTO diets (Table 6, Fig 5A vs 5B); however, no differences were observed in posterior

gut segment for this parameter. Accordingly, two-way ANOVA analyses revealed a reducing

effect of GMOS (F = 14.53; p = 0.001) and PHYTO (F = 5.52; p = 0.019) in terms of percentage

of fold coverage, as well as a reducing effect of PHYTO (F = 3.95; p = 0.049) diet on the size of

the posterior gut goblet cells. Dietary GMOS supplementation resulted in a reduction in rec-

tum submucosa thickness (F = 51.31; p = 0.001). A significant interaction between GMOS and

PHYTO diet factors was detected for posterior gut and rectum goblet cell area (Fposterior = 8.73;

p = 0.006; Frectum = 10.05; p = 0.003), diameter (Fposterior = 4.67; p = 0.038; Frectum = 6.39;

p = 0.017), and rectum submucosa thickness (Frectum = 6.09; p = 0.014) (Table 6).

Fig 2. Morphological differences between European sea bass (Dicentrarchus labrax) posterior gut (preileorectal valve segment) and rectum (postileorectal valve

segments) goblet cell size and distribution on mucosal surface. A similar morphology and mucus production pattern were observed in all the fish intestinal sections

studied. A general overview of goblet cell distribution in posterior gut and rectum (separated by ileorectal valve) is detailed in Fig 2A and 2B (Alcian Blue, pH = 2.5; Bar

100 μm). Note the greater fold area covered by mucus in posterior gut compared to rectum as a result of increased cell density as posterior gut goblet cells are smaller than

goblet cells located in rectum (Fig 2C vs 2D; Alcian Blue, pH = 2.5; Bar 20 μm).

https://doi.org/10.1371/journal.pone.0222063.g002
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Fig 3. Detailed micrograph of posterior gut (3A) and rectum (3B) goblet cells distribution along the folds stained with

Alcian Blue (pH = 2.5). Observe a higher density of goblet cells on posterior gut mid (2) and basal (3) fold regions compared

to apical (1) fold region, whereas rectum presents greater goblet cell density on apical (1) and mid (2) regions in comparison

to basal (3) zone. Scale bar 50 μm. (3C) Detailed micrograph of posterior gut (preileorectal valve; right) and rectum

(postileorectal valve; left) stained with May-Günwald Giemsa; observe the wider submucosa (!) in posterior gut than in

rectum segments. Scale bar 100 μm.

https://doi.org/10.1371/journal.pone.0222063.g003

Phytogenics and prebiotics in low fish meal and oil diets for sea bass: Effects on gut health

PLOS ONE | https://doi.org/10.1371/journal.pone.0222063 September 18, 2019 13 / 31

https://doi.org/10.1371/journal.pone.0222063.g003
https://doi.org/10.1371/journal.pone.0222063


The degree of leukocytes (granulocytes and lymphocytes) present in lamina propria and

infiltrated in the intestinal mucosa was similar in both intestinal segments, except for the num-

ber of granulocytes at submucosa, which was greater in posterior gut than in the rectum. Fig

6A and 6B show details of infiltrated leukocytes. The degree of granulocyte and lymphocyte

infiltration for both intestinal segments was not affected (p>0.05) by dietary treatments

(Table 7).

Posterior gut presented a lower density of rodlet cells as compared to rectum; however, dis-

tribution in the two segments was similar, being more concentrated in the basal zone of the

folds than in the apical region (Fig 6C and 6D). Two-way ANOVA detected a trend for an

increased number of rodlet cells in fish posterior gut after dietary PHYTO supplementation

Fig 4. European sea bass (Dicentrarchus labrax) posterior gut and rectum goblet cell size and density after 63 days of dietary supplementation. For posterior gut

(preileorectal valve), the larger goblet cells and lower density pattern is represented in Fig 4A and corresponds to fish fed control diet. Bar 100 μm. The smaller goblet cells

and higher density pattern is represented in Fig 4B and corresponds to fish fed GMOS and PHYTO diets. Bar 100 μm. For rectum (postileorectal valve), the larger goblet

cells and lower density pattern is represented in Fig 4C and 4E and corresponds to fish fed control diet. Bar 50 μm and 10 μm. The smaller goblet cells and higher density

pattern are represented in Fig 4D and 4F and correspond to fish fed GMOS diets. Bar 50 μm and 10 μm. No variations were found in the % of mucosal area covered by

mucus among the dietary treatments for both intestinal segments. C (control diet), GMOS (5000 ppm galactomannan oligosaccharides), PHYTO (200ppm phytogenic),

