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We propose an alternative distribution for modelling fading-shadowing wireless channels. This distribution presents certain
advantages over the Rayleigh-lognormal distribution and the K distribution and has proved useful in the setting described. We
obtain closed-form expressions for the average channel capacity and for the average bit error rate of differential phase-shift keying
and of minimum shift keying when the new distribution is used. This distribution can be obtained exactly as the sum of mutual
independent Gaussian stochastic processes, because it must represent the simulation of the fading channel; that is, it simulates the
signal envelope. Finally, we describe practical applications of this distribution, comparing it with the Rayleigh-lognormal and K
distributions.

1. Introduction

Mobile communications systems must address various chal-
lenges that seriously degrade signal strength. A major prob-
lem in this respect is that of the fading signal, i.e., interference
to the multiple scattered radio paths between the base station
and the vicinity of the mobile receptor. When this occurs, the
received signal exhibits rapid signal level fluctuations which
are generally Rayleigh distributed.

The multipath channel resembles a physical communica-
tion channel and is characterised by bandwidth and gain. For
the case of a mobile radio channel with constant gain and
a linear phase response over the bandwidth that is greater
than the bandwidth of the transmitted signal, the signal
received at the terminal will undergo flat fading. This is the
most common type of fading and the most widely studied
(Rappaport [1]). In this situation, the strength of the received
signal will oscillate rapidly due to multipath effects.

Figure 1 illustrates a simplified fading model between a
stationary source (emitter) and a mobile vehicle (for a com-
plete description of fading modelling, see Barts and Stutzman
[2], Rappaport [1], Borhani et al. [3], and Lopez-Fernandez
et al. [4]). Several components are involved; first, in the case
of clear line of sight between the stationary source (emitter)

and the mobile vehicle, no scattering mechanism is involved,
although Doppler effects will be considered. However, a
multipath or diffuse component (phase-incoherent wave)
is created by the multiple (random) reflections (scattering
processes) of the signal from scattered elements such asmoun-
tains and buildings. This component has little directivity and
its magnitude is assumed to be Rayleigh distributed while its
phase is uniformly distributed.

The specular component is a phase-coherent ground-
reflected wave that is related to points close to where the
receptor (i.e., the vehicle) is dynamically located. This com-
ponent is responsible for strong fades, with an amplitude
comparable to that of the direct component, although its
phase is opposite Suh [5].

Figure 1 also shows the case of blocked line of sight
between the stationary source and the mobile vehicle. In
this case, the diffuse component is as before (and can be
modelled by a Rayleigh distribution), but there is a new
element, the shadowed direct component, produced by the
scattering of the signal by the leaves, branches, and limbs of
trees and by vegetation in general. In consequence, the signal
is attenuated, to a degree that depends on the length of its
path through the scattering element. The fading produced by
this process is called fading-shadowing and can be modelled
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Figure 1: Illustration of fading components.

by the Rayleigh-lognormal (RLN) distribution (Hansen and
Meno [6]), although this has a complicated integral form,
or by the K distribution Abdi and Kaveh [7]. The latter
distribution may be viewed as a Rayleigh distribution with a
gamma distribution and it has a simpler form than the RLN.

This study examines fading-shadowing mechanisms in
particular. However, as our proposal also contains the
Rayleigh as a general case, it also applies to modelling the
diffuse component.

To achieve a probability distribution that will efficiently
model fading effects, a distribution should be expressed
through simple mathematical expressions and subsume the
Rayleigh distribution. Given this, parameter estimation is
straightforward and second-order statistics such as fading
descriptors (level crossing-rate (LCR), average fade duration
(AFD), average bit error rate (BER), differential phase-shift
keying (DFSK), andminimum shift keying (MSK)) can easily
be computed (see, for instance, Proackis and Salehi [8],
Adachi et al. [9], and Subbarayan [10], for a comprehensive
description of these estimators).

The above conditions are met by the Slashed-Rayleigh
(SR) distribution, a two-parameter distribution that was first
proposed by Iriarte et al. [11]. However, the latter did not
address the question of fading applications. As we discuss
below, this distribution is well suited to modelling flat fading
effects in wireless communications.

Among the benefits offered by the SR distribution,
it includes the Rayleigh distribution, thus facilitating the
physical modelling of multipath signal propagation through
phasors (complex signal representation).

We complete the description of the SR distribution
as follows. First, we simulate it by Monte Carlo analysis
(i.e., taking a statistical approach). Then, as required for
a fading distribution, we simulate the distribution from a
summation of phasors while accounting for Doppler effects
(i.e., a physical approach), by embedding the SR distribution
within Clarkes’s model Rappaport [1], which is known to be
appropriate for flat fading.

Although fading effects are apparent in general formobile
communications, they are especially noticeable in moving

vehicles, where the signal received commonly presents mul-
tipath components and not just the direct component. How-
ever, for a stationary receiver, too, if the surrounding objects
are moving, Doppler shift on the multipath components
will affect the quality of the transmitted signal. The models
we discuss can be applied to both stationary and moving
receptors.

The outline of this paper is as follows.The SR distribution
is presented in Section 2. Section 3 then introduces the SR
phasor, shows some simulation plots, and discusses specific
mathematical measures for the new distribution, together
with metrics related to modelling fading effects in wireless
communication channels. In Section 4, the SR distribution is
comparedwith other distributions that are commonly used to
account for the statistics of mobile radio signals. The simula-
tion of the SR distribution through Monte Carlo analysis and
the physical modelling of the multipath fading channel are
discussed in Section 5. Finally, the main conclusions drawn
are summarised in Section 6.

