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ABSTKACT 

An analytic solution is presented for thc stcady-state dcpth-averaged western boundary current fiowing ovcr 
the continental slope by combining thrce higlily ideali~cd niodels: the Stonimel rnodel. <he Munk rnodel. and 
thc arresied ropographic wave modei. The main vonicity balance over the slope is between planetary vorlicity 
advection and the slope-induced bottom stress torque, which is proponional to rv (h- ' ) ,  where r is the Rayleigh 
friction coefficient, h is the water depth, and v is the meridional velocity. This slope-induced torque provides 
the necessary source of vonicity for poleward fiow over the slope, its simple interpretation being that vorticity 
is produced because the bottom stress has to act over the seaward-deepening water column. The character of 
thc solution deperids on the slo e a as well as on the assumed bottom drag coefficient, and the length scale of 
the boundary current is -4. It is funher shown thnt, if the depth-averaged vclociiy Aows along isobaths. 
then the stretching of water columns associated with cross-isobath geostrophic ftow, which conipensates bottom 
Eknian transport, is identical ro [he slope-induced torque by the geosrrophic velocities. 

1.  Introduction 

The classical theories underlying our understanding 
of large-scale ocean circulation are rnainly based on 
hek-p!me u.?:! 9at-hcttsm ass~mptions ( e g ,  Stomme! 
1948; Munk 1950). There is little observational evi- 
dencc on the influence of topographic features on rni- 
docean mean circulation, probably because of the sur- 
face-trappcd nature of wind-driven circulation in a strat- 
ified ocean. This has likely dwarfed the importance of 
topography in pracess-oriented models of the suhtrop- 
ical gyres, in particular the role played by topographic 
features in lateral boundaries (e.& Huang 1991). The 
iiiipüriai'cr iif ihe slopc ai i k  oceaii bouiiáaries Decame 
clear in Warren's (1963) tdealized tiiorlcl on the me- 
andcring ot 3 wcstcrn boundary current due to vortex 
stretching ovcr a sloping bottoni. Hollarid (1973) did n 
numerical study to find that thc continental stopc has a 
profound inf uence on the western boundary current and 
the midcirculation gyre. Salmon (1992) irivestigatecl thc 
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similarity solutions for the Stommel-type western 
boundary current over a sloping bottom. His steady- 
state solution indicates a southwestern intensification 
due to both the planetary and the topographic beta ef- 
fects. More recently Griffiths and Veronis (1997, 1998) 
reponed a similar result from laboratory and theoretical 
studies. 

Coastal oceanographers, on the contrary, have nor- 
:nli!!y f~cused  e:: fp!ü::e U y ~ ü ~ i c i ,  :rea:ing CioCíiiii f<i- 

pogrnphy as a principal constraint to the character of 
thc flow (e.g., Csanady 1982, 1988). Tidal and wind- 
induced currents within the continental shelf are greatly 
controlled by the shelf topography. Topographic «r 
coastal-trapped waves are another clear example, within 
the continental shelf and slope, rcsulting froiii vortex 
sti-ctdiing induced by cross-isobath velocities. 

l'he conriection between these two ratlier opposite 
approaciies has come siowiy. Csanaciy j i988j, in  a mas- 
sivc nnd intensc paper, siimmarized progress rnade on 
the role of the continental slope in ocean circulation. 
He illustratcd a number of examplcs of wliat he called 
[he fundamental s!~pc. effec! o ~ !  otean circc!:l!jcn: \fe- 
locities perpendicular to depth contours are responsible 
for the stretching or quashing of vortex tubcs, in what 
niüy be interpreted as~torquc induced by bottom pres- 
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are (i) the cross-isobath flow term and ( i i )  the term 
depending on the vorticity, although it ia irnportant to 
empha9i7.e that iiere we are dealing with deptbaveraged 
velocities. If the geostrophic and depth-averaged veloc- 
ities were equal, then these two vorticity terrns in both 
equations would be identical provided thal r = (AJ<,I 
2)11*. In the depth-averaged vorticity equation, the ~ o r -  
ticity-dependent term (ii) is the result of bottom stress 
curl (or bottom stress torque for constant water depth), 
while in quasigeostrophic theory it is identified as re- 
sulting from the expansion/compression of interior vor- 
tex tubes. Recent results have shown that within the 
boundary layer A, is rather large (e.g., Garret et al. 
1993). Using typical values A, = - lo-* m2 s l 

and f = S- '  we obtain r = 10 - 10 m S ', 
which is of the order of magnitude usually quoted for 
the Rayleigh friction coefficient (e.g., Weatherly 1972; 
Csanady 1976, 1982). This number may also be com- 
pared with estimates for rlH of 100 days-', which gives 
r - I C F 4  m S- '  (e.g., Gill 1982). This indeed suggests 
that these two terms are anatogous, although with the 
depth-averaged velocities in Eq. (5) and the geostrophic 
velocities in Eq. (2). Note that the analogy would have 
disappeared if we had used a constant depth in the last 
term of Eq. (l), as assumed by Satmon (1  992) and Grif- 
fiths and Veronis (1998). 