GMOSPHYTO (5000 ppm galactomannan oligosaccharides+200ppm phytogenic).

https://doi.org/10.1371/journal.pone.0222063.g004
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(F = 3.604; p = 0.068), whereas in rectum, this effect was attributed to dietary GMOS

(F = 5.946; p = 0.022). A significant interaction between GMOS and PHYTO factors was

detected for the presence of posterior gut rodlet cells (F = 3.398; p = 0.076) (Table 7).

Posterior gut and rectum structure study. Observations in the preileorectal (posterior

gut) and postileorectal (rectum) regions refer to European sea bass fed the experimental diets for

63 days. For posterior gut, the qualitative TEM revealed a similar morphological pattern for all

fish, regardless of the dietary treatment, in terms of membrane lining appearance, cytoplasmic

electron density, enterocyte packaging, TJ structure, and level of infiltrated leukocytes (Fig 7A

and 7B). For the rectum region, the structural study revealed increased microvilli length

(p<0.05) for fish fed GMOS diets (mean length (μm) = 2280.95 ± 156.86; max length =

2584.91 μm; min length = 1997.90 μm) in comparison to fish fed control and PHYTO diets

(mean length (μm) = 1541.44 ± 150.42; max length = 1783.67 μm; min length = 1380.83 μm)

(Fig 7C and 7D). However, despite the differences found in microvilli length, all analyzed fish

presented a normal microvillar morphology of nondamaged and well- packaged enterocytes and

conserved TJ structure and membrane lining appearance (Fig 7E and 7F).

By using TEM analyses, we could to clearly observe the morphology of goblet cells scattered

among enterocytes: a clearly polarized shape characterized with a narrow basal region contain-

ing the nucleus and organelles and an expanded apical region containing the secretory gran-

ules, which had a different electron density (Fig 8A). Goblet cells were normally in contact

with lymphocytes, not only in the basal area but also in the apical region (Fig 8A and 8B). Fig

8C shows a goblet cell in the exocytosis process, secreting mucus to the lumen. Furthermore,

we could identify immature (Fig 8D) and mature rodlet cells (Fig 8E) scattered among entero-

cytes in the basal fold region by using TEM. Intraepithelial immature rodlet cells were charac-

terized by a single nucleus with condensed heterochromatin at nuclear periphery and a

cytoplasm containing translucent vesicles. Rodlet cells with electron- dense cores were ori-

ented in parallel to the surface layer of the epithelium (Fig 8D), whereas mature rodlet cells

Fig 5. European sea bass (Dicentrarchus labrax) rectum submucosa thickness after 63 days of dietary supplementation (May-Grünwald Giemsa). The thinner

rectum submucosa pattern observed is represented in Fig 5A and corresponds to fish fed GMOS and GMOSPHYTO diets. Bar 50 μm. The engrossed rectum

submucosa pattern observed is represented in Fig 5B and corresponds to fish fed control and PHYTO diets. C (control diet), GMOS (5000 ppm galactomannan

oligosaccharides), PHYTO (200ppm phytogenic), GMOSPHYTO (5000 ppm galactomannan oligosaccharides+200ppm phytogenic).

https://doi.org/10.1371/journal.pone.0222063.g005
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were oriented perpendicular to the surface layer of the epithelium (Fig 8E) and the vesicles had

a greater electron density. Fig 7F shows discharged rodlets within the microvilli.

TEM structure analysis showed the presence of infiltrated leukocytes in the intestinal

mucosa, lamina propria, and submucosa (Table 7; Fig 8G). As reported in Table 7, the main

cell type of infiltrated leukocytes in European sea bass mucosa corresponded to the structural

characteristics of lymphocytes (Fig 8H), which were frequently in contact with granulocytes

(Figs 8G and 7I) and macrophages (Fig 8G).