2. The Slashed-Rayleigh Distribution

The Rayleigh fading model can be used to simulate the
situation in which a radio signal is scattered before it arrives
at the receiver due to the presence of multiple objects in
the environment. According to the central limit theorem,
given sufficient scatter, the channel impulse response will
be well modelled as a Gaussian process irrespective of the
distribution of the individual components. If there is no
dominant component to the scatter, this process will have
a zero mean and its phase will be uniformly distributed
between 0 and 2𝜋 radians. Therefore, the envelope of the
channel response will be Rayleigh distributed, with the
following probability density function (pdf)

𝑔 (𝑟; 𝛼) = 𝑟𝜎 exp{− 𝑟22𝜎} , 𝑟 ≥ 0, 𝜎 > 0, (1)

where 𝐸(𝑅2) = 2𝜎 is the expected value of 𝑅2. In this case we
write 𝑅 ∼ R(𝛼).
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Figure 2: Illustration of the 𝑆𝑅(𝜎, 𝑞) distribution for a set of different parameter values.

As Tse ([12], p. 49) pointed out, the model based on the
Rayleigh fading is quite reasonable for scattering mechanisms
when there are many small reflectors, but it is adopted primar-
ily for its simplicity in typical cellular situations with a relatively
small number of reflectors. For this reason some alternatives to
the Rayleigh fading model have been proposed, such as the
RLN distribution with pdf, described by (Hansen and Meno
[6] and Stuber [13])
𝑓𝑋 (𝑥)

= ∫∞
0

𝑥𝜎
exp (−𝑥2/ (2𝜎))

𝜎√2𝜋𝜆2 exp[− (log 𝜎 − 𝜇)22𝜆2 ]𝑑𝑦,
𝑥 > 0, 𝜆 > 0, 𝜇 ∈ R.

(2)

The K distribution (Abdi and Kaveh [7]), obtained by
compounding a Rayleigh distribution with a gamma distri-
bution, is similar to the RLN distribution but it has a simpler
structure and its pdf admits a closed form, although due to
the Bessel function the estimates of the parameters are not
direct. Its pdf is given by

𝑓𝑋 (𝑥) = 2𝛼Γ (𝛽 + 1) ( 𝑥2𝛼)
𝛽+1𝐾𝛽 (𝑥𝛼) ,

𝑥 ≥ 0, 𝛼 > 0, 𝛽 > −1,
(3)

where 𝐾](𝑧) denotes the modified Bessel function of the
second kind of order ] and argument 𝑧 and which has a
complicated integral form.Themain advantage of this special
function is that it is included inmost of the statistical software
currently available, such as R, Matlab, and Mathematica (see
Ruskeepaa [14]). Apart from the RLN distribution, other
alternatives based on the lognormal distribution include
the Rayleigh-inverse Gaussian (RIG) distribution (Karmeshu
[15]) which is subject to the same restriction as the above
distribution and the generalisation of the Rayleigh distribu-
tion that was recently proposed by Gómez-Déniz and Gómez
[16], which overcomes some of the disadvantages of the above
distributions.

The SR distribution, proposed by Iriarte et al. [11], has the
following pdf:

𝑓𝑅 (𝑟; 𝜎, 𝑞) = 𝑞 (2𝜎)𝑞/2𝑟𝑞+1 Γ (1 + 𝑞2) 𝐹( 𝑟22𝜎 , 1 + 𝑞2) , (4)

where 𝜎 > 0, 𝑞 > 0, and 𝐹(𝑎, 𝑏) = (1/Γ(𝑎)) ∫𝑏
0
𝑡𝑎−1 exp(−𝑡)𝑑𝑡

is the cumulative distribution function of the gamma dis-
tribution. Observe that the pdf given in (1) is obtained
from (4) when 𝑞 tends to∞. Furthermore, this distribution
tends to the Dirac delta function at 0 when 𝜎 tends to
infinity. Henceforth, when a random variable 𝑅 follows this
distribution it will be represented as 𝑅 ∼ 𝑆𝑅(𝜎, 𝑞).

If 𝑅 ∼ 𝑆𝑅(𝜎, 𝑞) with scale parameter 𝜎 and kurtosis
parameter 𝑞, then (4) can be represented as

𝑆𝑅 (𝜎, 𝑞) = 𝑅 (𝜎)𝑈1/𝑞 , (5)

where 𝑅(𝜎) and 𝑈(0, 1) (the uniform distribution) are inde-
pendent and 𝑞 > 0.

Using the following expression, which relates the incom-
plete gamma function with the Kummer confluent hyperge-
ometric function

Γ (𝑎, 𝑧) = Γ (𝑎) − 𝑧𝑎𝑎 1𝐹1 (𝑎, 𝑎 + 1, −𝑧) , (6)

the pdf given in (4) can be rewritten as

𝑓𝑅 (𝑟; 𝜎, 𝑞) = 𝑞𝑟𝜎 (𝑞 + 2) 1𝐹1 (𝑞2 + 1; 𝑞2 + 2; − 𝑟
2

2𝜎) . (7)

Now, from (7) and using Kummer’s first theorem we have

𝑓𝑅 (𝑟; 𝜎, 𝑞) = 𝑞𝑟 exp (−𝑟2/ (2𝜎))
𝜎 (𝑞 + 2) 1𝐹1 (1; 𝑞2 + 2; 𝑟

2

2𝜎) . (8)

Figure 2 shows slopes of the pdf of the 𝑆𝑅(𝜎, 𝑞) distribu-
tion, revealing the dependency of the scale parameter 𝜎 and
the shape parameters 𝑞 (the fading).
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2.1. Additional Features. The cumulative distribution func-
tion of 𝑅(𝜎, 𝑞) is given by

𝐹𝑅 (𝑟; 𝜎, 𝑞) = 𝑃 (𝑅 ≤ 𝑟)
= 1 − exp(− 𝑟22𝜎)
− (2𝜎𝑟2 )

𝑞/2 Γ (1 + 𝑞2)𝐹( 𝑟22𝜎 , 1 + 𝑞2) ,
(9)

which can be used to obtain the hazard function of the
random variable 𝑅 ∼ 𝑆𝑅(𝜎, 𝑞), given by

ℎ (𝑟)
= 𝑞𝑟 [𝑟𝑞Γ (1 + 𝑞/2) 𝐹 (𝑟2/2𝜎, 1 + 𝑞/2)] exp (−𝑟2/2𝜎) + 1 .

