Semantic interoperability in co-simulation: use cases and requirements

Jose Juan Hernandez and Jose Evora
University Institute of Intelligent Systems and

Jean-Philippe Tavella
EDF Lab Paris-Saclay

Numerical Applications in the Engineering (SIANI) 7 Boulevard Gaspard Monge

Edificio central del Parque Cientifico-Tecnolégico,
Campus Universitario de Tafira, 35017
Las Palmas de Gran Canaria, Spain

91120 Palaiseau
France
jean-philippe.tavella@edf.fr

jose.evora@siani.es, josejuanhernandez@siani.es

KEYWORDS
co-simulation, semantic interoperability, FMI, domain
specific language

ABSTRACT

Simulation of complex and heterogeneous systems is
done by decomposing the system into many subsystems.
These subsystems are individually simulated and results
are integrated by a co-simulation algorithm. In this ap-
proach, an interoperability framework that allows the
integration of components is required.The FMI stan-
dard is becoming the interoperability reference for co-
simulation, although it is still evolving. Semantic inter-
operability is an interesting issue that the FMI standard
could include in future versions.

Semantic interoperability is concerned with the use of
explicit semantic descriptions to define how simulation
components should be associated. In simulation, this
issue is especially important as it provides essential sup-
port for cross-domain integration, guaranteeing consis-
tency and composability.

In this paper, some co-simulation use cases and semantic
interoperability requirements that could be considered
in future versions of the standard are analysed.

Introduction

One of the challenges facing the software industry is
semantic interoperability. This consists of exchanging
data that is correctly interpreted by the receiving sys-
tem, with the same meaning as that of the transmitting
system. Semantic technologies have been used in several
applications and their benefits have been demonstrated.
In this paper, we sustain that semantic technologies are
also a promising means for achieving interoperability in
co-simulation.

Co-simulation is a technique for simulating complex and
heterogeneous sociotechnical systems, that is to say, sys-
tems composed of many subsystems. These subsystems
may belong, not only to different parts of the physics,for
example hydraulic, mechanic or electronic, but also to
sociological domains, such as human behaviour.

During a co-simulation, each Simulation Unit (SU)
keeps its state locally and its own simulation time. So,
the key concept for performing a co-simulation is the
Master Algorithm (MA).The MA coordinates SUs by
exchanging data and controlling the progress of time.
That means the MA advances the time of all units at
the same pace ("time step”) after having transferred
data between coupled units.

Complex and heterogeneous systems cannot be simu-
lated using a single tool. Typically, it is necessary to use
many tools in order to be able to export active compo-
nents. In this context, the standard Functional Mock-up
Interface (FMI) Blochwitz et al. (2011; 2012), Consor-
tium et al. (2012), Association et al. (2014) appeared in
2008 to provide an interoperability framework between
different simulation tools. This standard has been devel-
oped by an European consortium, and since its creation,
two versions of the specification have been released, the
last one being version 2.0 in June 2014. Development of
the standard continues at the present time.The

FMI standard allows a system simulator to be created
by co-simulating subsystems developed in different mod-
elling tools. It defines an interface that every SU must
comply with and a specification to package it in an exe-
cutable file known as Functional Mock-up Unit (FMU).
Likewise, the FMI standard refers to the MA as being
in charge of coordinating the execution of FMUs, but is
not part of the FMI standard itself.

In this sense, FMI just provides the syntactic mecha-
nisms to allow interoperability. However, data exchange
between two FMUs requires that the data be represented
with the same meaning, that is to say,with the same se-
mantic.

In this paper we discuss semantic interoperability mech-
anisms that may be interesting to include in the FMI.
To this end, we define what semantic interoperability
is understood to be and explain some of the use cases
we have identified. Some of them are already supported
by the FMI standard, but others are not yet fully sup-
ported. As an experiment, we have designed a Domain
Specific Language (DSL), called MasterSim. This DSL
is oriented to defining how SUs are connected, including
support for defining semantic rules for interoperability



and taking advantage of semantic properties defined in
the SUs.

Semantic Interoperability

Semantic interoperability requires data to be exchanged
with an unambiguous and common meaning Heiler
(1995). It is not only about packaging the data (syntax),
but having data with the same meaning (semantics).
While, syntactic interoperability refers to the packaging
and transmission mechanisms for data, semantic inter-
operability refers to the meaning of exchanged data that
allows it to be interpreted correctly.