Equation ( 5 )  has one additional term, the slope-in- 
duced hottom stress torque (iii) that depends on the 
velocity, the water depth, and the bottorn slope. To il- 
lustrate the role played by the slope-induced bottom 
torque let us consider a westem boundary current flow- 
ing northward along a continental slope (Northern 
Hemisphere). In the absence of a slope the sign of the 
bottorn torque will depend only on the curl of the bottoni 
stress. ln particular, if the boundary current initially has 
zero rclativc vorticity and the bottom boundary layer is 
spatially uniform (constant r or A,,), then the torque is 
zero. However, if the water depth increases offshore, 
the bottom stress has to act over increasingly thickcr 
water colurnns and produces a botiom torquc, resultirig 
in a gain of positive vorticity by the northward flow, 
even if the curl of the bottom stress is negative. A simple 
*,. "m,-, *L.,.* ..r\,t--.... 
JcNLi i iL  r i i a r  p i i i i n y 3  :he slupe-inUücd h t í j ~  iurqüe 
is illustrated in Fig. 1. Note that the size and sign of 
the slope-induced torque clepends on the bottorn slope: 
within a western boundary current ftowing over a steep 
continental slope i t  opposes the bottoni stress curl terrii 
iii the cyclonic side of the streani. 

This derivation of the depth-averaged vorticity eqiiii- 
tiori illustrates that there are three differerit mechanisms 
for modifying the interior vodcity: 

1 )  cross-isobath Row of tlie depth-averaged velocity; 
2) bottom stress curl. o r  bottorn stress torque for cori- 

stant water depth; and 
3) slope-induced hotlorn stress torque that results frorn 

the coupling between the depth-averaged current, the 
bottom siope, and the dynamics of the bottom bound- 

FIG. l .  Sketch of the slope contribution to the bottom stress iorqur. 
Tlie boundary jet gains positive (negative) vorticity for northward 
(southward) flow. 

ary layer (tiere sirnply specified as a constant bottoni 
drag coefficient). 

Let us further investigate the analogy between Eqs. 
(2) and (5).  With this purpose we write the depth-av- 
eraged velocities as 

where ii, stands for the thickness of the bottorn Ekrnan 
Iayer and u ,  and u, indicate the x and y cciinponcrits oi' 
!he Ekmm vcl~ci!;~. The use ~f Yq. (7) !ex!:, te 
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and v,6,, are related to the bottom stress as follows: 

Substitution of these expresions in Eq. (8) leads ro 

This shows that, if the depth-averaged flow i\ along 
isobaths, then the stretching due to cross-isobath geo- 
strophic flow is analogous to a slope-induced bottom 
torque by the geostrophic llow. For this case the bottom 
vertical velocity in the quasigeostrophic vorticity equa- 
tion and its counterpart in the depth-averaged vorticity 
equation have exactly the same dependence: 

dh dh r 
W b  = (U" + + /iE 

( 1  l a )  

!n the drpth--ver-ged vorticity eqi~ation the cross-iso- 
bath term is zero while in the quasigeostrophic vorticity 
cquation the stretching related to the cross-isobath geo- 
strophic flow has exactly the same dependence as the 
slope-induccd torque. 

If there is a coast, then (he fiow normai to the coast 
has to be zero, what is usually called the coastal con- 
straint. This condition will hold far frorn the coast only 
when there are no changes in the alongshore direction; 
that is, tOr poleward Bow, onshore bottom Eknian trans- 
pori will be compensatecl through offshorc geostrophic 
transport sucti that the total cross-isohath flow is zero. 
We have just shown, however, that, when ttie depth- 
averaged flow is along isobaths, a cornpensatirig geo- 
stropnic fiow aiways exists, regarciiess «f ihe presence 
of the coast, and the slope-induced bottom torque is 
exactly eqiial to the cross-isohath stretching terrn. 