(10)

Let 𝑅 ∼ 𝑆𝑅(𝜎, 𝑞). Then, for 𝑘 = 1, 2, . . . and 𝑞 > 𝑘, it
follows that the 𝑟-th moment of the proposed distribution is
given by

𝐸 (𝑅𝑘) = (2𝜎)𝑘/2 𝑞𝑞 − 𝑘 Γ(1 + 𝑘2) . (11)

Therefore, from (11) we obtain the mean and the variance
of the distribution, which are given by

𝐸 (𝑅) = 𝑞𝑞 − 1√𝜋𝜎2 , 𝑞 > 1,

var (𝑅) = 𝜎𝑞 [4 (𝑞 − 1)2 − 𝜋𝑞 (𝑞 − 2)]
2 (𝑞 − 1)2 (𝑞 − 2) , 𝑞 > 2,

(12)

respectively. Moment and maximum likelihood estimation is
studied in detail in Iriarte et al. [11], where a simulation study
is also performed.

The pdf of the SR distribution can be written as an infinite
convex sum of Nakagami distributions. To do so, observe
that from the series expansion of the Kummer confluent
hypergeometric function in (8) this pdf can be rewritten as

𝑓𝑅 (𝑟)
= 𝑞𝜎 (𝑞 + 2)

∞∑
𝑘=0

Γ (𝑞/2 + 2)
Γ (𝑞/2 + 2 + 𝑘) 𝑟

2𝑘+1

(2𝜎)𝑘 exp(−
𝑟22𝜎) . (13)

Now, by performing on (13) the change of variable 𝑟 =𝑧√𝑚, where𝑚 ∈ N∗ and taking 𝑘+1 = 𝑚, (13) can be written
as

𝑓𝑅 (𝑟)
= 𝑞Γ (𝑞/2 + 2)𝑞 + 2

∞∑
𝑚=1

Γ (𝑚)Γ (𝑞/2 + 𝑚 + 1)𝑓𝑍 (𝑧; Ω,𝑚) ,
(14)

where

𝑓𝑍 (𝑧; Ω,𝑚) = 2𝑚𝑚𝑧2𝑚−1Γ (𝑚)Ω𝑚 exp(−𝑚𝑧2Ω ) , (15)

which is the Nakagami distribution with parameters 𝑚 ∈ N∗

and Ω = 2𝜎 > 0. Hence
∞∑
𝑚=1

Γ (𝑚)Γ (𝑞/2 + 𝑚 + 1) = 𝑞 + 2𝑞Γ (𝑞/2 + 2) . (16)

Thus, we conclude that the SR distribution studied here
can be written as an infinite convex sum of Nakagami
distributions.

3. The Slashed Channel Rayleigh Phasor

In this section, we demonstrate that the SR distribution can be
obtained in an exact form as the sum of mutual independent
Gaussian stochastic processes, as is required in order to
simulate the fading channel, i.e., the signal envelope.

It is known that Rayleigh fading envelopes can be gen-
erated from zero-mean complex Gaussian random variables.
Other fading distributions (see, for instance, Yacoub et al.
[17] for the Nakagami-𝑚 case) and the generalised Rayleigh
distribution in Gómez-Déniz and Gémez [16] are obtained
in a similar manner after some mathematical considerations.
Hence, in line with these precedents, we must now prove that
the phase and the amplitude of a given propagating signal are
distributed according to a uniform pdf in the [0, 2𝜋] interval
and the SR distribution, respectively.

Following Beckmann ([18], p. 118), consider the sum

𝑆 = 𝑅𝑒𝑖𝜃 = 𝑛∑
𝑖=1

𝐴𝑗𝑒𝑖Φ𝑗 = (𝑋,𝑌) = (𝑅 cos 𝜃, 𝑅 sin 𝜃) , (17)

where 𝑖 = √−1, the terms 𝑋 (the in-phase phasor) and 𝑌
(quadrature phasor) are independent uniformly distributed
phasors (UDP), and the 𝐴𝑗 are all distributed identically.
When 𝑛 is large, and assuming that 𝐴𝑗 is not correlated with
theΦ𝑗, both𝑋 and 𝑌will be distributed normally with mean
0 and variance (1/2)𝑛 = ∑𝑛𝑗=1 𝐴2𝑗. Goldsmith [19], see page
69, pointed out that under some conditions this is also true
for small 𝑛. Now, let (1/2)𝑛 = ∑𝑛𝑗=1 𝐴2𝑗 = 𝜎𝑈−2/𝑞, where 𝑈
represents the uniform distribution in (0, 1). Then, the joint
distribution of𝑋 and 𝑌 is

𝜋 (𝑥, 𝑦) = 𝑢2/𝑞2𝜋𝜎 exp{−(𝑥2 + 𝑦2) 𝑢2/𝑞2𝜎 } . (18)

Then, expressing (18) as polar coordinates

𝜋 (𝑟, 𝜃) = 𝑟𝑢2/𝑞2𝜎𝜋 exp{−𝑟2𝑢2/𝑞2𝜎 } ,
0 ≤ 𝜃 ≤ 2𝜋, 𝑟 ≥ 0.