To illustrate the semantic interoperability problem,
there is a co-simulation example in which two SUs are
connected, representing an environment and a building,
respectively. In this case, we could think of a building
simulation that calculates its temperature, using the en-
vironment simulation temperature (use case #1). A se-
mantic problem could exist if the output temperature of
the environment is expressed in Celsius degrees and the
building expects this data to be provided in Fahrenheit
degrees. In this case, there is a semantic interoperability
problem.

This problem arises because the SUs are developed by
different experts who are not coordinating their work.
Typically, the SU developer is working in isolation and
makes the design expecting that input data will be pro-
vided correctly, while not worrying about how other SUs
need the output data.

In general, in an information system whose autonomous
components are exchanging data, it is necessary to make
the semantic of the data explicit Sciore et al. (1994).
In the case presented, this problem can easily be over-
come if the MA identifies that both SUs are expressing
the temperature in different scales, and takes charge of
converting the output coming from the environment to
Fahrenheit degrees, as expected by the building. In this
way, the MA would be not only responsible for exchang-
ing, but also processing data.

This interoperability issue is addressed by FMI, which
allows defining the unit of a variable. However, the stan-
dard recognises that “unit handling is a difficult topic
and there seems to be no method available that is re-
ally satisfactory for all applications” Consortium et al.
(2012). The unit definition in FMI consists of the expo-
nents of the base units (kg, m, s, A, K, mol, c¢d and rad)
and a factor/offset to allow a value with respect to unit
(UV) be converted with respect to base unit (BUV) by
the equation (BUV = factor x UV + of fset)

This mechanism opens up the opportunity to perform
unit checks or unit conversion. So, an input variable
should have the same unit as the output variable. Fur-
thermore, it is possible to make the conversion in the
case that both variables are not represented by the same
unit. The MA could perform an analysis in order to
confirm that all the connections are valid, or include a

simple data conversion, if necessary.

Another type of semantic analysis that is feasible with
the current version of the standard is the verification of
boundary conditions. FMI 2.0 allows defining the min-
imum/maximum value of a variable. Using these FMU
properties, the MA could analyse the graph to check
that boundaries of two connected variables match, and
check dynamically during data exchange that the SUs
are submitting or receiving values within the defined
boundaries.

So, the FMI standard includes some semantic defini-
tions that are useful for guaranteeing consistency and
composability. However, it is interesting to formulate
the following question: does the FMI standard provide
all the necessary definitions for validating interoperabil-
ity from a semantic point of view? In this paper, some
use cases are analysed in order to provoke discussion
of this question. Currently, the standard is being re-
viewed, as a new version is going to be released. In this
sense, many papers that discuss features the standard
lacks are considered Cremona et al. (2016), Dad et al.
(2016), Tavella et al. (2016). However, we have not seen
any that offer a deep study of the lack of features in the
standard for performing semantic interoperability.

Semantic Requirements

Though the MA is not part of the FMI standard, it is
important to consider it for eliciting interoperability re-
quirements. In Broman et al. (2013), it is mentioned
that the definition of the model structure declaring how
SUs are connected to other SUs is necessary for the im-
plementation of the MA. That is to say, the MA receives,
as input, the definition of a graph which represents how
SUs are coupled.

Typically, this graph could be semantically annotated to
specify more precisely how to interpret the connections
in the graph. These semantic annotations would allow
validating data exchange between SU variables.

A typical use case is the AC modelling circuits, in which
voltage, current and impedance are represented with
complex numbers to express two dimensions: amplitude
and phase shift. As the FMI standard does not sup-
port complex numbers, two variables are typically de-
fined and therefore coupling between SUs must be done
in pairs. So, in this case, a graph connection between
two SUs should be annotated in order to interpret that
two output variables should exchange data with other
two input variables.

Another interesting use case we wish to discuss is re-
lated to the cardinality of connections. This is an aspect
that is not fully discussed in the standard but which is
very common. Typically, connections between SUs are
one-to-one, though it is also possible to consider one-
to-many and many-to-one connections. That is to ask,
can an output be used to feed several inputs? Or, can
an input be fed by several outputs? In this sense, fan-



Fridge heat gain
N

Radiator heat gain Room
NV NV

heat gains

Computer heat gain
NV

Figure 1: The Room FMU calculates the temperature based
on the appliance’s heat gains contained in the room

in and fan-out properties of SU variables could be used
as semantic restrictions. In addition, the case of an in-
put that is fed by many outputs requires an aggregation
function to be defined. In Figure 1, an example of this
use case is presented.