Fig 6. Detailed micrographs of infiltrated granulocytes and lymphocytes and rodlet cells present in European sea bass (Dicentrarchus labrax) intestinal mucosa

stained with May-Grünwald Giemsa. (6A) Detail of infiltrated granulocytes in the rectum mucosa (!), submucosa and lamina propia (�). Infiltrated lymphocytes are

indicated by ➤. Scale bar 20 μm. (6B) Detail of infiltrated granulocytes (!) and lymphocytes (➤) in posterior gut mucosa. Observe the mixed population of leukocytes in

the submucosa. Granulocytes are indicated by (�). Scale bar 10 μm. Observe the higher density of rodlet cells present in the basal region of the fold compared to the apical

region in rectum (6C) and posterior gut (6D). Scale bar 50μm- 20 μm.

https://doi.org/10.1371/journal.pone.0222063.g006
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Table 7. Scoring of submucosa-and lamina propria-infiltrated leukocytes subpopulations in posterior gut (preileorectal valve) and rectum (postileorectal valve) for

European sea bass (Dicentrarchus labrax) at the end of the feeding trial (t = 63 days).

Dietary Treatments Two-way ANOVA

Control GMOS PHYTO GMOSPHYTO GMOS PHYTO GMOS�PHYTO

Posterior gut Granulocytes Submucosa 2–3 2–3 2 2–3 NS NS NS

Lamina propia 1–2 1–2 1–2 1–2 NS NS NS

Lymphocytes Submucosa 2–3 2–3 2–3 2–3 NS NS NS

Lamina propia 2–3 2–3 2–3 2–3 NS NS NS

Rodlet cells 1–2 1–2 2 1–2 NS F = 3.604; P = 0.068 F = 3.398; P = 0.076

Rectum Granulocytes Submucosa 2 2 2 1–2 NS NS F = 4.641; P = 0.040

Lamina propia 1–2 1–2 2 1–2 NS NS NS

Lymphocytes Submucosa 2–3 2 2 2 NS NS NS

Lamina propia 2 2 2 2 NS NS NS

Rodlet cells 2 3 2–3 2–3 F = 5.946; P = 0.020 NS NS

ND (not detected), 1 (low), 2 (moderate) and 3 (high) for each area/cell evaluated.

https://doi.org/10.1371/journal.pone.0222063.t007

Fig 7. Representative TEM micrographs of the posterior and rectum intestinal regions of European sea bass (Dicentrarchus labrax) fed the different dietary

treatments. (7A) Posterior gut structural pattern observed for all fish studied. Scale bar 2 μm. (7B) Detailed micrograph of posterior gut tight junction (TJ) appearance.

Observe the conserved structure. Scale bar 1μm. (7C) Pattern of rectum microvilli length for fish fed control and PHYTO diet and (7D) representative micrograph of

rectum microvilli length for fish fed GMOS based diets which were significantly (P<0.05) longer than fish fed the rest of the dietary treatments. Scale bars 1μm. No

evident differences were observed in enterocyte packaging, membrane lining appearance (7E), or TJs structure (7F) among dietary treatments for rectum region. Scale

bars 2 μm. C (control diet), GMOS (5000 ppm galactomannan oliGMOSaccharides), PHYTO (200ppm phytogenic), GMOSPHYTO (5000 ppm galactomannan

oligosaccharides+200ppm phytogenic).

https://doi.org/10.1371/journal.pone.0222063.g007
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Gene expression analyses. Fig 9 shows the transcript levels of tight junction (Ocln, ZO-1),

adherens (Cad-17, E-Cad), desmosomes (N-Cad), and cytoskeletal (α-Tub and Vim) genes in

the posterior gut of European sea bass at the end of the feeding trial (63 days). One-way

ANOVA analyses showed no influence of dietary treatment on the mRNA copies of Ocln, ZO-
1, Cad-17, E-cad, α-Tub, and Vim genes. In contrast, the expression level of N-Cad was

increased (p<0.05) by GMOSPHYTO diet supplementation (Figs 9 and S1 Fig).