(19)

In the following, we obtain the phase and the amplitude
distributions.

Proposition 1. The SR distribution satisfies the following:

(i) The phase distribution is uniform, i.e., 𝜋(𝜃) = 1/2𝜋,0 ≤ 𝜃 ≤ 2𝜋.
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(ii) The amplitude distribution is given by (4).

Proof. From (19) it is straightforward to obtain the condi-
tional distributions of 𝜃 and 𝑟 given 𝑈 = 𝑢, which are given
by

𝜋 (𝜃 | 𝑢) = ∫∞
0

𝜋 (𝑟, 𝜃) 𝑑𝑟 = 12𝜋 ,
𝜋 (𝑟 | 𝑢) = ∫2𝜋

0
𝜋 (𝑟, 𝜃) 𝑑𝜃 = 𝑟𝑢2/𝑞𝜎 exp{−𝑟2𝑢2/𝑞2𝜎 } .

(20)

Then, the unconditional distribution (independent of 𝑢)
for the phase is

𝜋 (𝜃) = ∫1
0
𝜋 (𝜃 | 𝑢) 𝑑𝑢 = 12𝜋 , 0 ≤ 𝜃 ≤ 2𝜋. (21)

The unconditional distribution for the amplitude is given
by

𝜋 (𝑟) = ∫1
0

𝑟𝑢2/𝑞𝜎 exp(− 𝑟22𝜎𝑢2/𝑞)𝑑𝑢. (22)

Now, in (22) we perform the change of variable 𝑡 =(𝑟2/2𝜎)𝑢2/𝑞 and obtain

𝜋 (𝑟) = 𝑞 (2𝜎)𝑞/2𝑟𝑞+1 ∫𝑟2/(2𝜎)
0

𝑡𝑞/2 exp (−𝑡) 𝑑𝑡. (23)

Hence, the result follows after identifying a gamma
distribution within the integral.

According to result (ii) in Proposition 1, if 𝑅 | 𝑈 = 𝑢 ∼𝑅(𝜎𝑢−2/𝑞) and 𝑈 ∼ 𝑈(0, 1), then 𝑅 ∼ 𝑆𝑅(𝜎, 𝑞), i.e., pdf
(4) can be represented as a scale mixture (compound) of
the Rayleigh distribution and the uniform distribution on
the unit interval. Moreover, this representation of the distri-
bution facilitates parameter estimation via the expectation-
maximisation (EM) algorithm.

3.1. Measures of Interest in the Fading Channel. The SR
distribution can readily be obtained as a scale mixture of the
Rayleigh distribution and the uniform distribution, which
facilitates the computation of some measures of interest in
the framework of the fading channel, such as the amount
of fading (AF) (also known as the strength of intensity
fluctuations), and the BER for DPSK and MSK when the SR
distribution is employed as that of the fading channel.

First, in (8) we perform the change of variable 𝑅2 = 𝑍 to
obtain

𝑓𝑍 (𝑧; 𝜎, 𝑞) = 𝑞 exp (−𝑧/ (2𝜎))2𝜎 (𝑞 + 2) 1𝐹1 (1; 𝑞2 + 2; 𝑧2𝜎) , (24)

which is a generalisation of the exponential distribution
proposed in Bhattacharya [20]. Thus, when 𝑅 ∼ 𝑆𝑅(𝜎, 𝑞), the
received signal power is distributed according to (24) with
mean 𝐸(𝑍) = 2𝑞𝜎/(𝑞 − 2).

For a single-input/single-output system, the amount
of fading (see Abdi and Kaveh [21]), given by 𝐴𝐹 =
var(𝑅2)/𝐸2(𝑅2) for the 𝑆𝑅(𝜎, 𝑞) distribution proposed here is
given by

𝐴𝐹 = 4𝜎 (𝑞 − 2)𝑞 − 4 − 1, 𝑞 > 4, (25)

which varies in the interval (4𝜎 − 1,∞). We recall that the
value of AF for the Rayleigh, 𝑅(𝜎), distribution is 4𝜎 − 1.

It is well known (see Abdi and Kaveh [7]) that, for the
standard Rayleigh, 𝑅(𝜎𝑢−2/𝑞), the BERs for DPSK and MSK
are given by

𝑃𝑏,𝐷𝑃𝑆𝐾 = 12 (1 + 2𝛾𝜎𝑢−2/𝑞) ,

𝑃𝑏,𝑀𝑆𝐾 = 12 [[
1 − √ 2𝛾𝜎𝑢−2/𝑞1 + 2𝛾𝜎𝑢−2/𝑞]]

.
(26)

Now, from (ii) in Proposition 1 we obtain, by compound-
ing, the corresponding average BERs of DPSK and MSK for
the SR distribution, as follows.

Proposition 2. The average BERs of DPSK and MSK for the
SR distribution are given by

𝑃𝑏,𝐷𝑃𝑆𝐾 = 𝑞4𝛾𝜎 (2 + 𝑞) 2𝐹1 (1, 1 + 𝑞2 ; 2 + 𝑞2 ; − 12𝛾𝜎) ,
𝑃𝑏,𝑀S𝐾 = 12 [1 − 2𝐹1 (12 , 𝑞2 ; 1 + 𝑞2 ; − 12𝛾𝜎)] ,

(27)

respectively. Here 𝛾 = 𝐸𝐵/𝑁0, where 𝐸𝑏 is the transmitted
energy per bit and𝑁0 is the noise power spectral density and

2𝐹1 (𝑎, 𝑏; 𝑐, 𝑧)
= Γ (𝑐)Γ (𝑏) Γ (𝑏 − 𝑐) ∫

1

0
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1 (1 − 𝑡𝑧)−𝑎 𝑑𝑡 (28)

is the hypergeometric function.