The last use case is the specification of a condition that
should exist between two or more variables. That is to
say, the value of a variable must be coherent with the
value of other variables. For instance, consider a solar
panel that has two input variables: tilt angle and radi-
ation, along with energy production as output variable.
In this case, it is expected that radiation is correlated
with the time of day and should fluctuate slightly. This
example is extensive to variables that are semantically
linked but are located in different SUs or variables that
should follow a pattern of variation.

These use cases are further studied in the use case sec-
tion, titled as use case #2 #3 and #4 respectively.

MasterSim

In order to validate these requirements, several exper-
iments have been conducted. Instrumentally, for de-
scribing co-simulation graphs of these experiments, we
have developed MasterSim, a Domain Specific Language
(DSL). This DSL allows SU connections to be defined,
including the possibility of easily defining SU’s seman-
tic restrictions. Once the co-simulation graph is written
using this DSL, the MA is able to validate that this
graph is semantically correct,and to suggest changes in
the graph to make it semantically correct, or to execute
the co-simulation checking the defined semantic restric-
tions.

Typically, MAs are implemented in two phases: initial-
isation and execution. In these experiments with Mas-
terSim, we have included an initial phase in which the
graph is syntactically and semantically validated. Fur-
thermore, during this phase,the MA is able to automat-
ically suggest a modified graph which is valid from a
semantic point of view. This is quite important when
different developers are working in different aspects of a
complex and heterogeneous system.

MasterSim  has four main object definitions:
Cosimulation, SimUnit, Variable and Link. Addi-
tionally, two facets can be applied to the variables:
Input - Output and DataType (figure: 2).
Cosimulation can be parameterised with start time,
stop time, step size and variables to be logged during
the simulation. The first three parameters are oriented

‘ SimUnit ‘ ‘ Link |

Figure 2: MasterSim metamodel

to defining the time range of the simulation and the step
size. The only mandatory parameter to be given is the
step size.

SimUnit allows defining the FMU file, from which the
SU will be loaded, as well as the variables that are neces-
sary for the data exchange. The file is given as a string,
but the DSL interpreter checks whether the file ends
with the expected extension (.fmu) and if the file exists.

Variable is an inner component of SimUnit. Variable
allows definition of the variables of the SU. Inside
Variableit is possible to define Unit property according
to the standard by indicating attributes as exponents of
base units, factor and offset. Additionally, the value
range that a variable may have can be defined by using
the property Range which is parameterised, providing
the minimum and the maximum values.

These variables can be defined as Input - Output
or Real - Integer - Boolean - String - Struct.
Input - Output are oriented to defining the causality
of the variable, whereas the others define the data type.
When a variable is tagged as Input, it is possible to de-
fine its FanIn (indicating if it is single or multiple) and,
when it is tagged as Output, the FanOut can be defined
as single or multiple to indicate how many times an Out-
put can be used. Both parameters FanIn and FanOut are
statically checked by the MA so that connections with
a cardinality that does not match the definition are re-
jected. Struct variables allow grouping different types
of variables, so that they can be linked to other Struct
variables that have the same composition. In this way,
the MA can statically check variables that must be con-
nected and reject the connection if such constraints are
not fulfilled.

Link allows definition of the data exchange between
variables. It has two main parameters which are called
from and to. The from parameter requires from 1 to
n variables, which must have been marked as Output.
The to parameter requires from 1 to n variables which
must have been marked as Input. There is an optional
parameter, named operation, that allows definition of
how the values of from attribute are going to be ag-
gregated. From a semantic point of view, the from/to
parameter cardinality must match SimUnit FanIn and
FanOut properties.



CoSimulation(startTime = @, stopTime = 10, stepSize = 0.01)
SimUnit environment
Variable temperature as Real Output
Unit("F", K=1, factor= 0.5555, offset = 260.93)
SimUnit building
Variable externalTemperature as Real Input
Unit("C", K=1, factor= 1, offset = 273.15)
Link(environment.temperature, building.externalTemperature)

Figure 3: Use case #1 MA made with MasterSim DSL, op-
tion 1

CoSimulation(startTime = @, stopTime = 10, stepSize = 0.01)
SimUnit environment
Variable temperature as Real Output

SimUnit building
Variable externalTemperature as Real Input

Link(environment.temperature, building.externalTemperature)
Transformation(@fahrenheitToCelsius)

Figure 4: Use case #1 MA made with MasterSim DSL, op-
tion 2

Additionally, there are two Link properties that can be
used to improve the semantics: Transformation and
Check. As its name indicates, Transformation prop-
erty allows processing the value of the output variables
of the link. This could be used as an explicit method to
make transformation in data exchanges. This property
is useful for dealing with the use case #1. Check prop-
erty allows the definition of a function that is executed
every time step in order to check that output and input
values are semantically correct. This property is useful
for dealing with the use case #4.