Two-way ANOVA analyses found a statistically significant increase (p�0.10) in transcript

copies for Ocln, N-Cad and Cad-17 to PHYTO diet at the end of the feeding trial (Focln = 3.299;

p = 0.87; FN-Cad = 15.861; p = 0.001; FCad-17 = 2.415; p = 0.130). No significant effect due to

Fig 8. Detailed TEM micrographs of goblet cells, rodlet cells, lymphocytes, and eosinophilic granule cells (granulocytes) housed in the gut of European sea bass

(Dicentrarchus labrax) juveniles. (A) Goblet cells scattered among enterocytes and characterized by a clearly polarized shape with narrow base containing the nucleus

and organelles and an expanded apical region containing the secretory granules; observe granules with different electron density. Scale bar 10 μm. (B) Goblet cells

surrounded by lymphocytes. Scale bar 5 μm. (C) Detail of goblet cell in process of mucus exocytosis inside the lumen. Scale bar 2 μm. (D) Intraepithelial immature

rodlet cell characterized by a single nucleus with condensed heterochromatin at nuclear periphery and a cytoplasm containing translucent vesicles (�) and rodlets (R)

with electron dense cores. Orientation in parallel to the surface layer of the epithelium. Scale bar 5 μm. (E) Intraepithelial mature rodlet cell oriented perpendicular to

the surface layer of the epithelium. Scale bar 5 μm. (F) Free rodlet bundles in the microvilli. Scale bar 2 μm. (G) Representative micrograph of leukocytes housed in the

intestinal submucosa. Scale bar 10 μm. (H) Detail of lymphocytes characterized by a single nucleus with areas of condensed heterochromatin. Scale bar 2 μm. (I)

Representative micrograph of granulocytes housed in the lamina propia. Scale bar 10 μm. Abbreviations used are: GC: Goblet cell; Gr: granulocyte; L: Lymphocyte; LP:

Lamina propria; Mb: Basal membrane; Mo: Macrophage; Mv: Microvilli; N: Nucleus; R: Rodlet.

https://doi.org/10.1371/journal.pone.0222063.g008
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GMOS supplementation or to the interaction between GMOS and PHYTO factors was

detected.

Experiment II: Intestinal infection and stress challenge

Relative percentage of survival RPS. PHYTO and GMOS dietary supplementation for 63

days reduced European sea bass susceptibility to V. anguillarum after intestinal infection com-

bined with stress by confinement for 7 days. The RPS values for the dose inoculated was 33%,

47% and 20% for fish fed GMOS, PHYTO, and GMOSPHYTO, respectively. Fish fed control

died achieved a final mortality of a 40%.

Goblet cell morphology and mucus production patterns during the challenge test. A

time course study. No significant differences (p>0.05, N = 9 fish diet) were found for the

percentage of posterior gut fold area covered by goblet cells during the challenge test.

Fig 9. Absolute quantification of transcript copies of Ocln, ZO-1, Cad-17, E-Cad, N-Cad, a-Tub, and vim genes in European sea bass (Dicentrarchus labrax)

posterior gut (mean ± SEM, n = 6 fish/diet). Functional low FM and FO diets were fed for 63 days. C (control diet), GMOS (5000 ppm galactomannan oligosaccharides),

PHYTO (200ppm phytogenic), and GMOSPHYTO (5000 ppm galactomannan oligosaccharides+200ppm phytogenic). Different letters denote significant differences

among dietary treatments (p�0.05; one-way ANOVA; Tukey). Two-way ANOVA analyses found an increased (p�0.10) absolute quantification of transcript copies for

Ocln, N-Cad, and Cad-17 to PHYTO dietary supplementation in low FM and FO diets at the end of the feeding trial (Focln = 3.299; p = 0.87; FN-Cad = 15.861; p = 0.001;

FCad-17 = 2.415; p = 0.130).). For detailed information see supporting information S1 Fig.

https://doi.org/10.1371/journal.pone.0222063.g009

Phytogenics and prebiotics in low fish meal and oil diets for sea bass: Effects on gut health

PLOS ONE | https://doi.org/10.1371/journal.pone.0222063 September 18, 2019 19 / 31

https://doi.org/10.1371/journal.pone.0222063.g009
https://doi.org/10.1371/journal.pone.0222063


However, fish fed PHYTO diet presented a clearly different pattern of response to the experi-

mental intestinal inoculation of bacteria in comparison to fish fed the other two diets (Fig

10A).