Proof. By applying the composite rule we obtain

𝑃𝑏,𝐷𝑃𝑆𝐾 = ∫1
0
𝑃𝑏,𝐷𝑃𝑆𝐾𝑑𝑢 = 12 ∫

1

0

𝑢2/𝑞2𝛾𝜎 + 𝑢2/𝑞 𝑑𝑢. (29)

Now, with the change of variable 𝑧 = 𝑢2/𝑞 expression (29)
reduces to

𝑃𝑏,𝐷𝑃𝑆𝐾 = 𝑞8𝛾𝜎 ∫1
0
𝑧𝑞/2 (1 + 𝑧2𝛾𝜎)

−1 𝑑𝑧, (30)

which is immediately identified with (28) after simple alge-
braic manipulation. The expression for 𝑃𝑏,𝑀𝑆𝐾 is obtained in
a similar way.

The average channel capacity for fading channel is a useful
metric, in that it provides an estimation of the information
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rate that the channel can support, with little probability of
error. Channel capacity, 𝐶 (see, for instance, Li et al. [22]
Singh and Rawat [23], among others), is defined as

𝐶 = 𝐵∫∞
0

log2 (1 + 𝑟) 𝑓𝑅 (𝑟) 𝑑𝑟, (31)

where 𝐵 is the received signal bandwidth. Following Li et al.
[22] the Shannon capacity of the Rayleigh fading channel is
given by

𝐶𝑅 = 𝐵 exp ( 12𝑑𝜎)𝐸1 ( 12𝑑𝜎) , (32)

where 𝐸𝑛(𝑥) = ∫∞
1

exp(−𝑥𝑡)/𝑡 𝑑𝑡, 𝑑 = 𝑆/(𝑁0𝐵), 𝑆 is the
average transmit power receiving bandwidth 𝐵, and themean
channel gain is √𝜎𝜋/2.
Proposition 3. The average Shannon capacity of the SR fading
channel is given by

𝐶𝑆𝑅 = 𝐵𝑞 (H1 +H2 +H3) , (33)

where

H1 = −𝛾𝑞 1𝐹1 (𝑞2 , 𝑞2 + 1, 12𝑑𝜎) ,
H2 = ∞∑

𝑘=0

2 [1 + (𝑞 + 𝑘) log 2] + (2𝑘 + 1) log (𝑑𝑞)
𝑘! (2𝑘 + 𝑞)2 ,

H3 = ∞∑
𝑗=1

(−1)𝑗𝑗𝑗! 1
(𝑑𝜎)𝑗 (𝑞 + 2𝑗)

(34)

and 𝛾 ≈ 0.577216 is Euler’s constant.
Proof. Again, from the composite rule and using (32) with𝜎 ≡ 𝜎𝑢−2/𝑞 we obtain

𝐶𝑆𝑅 = 𝐵∫1
0
exp(𝑢2/𝑞2𝑑𝜎)𝐸1 (𝑢2/𝑞2𝑑𝜎)𝑑𝑢. (35)

It is known (see Gautschi et al. [24] and Lin et al. [25])
that

𝐸1 (𝑧) = −𝛾 − log 𝑧 + ∞∑
𝑗=1

(−1)𝑗 𝑧𝑗𝑗𝑗! . (36)

Thus, we have

𝐶𝑆𝑅 = 𝐵∫1
0
exp(𝑢2/𝑞2𝑑𝜎)

⋅ [
[
−𝛾 − log(𝑢2/𝑞2𝑑𝜎) + ∞∑

𝑗=1

(−1)𝑗𝑗𝑗! (𝑢2/𝑞2𝑑𝜎)
𝑗]
]
𝑑𝑢,

(37)

from which the result follows, after some algebraic manipu-
lation.

Table 1: Parameter values for the RLN, K, and SR distributions.

Setting
Model Parameters A B C
RLN 𝜇 0.63 0.51 –1.57𝜆 0.85 1.21 1.56
K 𝛼 1.00 1.00 1.00𝛽 0.35 –0.37 –0.65
SR 𝜎 1.14 0.36 0.14𝑞 3.45 2.80 2.50

4. Comparisons

Figure 3 shows the average BERs for DPSK and MSK for the
RLN, K, and SR distributions, for the three sets of parameter
values given in Table 1. The BERs for the RLN and RIG
distributions were computed numerically for DPSK andMSK
using the same parameter values for the K distribution as
in Abdi and Kaveh [21], in three settings: Setting A for 𝛽 =0.35, Setting B for 𝛽 = −0.37, and Setting C for 𝛽 =−0.65. In every case 𝛼 = 1. The corresponding parameter
values for the RLN and SR distributions were computed by
equating the population moments to the moments of the K
distribution obtained using the above values of (𝛼, 𝛽). We
recall that the population moments of the K distribution are
given by 𝐸(𝑅𝑘) = (2𝛼𝑘)Γ(1 + 𝑘(2)Γ(1 + 𝛽 + 𝑘/2)/Γ(𝛽 + 1),𝑘 = 1, 2, . . ., while the first and second moments of the
RLN distribution are 𝐸(𝑅) = √𝜋/2 exp[(1/8)(𝜆2 + 4𝜇)] and𝐸(𝑅2) = 2 exp(𝜆2/2 + 𝜇), respectively. The moments of the
SR distribution are given in (11). The estimated parameter
values of the RLN distribution, 𝜆 and 𝜇, differ from those
obtained byAbdi and Kaveh [21] because the latter study used
the approximation given in Abdi and Kaveh [7].