Use case #1

In this use case, there are two SUs: environment and
building. The output temperature of the environment
is given in Fahrenheit degrees whereas the input temper-
ature expected by the building (externalTemperature
variable) should be expressed in Celsius degrees. To
deal with this issue, we present two different solutions.
In Figure 3, the first option is presented, in which both
SUs are described using MasterSim with the correspond-
ing temperature unit, as would be done using the FMI
standard.

In the second option (figure: 4), both SUs are defined,
but in this case, the variables do not specify which unit
they are internally expressed in. In this case, the Link
is defined with the Transformation property, which in-
cludes a native code (programmed in Java) for trans-
forming Fahrenheit degrees to Celsius. Here, the MA
will execute the transformation code before setting the
value in the building SU.

Use case #2

In this use case, we face the problem of the connection
of variables that are, by their nature, complex numbers.
As previously mentioned, in the FMI, complex num-
bers are normally modelled as two real variables, which
requires the definition of two links, one for each part.
However, from a semantic point of view, there is just a

CoSimulation(startTime = @, stopTime = 10, stepSize = 0.01)
SimUnit source
Variable r_voltage as Real
Range(min = -5, max = 5)
Variable i_voltage as Real
Variable voltage as Struct(r_voltage i_voltage) Output
SimUnit cable
Variable r_voltage as Real
Range(min = -6, max = 6)
Variable i_voltage as Real
Variable voltage as Struct(r_voltage i_voltage) Input

Link(source.voltage, cable.voltage)

Figure 5: Use case #2 MA made with MasterSim DSL

CoSimulation(startTime = @, stopTime = 10, stepSize = 0.01)
SimUnit radiator
Variable heatGains as Real Output

SimUnit fridge
Variable heatGains as Real Output

SimUnit room
Variable appliancesHeatGains as Real Input(Multiple, @sum)

Link(radiator.heatGains fridge.heatGains, room.appliancesHeatGains)

Figure 6: Use case #3 MA made with MasterSim DSL

single link and the restriction of exchanging real-to-real
and imaginary-to-imaginary data.

We have addressed this issue with MasterSim in an
example based on AC circuits, in which the variables
have real and imaginary parts (e.g. voltage). In this
circuit (figure: 5), a source provides a Struct Output
called voltage, which uses the real variables r_voltage
and i_voltage, referring to the real and the imaginary
parts. The other component, the cable, has been de-
fined with a Struct Input that uses the internal variables
r_voltage and i_voltage. Additionally, a dependency has
been defined to link the source and the cable. This way,
the MA will make the data exchange of the variables
contained in the structs at the same time.

Use case #3

Recalling the example in Figure 1, there are radiator,
fridge and room SUs. The idea in this example is to
calculate the internal temperature of the room based
on the heat gains provided by the appliances that are
located inside. In this use case, we are modeling it as
in Figure 1 which allows “plugging” and “unplugging”
devices on the fly to the input heat gains of the room.

In Figure 6, this use case is addressed using Master-
Sim. Three SUs have been described. The first two are
appliances whose only output is the heat gains. The
third one has one input called “appliancesHeatGains”
that will include the heat gains of the radiator and the
fridge. Note that this input variable has been defined
with a Multiple fanIn and a sum based aggregation. Fi-
nally, the Link construct is instantiated to define this
connection.

Use case #4

In this last use case, we address the semantic depen-
dency that may exist between the value of different vari-
ables. In the example stated before, there was two SUs:



CoSimulation(startTime = @, stopTime = 10, stepSize = 0.01)
SimUnit radiation
Variable value as Real Output

SimUnit pv
Variable radiation as Real Input

Link(radiation.value, pv.radiation)
Check(@checkRadiation)

Figure 7: Use case #4 MA made with MasterSim DSL

one providing solar radiation and another taking this
solar radiation to calculate the production of a photo-
voltaic cell. In Figure 7, this example is addressed using
MasterSim. As can be seen, there is a radiation SU that
is used by the photovoltaic cell (“Pv.fmu”). This SU has
the radiation as input. In the Link, a native code has
been defined (checkRadiation) to check if radiation val-
ues are correct or not, in regard to what is expected.
Whenever this checking reports that there is a problem,
the simulation will be stopped and a message will be
displayed to inform the user of the MA.