As can be seen in Fig 10A (for detailed information see S2 Fig), fish fed PHYTO diet pre-

sented a trend for having the highest percentage of mucus coverage after 2h of challenge,

which was reduced after 24h. Then, after 7 days of challenge test, mucus production had clearly

Fig 10. Time course study of European sea bass (Dicentrarchus labrax) posterior and rectum gut fold area percentage covered by goblet cells and goblet

cell area (μm2) during the 7 days of the challenge test (V. anguillarum intestinal infection + stress by confinement). Functional low FM and FO diets were

fed for 70 days (63 feeding+7days of challenge test). (A) Posterior gut fold area percentage covered by goblet cells during the challenge test. Observe the different

pattern of response presented by fish fed PHYTO diet, which shows a trend for a higher percentage of mucus coverage after 2h of challenge, which is reduced

after 24h, and clearly recovered after 7 days of challenge test compared to fish fed other dietary treatments. (B) Rectum fold area percentage covered by goblet

cells during the challenge test. Observe the different pattern of response presented by fish fed GMOSPHYTO diet, which show a higher percentage of mucus

coverage 24h and 7 days (p<0.05) after challenged compared to fish fed control diet. Two-way ANOVA analyses showed an increased percentage of fold covered

by mucus for PHYTO dietary supplementation in low FM and FO diets at the end of the challenge test (F = 12.56; p = 0.012). (C)Posterior gut goblet cells area

(μm2) during the challenge test. Observe how initial patterns are recovered after 7 days of challenge test for all dietary treatments, fish fed control diet having

larger goblet cells (p<0.05) than fish fed PHYTO diet. However, 24h post challenge fish fed PHYTO diet presented larger (p<0.05) goblet cells than fish fed

GMOS and GMOSPHYTO diets. Two-way ANOVA analyses associated a significant reduction in goblet cell size to dietary PHYTO supplementation in low FM

and FO diets for 63 days (t = 0 hours; F = 3.95; p = 0.05) as well as at the end of the challenge test (t = 168 hours; F = 6.94; p = 0.030). On the other hand, PHYTO

dietary supplementation in low FM and FO diets was associated with an increase in goblet cell size (F = 7.67; p = 0.013) 24h after the challenge. GMOS

supplementation was associated with a reduction in goblet cell size 24h (t = 24 hours; F = 7.676; p = 0.013) and 7 days after the challenge (t = 168 hours; F = 16.26;

p = 0.004). (D) Rectum goblet cell area (μm2) during the challenge test. Observe how fish fed PHYTO diet presented a larger (p<0.05) goblet cell area than fish

fed control diet at the end of the challenge test (t = 168h). C (control diet), GMOS (5000 ppm galactomannan oligosaccharides), PHYTO (200ppm phytogenic),

GMOSPHYTO (5000 ppm galactomannan oligosaccharides+200ppm phytogenic). For detailed information see supporting information S2 Fig.

https://doi.org/10.1371/journal.pone.0222063.g010
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recovered in comparison to fish fed the other diets, thus responding in a more controlled and

delayed manner way to the external stressor. Indeed, at 24h after the stress, in fish fed PHYTO

diet, despite showing a trend for having the lowest percentage of area covered by mucus, goblet

cells were larger than in fish fed the other diets, confirming this tendency (Fig 10C and S2 Fig).

In the case of rectum section, fish fed GMOSPHYTO diet presented higher (p<0.05) fold

mucus coverage 7 days after being challenged in comparison to fish fed the control diet (Fig

10B and S2 Fig). Two-way ANOVA analyses associated this effect with PHYTO dietary supple-

mentation (F = 12.56; p = 0.012).

With regard to the posterior gut’s goblet cell area (μm2), fish fed PHYTO diet had larger

(p<0.05) goblet cells than fish fed GMOS and GMOSPHYTO diets at 24h after the challenge.

Initial goblet size patterns returned then to normal size after 7 days of challenge test in fish from

all dietary treatments, with fish fed control diet having larger goblet cells (p<0.05) than fish fed

PHYTO diet (Fig 10C and S2 Fig). Two-way ANOVA analyses associated a significant reduc-

tion in goblet cell size with dietary PHYTO supplementation both before the challenge period

(t = 0 hours; F = 3.95; p = 0.05) and at the end of the challenge test (t = 168 hours; F = 6.94;

p = 0.030). Similarly, GMOS supplementation was associated with a reduction in goblet cell size

at 24h (t = 24 hours; F = 7.676; p = 0.013) and at 7 days after the challenge (t = 168 hours;

F = 16.26; p = 0.004). As for rectum, at the end of the challenge test (t = 168h), goblet cell areas

were larger (p<0.05) in fish fed PHYTO diet than fish fed control diet (Fig 10D and S2 Fig).