The graphs show that the SR distribution is a valuable
means of predicting the BER in multipath dispersion fades.
Compared with the K distribution, SR also achieves a good
fit with the RLN distribution. The third scenario is conclusive
in this case. We recall that the RLN distribution is commonly
used in DPSK and MSK modulation schemes. It should
also be noted that, for the RLN distribution, there is no
closed-form expression for the average BER, which must be
calculated by numerical integration methods (generally, the
Gauss-Hermite method). Cygan [26] proposed an exact but
complicated formula for estimating the BER in theDPSK case
when the RLN distribution is used.

The analytical expressions of the SR and K distribu-
tions both include special functions, namely, the incom-
plete gamma function and the modified Bessel function,
respectively. The two are similar and either can be used as a
substitute for the RLN distribution. Therefore, the proposed
distribution can be applied efficiently to capture the bleached
shading aspects of the wireless channels.

Figure 4 shows the pdf of the RLN,K and SR distributions
for the parameters given in Settings A, B, and C. Note that
the SR distribution presents a longer tail than the other
distributions.
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Figure 3: Average BERs of DPSK andMSK for the RLN, K, and SR distributions assuming the parameter values, for different settings, given
in Table 1.
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Figure 4: Slopes of the pdf for the RLN, K, and SR distributions for the parameters given in Settings A, B, and C.

4.1. Comparison with the RL and K Distributions. The
distance or relative information between two probability
distributions can be determined by the Kullback-Leibler
divergence measure (see Hall [27], among others), which is
defined as follows. Let 𝑓 and 𝑔 be probability densities onR𝑛

such that 𝑓 is absolutely continuous with respect to 𝑔 (that is,𝑔(𝑥) = 0 implies 𝑓(𝑥) = 0), and then the relative information
or Kullback-Leibler divergence, 𝐷𝐾𝐿(𝑓 ‖ 𝑔) of 𝑓with respect
to 𝑔, is

𝐷𝐾𝐿 (𝑓 ‖ 𝑔) = ∫∞
0

𝑓 (𝑥) log [𝑓 (𝑥)𝑔 (𝑥) ] 𝑑𝑥, (38)

with the convention that 0/0 = 1. When 𝑓 is not absolutely
continuous with respect to 𝑔 we define 𝐷𝐾𝐿(𝑓 ‖ 𝑔) = ∞. A
disadvantage of (38) is that the Kullback-Leibler divergence
is not symmetric and therefore is not a genuine distance
metric. To overcome this problem, we use the Jensen-Shanon
divergence (see, for instance, Lin [28]) given by

𝐷𝐽𝑆𝐷 (𝑓 ‖ 𝑔) = 12 (𝐷𝐾𝐿 (𝑓 ‖ 𝑚) + 𝐷𝐾𝐿 (𝑔 ‖ 𝑚)) , (39)

where 𝑚 = (𝑓 + 𝑔)/2. The integrated squared error (ISE)
(Bowman [29]) is given by

𝐷𝐼𝑆𝐸 (𝑓 ‖ 𝑔) = ∫∞
0

(𝑓 (𝑥) − 𝑔 (𝑥))2 𝑑𝑥. (40)

Table 2 shows the Jensen-Shannon divergence for the K
and SR distributions. Here, we see that, except for Setting A,
the SR distribution presents the least distance with respect
to the RL distribution, which was taken as the reference
distribution.

5. Simulating the Proposed Distribution

To properly model a fading process, a random variate must
be generated according to the proposed density distribution.
Moreover, the random variate must be generated at low
computational cost.

To achieve this, we proceed as in Gómez-Déniz and
Gómez [16], using thewell-known inverse transformmethod.
Although there exist a plethora of methods for simulating
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Input:
Alpha: 𝛼 parameter (𝛼 ∈ R)
Q: 𝑞 parameter (𝑞 ∈ R)
A: range of data (Amplitude ∈ R)
NSamples: number of samples (NSamples ∈ N)

Output:
Z: set of data ∼ 𝑆𝑅(𝛼, 𝑞)

Begin:
v←󳨀 CDF(Alpha, Q) (0 󳨀→ A) ⊳ Obtain the CDF and store it within a vector
for 𝑖 ←󳨀 1 𝑡𝑜 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 do

u←󳨀 rand ⊳ Obtain a uniform random sample𝑍(𝑖) ←󳨀 max{V ≤ 𝑢}
end for
End

Algorithm 1: Simulating the SR distribution.

Table 2: Numerical values of the JSD and ISE measures for the K
and SR distributions in comparison with the RLN distribution.

Setting
Measure Model A B C
JSD K 0.0013 0.0499 0.0323

SR 0.1882 0.0499 0.0246
ISE K 0.0019 0.0902 0.3280

SR 0.0052 0.0677 0.1223

a random variate, the inverse transform method is simple
to understand and easy to programme. Algorithm 1 shows a
simplified version of the algorithm used. Note that the whole
cdf of the SR is precalculated to speed up the implementation.

AMonteCarlo simulationwas coded inMatlabMATLAB
[30] and tested on an i7-7700HQ CPU @ 2.80 GHz (16 GB
RAM), taking around 0.3 seconds to generate 𝑁 = 100000
random variates. This low computational cost makes the
approach sufficiently effective for fading channel analysis.

Two datasets were generated through Monte Carlo sim-
ulations with 100 000 samples and then compared with the
analytical model. Figure 5 shows the analytical pdf for the
SR distribution and the pdf simulated for both datasets. The
simulated data provide a good fit with the analytic model for
both datasets. The parameters used for the SR distribution
were 𝜎 = 0.3 and 𝑞 = 3 (left) and 𝜎 = 6 and 𝑞 = 5 (right).