Discussion

This paper is focused on the analysis and study of use
cases highlighting some requirements for semantic in-
teroperability in co-simulation. At this moment, these
requirements are not supported by the FMI standard.
However, this paper is not oriented to proposing specific
changes in the standard, but rather to opening a discus-
sion on requirements that should be addressed by the
standard for semantic interoperability.

These requirements (and others that could be considered
in the future) are addressed in this paper using Master-
Sim. In this way, we have been able to express semantic
restrictions to be checked either statically or dynami-
cally. This way of expressing the semantic restrictions
could be considered as a global definition, since these
restrictions are not expressed in each FMU but in the
MA. However, we assign the control of defining these
kind of restrictions to FMU modellers. In this way, the
FMI could provide mechanisms to semantically restrict
the usage of an FMU.

The outcome of this paper is not only the requirements
in semantic interoperability, but also MasterSim DSL.
Although we have used MasterSim to address the issues
presented here, MasterSim is an open source solution
to create the MA for coupling SUs, and can be used
by everyone, as it is available for downloading in Evora
et al. (2016).

Conclusion and future work

This paper addresses the challenge of the semantic in-
teroperability for co-simulation. It is based on the fact
that each SU is independently developed and, at the de-
velopment time, knowledge about how the integration
should be performed might be limited, but it exists and
should be considered.

We have presented a set of co-simulation use cases and

requirements that describe semantic interoperability is-
sues not supported by FMI. In addition, some exper-
iments have been conducted to analyse these require-
ments. Using a DSL that we have called MasterSim,the
interoperability restrictions and properties of the SU
have been expressed. The MA developed includes an
initial phase that is able to check all the identified se-
mantic properties.

We propose that the FMI standard should consider these
requirements. In this way, the SU could be packaged
into an FMU, including restrictions and properties that
could be interpreted by the MA to perform the inte-
gration. This will enable co-simulation MA to validate
connections between SUs and suggest how integration
should be done.

This work could be extended to consider other semantic
interoperability use cases, as well as formalising the in-
teroperability mechanisms that the FMI standard could
consider in future versions. Ideally, in future versions
of the FMI standard, FMUs defining semantic restric-
tions should be possible, in order that MAs can use this
information.

REFERENCES

Association M. et al., 2014. Functional mock-up interface for
model exchange and co-simulation. Report Version, 2.

Blochwitz T.; et al., 2012. Functional mockup interface 2.0: The
standard for tool independent exchange of simulation models.
In Proceedings of the 9th International MODELICA Confer-
ence; September 3-5; 2012; Munich; Germany. Linképing Uni-
versity Electronic Press, 076, 173-184.

Blochwitz T.; et al., 2011. The functional mockup interface for
tool independent exchange of simulation models. In Proceed-
ings of the 8th International Modelica Conference; March 20th-
22nd; Technical Univeristy; Dresden; Germany. Linkoping
University Electronic Press, 063, 105-114.

Broman D.; et al., 2013. Determinate composition of FMUSs for
co-simulation. In Proceedings of the Eleventh ACM Interna-
tional Conference on Embedded Software. IEEE Press, 2.

Consortium M.; et al., 2012. Functional Mock-up Interface for
Model Exchange and Co-Simulation—Version 2.0 Beta 4, Au-
gust 10, 2012. Awvailable fro m hitps://www fmi-standard org.

Cremona F.; et al., 2016. FIDE: an FMI integrated development
environment. In Proceedings of the 31st Annual ACM Sympo-
sium on Applied Computing. ACM, 1759-1766.

Dad C.; et al., 2016. Parallelization, Distribution and Scaling of
Multi-Simulations on Multi-Core Clusters, with DACCOSIM
Environment.

Evora J.; et al., 2016. MasterSim DSL - information and down-
load web site. URL https://bitbucket.org/siani/mastersim.

Heiler S., 1995. Semantic interoperability. ACM Computing Sur-
veys (CSUR), 27, no. 2, 271-273.

Sciore E.; et al., 1994. Using semantic values to facilitate inter-
operability among heterogeneous information systems. ACM
Transactions on Database Systems (TODS), 19, no. 2, 254—
290.

Tavella J.P.; et al., 2016. Accurate and Fast Hybrid Multi-
Simulation with the FMI-CS Standard. Accepted in Emerging
Technologies and Factory Automation (EFTA) 2016 confer-

ence.


https://www.researchgate.net/publication/318339156