Discussion

Fish feeding behavior was monitored during the feeding trial. In this time, neither was a percep-

tible behavioral change nor were any appetite alterations observed. Dietary GMOS (Galacto-

mannan oligosaccharides from mucilage) or/and PHYTO (mixture of garlic oil and labiatae

plants oils) did not affect European sea bass growth performance or feed utilization after 63 days

of feeding, being adequate and similar to that reported previously for the same fish species and

diet composition (10%FM/6%FO) [42]. Fish studies with prebiotics and phytogenics, in general

have been addressed to promote fish health and disease resistance [for review see 1, 32, 43–44].

Indeed, both functional additives used in the present study significantly improved European sea

bass disease resistance against V. anguillarum after experimental intestinal infection.

GMOS functions as a dietary fiber due to its indigestibility [45]; its protective effect in the

present experiment is probably related to a direct prevention of bacterial attachment to the

IECs through its mannose units, via adhering to bacterial pathogen receptors [46] and avoid-

ing the first step of intestinal V. anguillarum colonization after inoculation. However, due to

its composition rich in mannose and galactose, a general stimulation of the systemic and gut

associated lymphoid tissue (GALT) may also help reduce disease incidence. Indeed, there is

evidence of enhanced immune response in other fish mucosal tissues, such as skin, in sea bass

and other Mediterranean fish species after feeding with a rich GMOS product from several

sources [47–49].

In the case of PHYTO diet, there are several previous studies that relate some of its bioactive

compounds to fish enhanced disease resistance, too. However, most of these studies have been

addressed to fresh water species fed with standard diets formualtions. For example, both fresh

oil and powdered forms of garlic (Allium sativum) have been proven to be an effective prophy-

lactic and therapeutic agent in fresh water species [49–58], which effects on fish survival are

dependent on the percentage or dosage supplemented, as demostrated also in marine species

such as European sea bass [55]. Its protective effects have been attributed to a general enhance-

ment of the immune system [53–54, 58–59] and antioxidant responses [60–63]. Likewise, gar-

lic dietary administration has been associated with changes in the intestinal microbiota,
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conferring beneficial effects to the host [64]. Oil and powdered forms of Labiatae plants species

such as rosemary (Rosmarinus officinalis) or thyme (Thymus vulgaris) have been also related

with enhanced fish immune response [65–66] and disease resistance [29, 67–69]. Similarly, a

dietary combination of oregano (Origanum heracleoticum), carvacrol, and thymol increased

resistance to A. hydrophila in channel catfish (Ictalarus punctatus) [70].

The mechanisms of action of phytogenics in fish disease resistance will depend on their

chemical composition [71, 32] and several reviews focused mainly in continental aquaculture

are currently available [32, 50, 72]. In general terms, however, the antimicrobial mode of action

relies on altering bacterial cell permeability/fluidity and quorum sensing systems [32,71,73]. In

addition, other recognized effects of phytogenics in animal production are the reduction in

gut oxidative stress, stabilization of intestinal microbiota, and modulation of the immune sys-

tem via scavenging of free radicals [32,74].

In the present study, the pathological appearance and subsequent fish death were condi-

tioned by a successful gut translocation of intestinally inoculated V. anguillarum, which had to

cross the gut extrinsic and physical barriers to first get in touch with the GALT and, then, to

arrive in internal organs. Gut bacterial translocation rates were clearly reduced in fish fed func-

tional diets, but the morphological and morphometrical studies carried out indicated that the

effects observed are region and additive specific.

Two regions of the European sea bass gut were studied, the preileorectal (posterior gut) and

postileorectal valve (rectum) regions, which present a clearly different morphology, the latter

with a wider muscularis layer, longer diameter and folds, and thinner submucosa than poste-

rior gut [75–76]. Additionally, posterior gut showed greater mucus coverage because of an

increased cell density of smaller goblet cells located on lower fold regions (mid and basal),

whereas goblet cells in the rectum are larger and mainly located on upper fold regions (apical).