Table 3 shows the analytical mean and variance, in
comparison with the values estimated from the Monte Carlo
samples. The relative error for both measures and both cases
is low (less than 2%).

This kind of simulation is only valid for mathematical
analysis. To simulate the fading effects and provide the
fading channel characteristics required, the modelling must
be performed from the phasor formulation derived above
and linked to physical variables (signal carrier frequency,
signal sampling, speed of receiver, andDoppler effects).These
questions are examined in the next section.

5.1. The SR Distribution for Modelling Fading Effects. The
physical model is completed by reformulating the phasors

𝑆 = 𝑅𝑒𝑖𝜃 = 𝑛∑
𝑖=1

𝐴𝑗𝑒𝑖Φ𝑗 = (𝑋,𝑌) = (𝑅 cos 𝜃, 𝑅 sin 𝜃) , (41)

as described by Rappaport [1] among others, as follows:

𝑋𝑖 (𝑡) = 𝑁∑
𝑗=1

𝐴 𝑖𝑗 cos (𝑤𝑖𝑗𝑡 − 𝜙𝑖𝑗) ,

𝑌𝑖 (𝑡) = 𝑁∑
𝑗=1

𝐴 𝑖𝑗 sin (𝑤𝑖𝑗𝑡 − 𝜙𝑖𝑗) .
(42)

Here, 𝐴 𝑖𝑗 is the amplitude and satisfies the condition that
the ensemble average < ∑𝑁𝑗=1 𝐴2𝑖𝑗) >= 1. The phase 𝜃 is
now replaced by the term 𝜃 = 𝑤𝑖𝑗𝑡 − 𝜙𝑖𝑗. The phase 𝜙𝑖𝑗 is
the random phase uniformly distributed in [−𝜋, 𝜋], 𝑤𝑖𝑗 =𝛽V cos(𝜓𝑖𝑗) is the Doppler shift, where V is the vehicle speed,𝛽 = 2𝜋/𝜆 is the wave number, 𝜆 is the wavelength, and 𝛽V
is the maximum Doppler shift (in radians per second). The
angle of arrival of the signal is 𝜓𝑖𝑗, also distributed in [−𝜋, 𝜋],
and 𝑁 is the number of sinusoidal waves, which, if large
enough, ensures that both 𝑋𝑖(𝑡) and 𝑌𝑖(𝑡) can be considered
as Gaussian processes. Accordingly, the SR signal envelope is
given by 𝑟2 = 𝑋2𝑖 + 𝑌2𝑖 , and 𝑖 = 1, 2, . . .The amplitude of the
envelope is then fitted to the SR(𝜎, 𝑞) amplitude.

Taking into account the above, we first performed a
Monte Carlo simulation to obtain the dataset, using 15
scattered random phasors and 20 000 samples. We then
compared the resulting pdf with the analytic SR pdf. This
comparison is shown in Figure 6 (left column) for two sets
of SR distribution parameters (𝜎 = 2, 𝑞 = 10 and 𝜎 = 0.3,𝑞 = 3). As can be seen, the fit between the analytic and the
physical models is reasonably good. Figure 6 (right column)
also shows a set of simulated samples, for both cases. As can
be seen, these data samples are mostly grouped around the
mean value provided by the parameter setting. Note also that
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Figure 5: Comparison of the analytic SR (𝜎 = 0.3, 𝑞 = 3) magnitude pdf and the Monte Carlo simulated dataset (left). Comparison of the
analytic SR (𝜎 = 6, 𝑞 = 5) magnitude pdf and the Monte Carlo simulated dataset (right).

Table 3: Comparison of the mean and variance values for the analytic SR and those estimated by statistical simulation, from the simulated
data for two sets of parameters.

SR(𝜎 = 0.3, 𝑞 = 3) SR(𝜎 = 6, 𝑞 = 5)
Mean (analytic) 1.0297 3.8375
Mean (simulated data) 1.0491 3.8899
Relative error 1.8879% 1.3671%
Variance (analytic) 0.7397 5.2738
Variance (simulated data) 0.7360 5.2240
Relative error 0.4974% 0.9441%

Table 4: Means and variances for the analytic SR and the values estimated using phasors, from the simulated data for the two parameter sets.

SR(𝜎 = 2, 𝑞 = 10) SR(𝜎 = 0.3, 𝑞 = 3)
Mean (analytic) 1.9694 4.4037
Mean (simulated data) 1.9884 4.4491
Relative error 0.9662% 1.0312%
Variance (analytic) 1.1215 5.6075
Variance (simulated data) 1.0633 5.3042
Relative error 5.1908% 5.4086%

deep fading effects (– 30 dB) are present. In other words, the
SR distribution correctly reflects the existence of large fading
values (minimal power received at the terminal).

Table 4 shows the analytical means and variances, com-
pared with those estimated from the Monte Carlo samples.
The relative errors for both measures and both cases are low
(around 5%), but larger than when the data are generated
directly from the cdf, because this simulation ismore complex
and includes physical effects (wave scattering).

Figure 7 shows Monte Carlo simulated samples obtained
using phasors for the SR (𝜎 = 0.3, 𝑞 = 3) and RLN (𝜇 = 1.029,𝜎 = 0.73) distributions, with similar results (note, the RLN
distribution is widely accepted for modelling fading effects).

To conclude our demonstration of how the SR distri-
bution efficiently models fading effects, we performed a
simulation of the physical channel. Algorithm 2 shows the
code used. This implementation reproduces Clarke’s model
(mapped to the timing domain). A baseband Doppler filter
was also included in the simulations, in order to generate
a realistic fading spectrum, that is, to produce fading wave-
forms that are properly time-correlated.