No effect of diet was observed in fold morphometric characteristics or in goblet cell distri-

bution patterns; however, fish fed the non-supplemented diet showed larger goblet cells than

fish fed functional diets. Indeed, PHYTO supplementation reduced posterior gut goblet cell

size, whereas GMOS reduced the goblet cell area in posterior gut and rectum and the submu-

cosal width in the rectum region, indicating overall to a site- and product-specific anti-inflam-

matory role of the two products. However, a combination of the two was not that effective,

pointing to an antagonistic effect of these products.

Previous studies in European sea bass fed similar levels of VM/VO, reported for the poste-

rior gut increased density of goblet cells and up-regulated IL-1ß, tumor necrosis factor α
(TNFα), and cyclooxygenase-2 (COX2) gene expression in relation to a general gut inflamma-

tion-like status caused by alterations in the composition of autochthonous microbiota [23–24].

Indeed, in higher vertebrates, increased levels of IL-1ß and TNFα have been associated with

augmented mucosal secretions [77–80] and changes in mucin composition [80]. In Atlantic

salmon, intestinal VM-induced enteritis is mediated by T cells [81–83], as occurs with intesti-

nal goblet cell hyperplasia and alterations in mucus production/composition rates in mammals

after exposure to external insults [80, 84–86]. Despite the lack of any evident effect in the pres-

ent study of PHYTO or GMOS supplementation on the incidence of submucosa and lamina
propia infiltrated leucocytes (lymphocytes and granulocytes) on both intestinal regions stud-

ied, a possible change on the T cells populations ratio derived from their supplementation

should be considered. In particular, those populations involving T-cell activation via special-

ized antigen-presenting cells (APC) should be considered since feeding low FM levels in Euro-

pean sea bass juveniles has been related to an upregulation of MHCII gene expression [23].

Interestingly, the structural studies carried out in the present investigation revealed that goblet

cells of both intestinal regions are regularly in contact with lymphocytes. In higher vertebrates,

goblet cells deliver luminal antigens to APC (CD103+ dendritic cells) of the lamina propria
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[87], which are involved in a tolerance mechanism mediated by T cells [88–89], although in

fish this pathway has not been described in fish.

In this sense, GMOS, despite its function to prevent bacterial attachment to the IECs, may

affect positively European sea bass intestinal mucosal health- through its role as dietary prebi-

otic- by balancing the low dietary FM/FO-associated dysbiosis, particularly in rectum, as

denoted by its effect on the submucosal inflammatory status, the reduced goblet cell hyperpla-

sia, and the increased microvilli height. A similar beneficial, cytoprotecting effect on gut epi-

thelium has been described in sea bass and other fish species fed similar prebiotics [for review

see 43, 90–91]. Particularly, GMOS as an indigestible fiber may serve as a substrate to the rec-

tum microbiota as it does for the mucus layer [92], promoting beneficial bacterial growth and

short-chain fatty acids production [93–94], as opposed to favoring bacteria capable of degrade

mucins and disrupt the epithelial layer [95]. Furthermore, there is evidence of a systemic and

local immune system stimulation after feeding GMOS-based products to Mediterranean fish

species [47–49], which may contribute to the reduced disease incidence found.

Actually, after V. anguillarum gut inoculation, fish fed GMOS presented a similar pattern of

mucus release/production response to fish fed control diet for posterior gut but differed for rec-

tum from other treatments. The posterior gut mucus response to V. anguillarum and confinement

was characterized by: (a) an immediate (2h) reduced mucus coverage as a direct consequence of

mucus discharge after bacterial inoculation in order to rapidly wash away inoculated V. anguil-
larum; (b) an increase in mucus coverage after 24h as a result of higher density of smaller goblet

cells, indicating goblet cells proliferation as a mid-term protection mechanism and (c) recovery to

initial values after 7 days of challenge. Instead, for the rectum, fish fed GMOS presented increased

goblet cell size 2h after inoculation compared to basal size, differing from the rest of the treatments

and probably indicating variations in mucus composition via new mucin synthesis and granule

storage, before being released in a more controlled way in response to the pathogen presence. Par-

ticularly in fish, the timing and precise mechanisms regulating mucin production and goblet cell

secretion after infection remain unknown [80]. However, in the outer mucus layer of human

colon, it is known that MUC2 mucin assembly and granular accumulation to replenish new goblet

cells takes longer than 4-5h [89], which, if similar in fish, could support the hypothesis of new

mucin synthesis and storage before release in fish fed GMOS diet.

In the case of PHYTO, its protective role seems to be limited to the pre-ileorectal valve seg-

ment, where clearly there was a reduced goblet cell size as compared to fish fed control diet,

and it is also likely involved in buffering the effects of low FM/FO diets on the posterior gut

microbiota populations. Phytogenics are recognized reducing agents for gut oxidative stress,

stabilizing microbiota via altering quorum sensing of pathogenic bacteria and modulating the

local immune system via scavenging of free radicals [32,74]. Indeed, a parallel study using the

same dietary phytogenic mixture supplementation (PHYTO) mitigated European sea bass

stress response and reinforced the systemic immune system response in stressed and infected

fish by protecting leukocytes of apoptotic processes associated to stress [49]. This process may

be helping fish fed PHYTO to: (a) reduce gut bacterial translocation rates after inoculation as

cortisol increases have been associated with increased paracellular permeability in several spe-

cies [96–98]; and (b) reduce reactive oxygen species (ROS) causing IEC damage via enzymatic

control of ROS generation in cellular responses to cytokines and bacterial invasion [99].

Indeed, feeding high levels of terrestrial ingredients has been related to a damaged intestinal

barrier in several fish species [24,100–101]. Damage-associated molecular patterns released

from necrotic, apoptotic, or damaged IECs trigger the release of several proinflammatory cyto-

kines that, in turn, may alter mucus composition and the abundance of goblet cells [24,102–

103] or affect epithelial barrier maintenance. Actually, posterior gut of fish fed PHYTO pre-

sented a general trend, although not statistically significant, for an increased number of Ocln,
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zo-1, cad-17, and N-cad transcript copies, which may be involved in the lower paracellular V.

anguillarum translocation rate found after the inoculation + confinement challenge. However,

this trend was not clearly noticeable at the electron microscopy level. A similar trend has been

observed in broiler chickens fed an Allium hookeri- based phytogenic, which showed improved

gut barrier function in relation to upregulation of gut TJ related genes [74]. In addition to any

possibly protective epithelial barrier effect, garlic and labiatae plant extracts have been demon-

strated to be effective as dietary immunostimulants in European sea bass and other fish species

[49–51, 55, 69, 104–106], which may help to fight against translocated V. anguillarum as com-

pared to non-supplemented fish.

Interestingly, the same intestinal regions especially affected by GMOS and PHYTO in

terms of goblet cell size reduction or reduced inflammation presented a higher density of rod-

let cells scattered in the basal fold region. Very little is known about their role in fish mucosal

immunity and traditionally their presence has been related to exposure to infectious processes/

noxious agents/stressors [107–111] and the associated tissue injuries [112]. An antibiotic

nature of their secretory product has also been proposed, supported by their positivity for alka-

line phosphatase, peroxidase, melatonin stimulation hormone, and the antimicrobial peptide

piscidin [113], which in the present study may have been stimulated via a microbiota composi-

tion modulation after supplementation with functional additives. Further studies are being

conducted along this line. Indeed, these studies will help to clarify the results obtained in the

case of fish fed the GMOSPHYTO diet, pointing to an antagonistic effect of the simultaneous

supplementation of the two products on the European sea bass gut mucosal defense system.

Our results indicated that the supplementation of GMOS (5000 ppm) and PHYTO

(200ppm) in 10%FM/6%FO based diets affects European sea bass gut health maintenance in a

site-specific way, GMOS having a greater effect along the second segment of the gut and

PHYTO effect being focused on the preileorectal valve region. These protective effects, among

others, may contribute to the reduced “in vivo” V. anguillarum bacterial translocation rates

found in terms of higher survival after being intestinally inoculated and combined with a

panel of stress by confinement. Both supplements are emerging as potential functional prod-

ucts for gut health maintenance when diets with low levels of ingredients of marine origin are

fed and in the dosage supplemented, and further studies are being conducted in order to estab-

lish which modes of action are being affected by each product on each specific intestinal region

in terms of GALT and stress response, as well as their effects on the European sea bass micro-

biome, this being the first of a series of publications on this topic.
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