Figure 8 shows a simulated fading signal for the SR
(𝜎 = 0.3, 𝑞 = 3) distribution, corresponding to a signal
with a mean value amplitude of –2.2262 dB. Five Rayleigh
processes were simulated to obtain the SR(𝜎, 𝑞) envelope.
This simulated envelope pdf of the dataset fits well with the
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Input:
Alpha: 𝛼 parameter (𝛼 ∈ R)
Q: 𝑞 parameter (𝑞 ∈ R)
NRays: number of emitted signals (NRays ∈ N)
NRef: number of reflections (NRef ∈ N)
Speed: average speed of vehicle (Speed ∈ R)
Freq: carrier frequency (Freq ∈ R)
FTime: simulation time (FTime ∈ R)
STime: sampling time (STime ∈ R)

Output:
r: signal envelope
Begin:
Power←󳨀 getPower(Alpha, Q) ⊳ Get average signal strength
A←󳨀 √𝐴𝑙𝑝ℎ𝑎 ⋅ rand(𝑁𝑅𝑎𝑦𝑠,𝑁𝑅𝑒𝑓)−2/𝑄 ⊳ Get signal amplitudes
phi←󳨀 rand(NRays, NRef)⋅2 ⋅ 𝜋 ⊳ Generate uniformly distributed phase
psi←󳨀 rand(NRays, NRef)⋅2 ⋅ 𝜋 ⊳ Generate uniformly distributed arriving wave
B←󳨀 2 ⋅ 𝜋⋅ Freq⋅ 3.3e-03 ⊳Maximum Doppler frequency shift
w←󳨀←󳨀 𝐵 ⋅ 𝑆𝑝𝑒𝑒𝑑 ⋅ cos(𝑝𝑠𝑖) ⊳ Including Doppler effects
t←󳨀 0: STime: FTime ⊳ Time span
x←󳨀 0
y←󳨀 0
for 𝑖 ←󳨀 1 𝑡𝑜 𝑁𝑅𝑎𝑦𝑠 do
for 𝑗 ←󳨀 1 𝑡𝑜 𝑁𝑅𝑒𝑓 do
tmp 𝑙𝑒𝑓𝑡𝑎𝑟𝑟𝑜𝑤𝑤 ⋅ 𝑡 − 𝑝ℎ𝑖 ⊳ Get Doppler phase shift𝑥 ←󳨀 𝑥 + 𝐴 ⋅ cos(𝑡𝑚𝑝) ⊳ In-phase component𝑦 ←󳨀 𝑦 + 𝐴 ⋅ sin(𝑡𝑚𝑝) ⊳ Quadrature component

end for
end for𝑥 ←󳨀 𝑥⋅ Power ⊳ Set the average signal strength𝑦 ←󳨀 𝑦⋅ Power ⊳ Set the average signal strength
𝑟 ←󳨀 √𝑥2 + 𝑦2 ⊳ Calculate the signal envelope
End

Algorithm 2: Fading simulation.

analytical one (not shown). In this case, the envelope includes
very deep fading levels (around –40 dB) which, although
rather infrequent have been reported in rapid fading in long-
distance HF propagation (seeM et al. [31]).The results shown
are for two vehicle velocities (60 km/h and 120 km/h). The
Doppler effect is significantly more apparent at the higher
velocity, as expected.

In the present paper, the physical interpretation of the
parameters of the SR distribution is not discussed, but it
seems clear from expression (13), and Algorithm 2, that
there must exist a straightforward relation between these two
parameters and the average signal power strength (through
the means and variances for the amplitude of scattered
waves). However, more analysis of this question is needed for
a complete physical interpretation.

A simulator block implementing the SR(𝜎, 𝑞) signal has
been developed (coded in Matlab) and included in a more
general mobile radio channel software simulator, which per-
forms Gaussian/uniform processes to simulate the phasors
and thus obtain the signal envelope distributed with SR(𝜎, 𝑞)
pdf. Some typical routines are also included, such as a 𝑛-
pole Tchebicheff filter block and a simple RF combiner (for

the equal gain and maximum-ratio cases), together with the
possibility of simulating samples for the other commonly
used fading distributions (i.e., Rayleigh, GR and RLN).

6. Final Comments

In this paper, we present a new distribution, the two-
parameter SR distribution, which is competitivewith theRLN
distribution and the K distribution. TheRayleigh distribution
is considered as a special case when one of the parameters
tends to infinity. Parameter estimation for the new distribu-
tion is also discussed. From a mathematical standpoint, the
distribution we propose has certain advantages over the RLN
distribution within the framework of fading signal strength.
Twomethods to obtain the simulated envelope are discussed;
the first is based strictly on the pdf of the distribution,
and the second is based on a physical model constructed
from the Rayleigh physical model, using the classical method
described by Clarke. In addition, closed-form expressions are
derived for the average channel capacity and the bit error
rate (BER) for DPSK andMSKmodulations for the proposed
distribution.
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Figure 6: Samples simulated by using phasors of the SR distribution (𝜎 = 2, 𝑞 = 10) (top, left) and a set of simulated samples (top, right).
Samples simulated by using phasors of the SR distribution (𝜎 = 0.3, 𝑞 = 3) (bottom, left) and a set of simulated samples (bottom, right). For
both cases, the analytic SR distribution is also shown, for the sake of comparison.
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Figure 7: Simulated samples of the RLN distribution (𝜇 = 1.029, 𝜎 = 0.73) (left). Simulated samples of the SR distribution (𝜎 = 0.3, 𝑞 = 3)
(right). The parameters used in both cases are those providing same mean and standard deviation values and are represented spaced 0.1
wavelength apart for the 0 dB mean value.
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km/h (right).
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