Equation (1) with (2) has been referred to as the qua- 
sigcostrophic vorticity equation, and Bq. (4) with (5) as 

x -  o x=r, x-m 

1 3 ~ .  2. Sketch of the model configuratiun. The modcl doniain is 
divided into the coastal zonc of linear boctom slope and the decp 
water zone of constant depth H. 

the depth-averaged vorticity equation. For the particular 
case of dcpth-averaged along-isobath flow wc have 
shown that the mathematical dependence is exactly the 
same, with the forcing terms given by Eq. (1 1). In this 
and the following two sectioris we will examine the 
solution of Eq. (1) or (4), forced by (1 1 ) .  The analysis 
of the differences between the geostrophic and the 
depth-averaged solutions will be left for the discussion 
and conclusions. 

If the depth-averaged flow is steady and parallel to 
the coastline and the vorticity input by the local wind 
stress is riot important, Eq. (1) or (4), with ( 1  I ) ,  is 

The model variables are made nondimensional by 
scaling the horizontal coordinates by the Munk length 
l , [=(A, IP) ' '3] ,  the vertical by the deep ocean depth H, 
and the horizontal velocities by i(1JHf1, where S,, is the 
volurne (ransport strearn function at x = m. The model 
ocean includes the coastal area o f  uniform slope I l I l ,  
and the deep ocean of constant ciepth, that is. 

as illustrated schematically i n  Fig. 2, whcrc i: is the 
length of the sloping r.one. Then the dimensionless forn 
of Eq. ( 1  2) is 

wherc />(-:=t- /PH) is the Stornmel length aiid the coef- 
ficients tr: and (u?  are expressed i n  rerrns ot  ihe threc 
different leiigth scales; that is. 



The governing equations (14) and (15) are two third- 
order ordiriary differcntial equations; therefore six 
houndary conditions are reqiiired to solve theni. At s 
= O a no-slip condition is applied and at x = the 
solution must be bounded. Other boundary conditions 
are that velocity, shear stress, and pressure must be con- 
tinuous across the interface (White 199 1 ). Accordingly, 
the rnatching conditions at x = 1, (in dimensional form) 
are 

u,. = vd, ( 1  7a) 

where the subscripts c and d represent the coastal side 
and deep-ocean sides. respectively. In order to express 
the pressure continuity condition (17c) in terms of the 
velocity variables, we need to look at the rnornentuni 
equations from which the vorticity equations are de- 
rived. They are, in dimensional form, 

Close inspection of these equations reveals that, since 
the velocity is only a function of x,  the general form of 
the surface elevation is 

T ( X )  = T~,,(x) + 711(x)V (20) 

Therefore, the y mornentum equation (19) becomes 

Due to the continuity conditions of pressure (17c) and 
velocity (17a), Eq. (21) becomes 

The continuity ot' the v-indepcrident surface elevation 
rl,,(x) is autornatically satisfied since the velocity is con- 
iinuous and finite at the iriterlace. Fitially, ihe following 
(dimensional) conditiori dcterinines the arnplitude of the 
soluiion: 

Tlie result is that we have six boundary conditioris; 
hence, ihey are suflicient to solve the vorticity equations 
( i4 )  anci ( ¡ S ) .  For Eulure convenience, tne six Dounciary 
conditions are sunirnarizeri herc i n  nondimensional 
fnrrii: 

4. The analytic solutioii 

An analytic solution in terrns of iníinite series can 
readily be found for the third-order systcm (14) and (15) 
with the boundary, continuity, and Illow conditions 
(24a)-(24f). Considering Eq. (14) first, we can show 
that there exists two linearly indeperidcnt series solu- 
tions of thc forni 

h, = 
ul(n - 2)0,, + h., , 

n(n - l)(n - 2) 
' 

The third independent solutiori, ti(,r), can be í'ountl 
knowing tlic previcws two antl usirig [he reduction 

where W = v,~!; -- IJ~V; is the Wroriskian. Ttius thc 
general solution of (14) is 

i~ - C,  u, i- C z q  t pij j 

However, w e  can show that u,(O) - 112 :iiicl. sincc v,[O) 
=- u,(()) = O, the boundary condition at .r - O is saristied 
only if C., = O. Therefore, tlie rather complicated so- 
iurion u, is not part of our soiution. 

The characteristic polynomial f o r  thc coristant coef- 
licient equatioii (15) is rn' - cr,m - 1 = O. For 25 





FIG. 3 .  Zonal structure of (a) 4elocity and (b) vorticity for 1/1, = 

0, 2, 6, 10. and 1, = f,, as inferred from Eq (33). 

with a linear bottoin stress, introduces a new term that 
is interpreted as a slope contribution to the bottom stress 
torque. Iri his serninal study of the mean circulalion in 
a coastal zone, Csanady (1978) had already incorporated 
a bottorn stress !orque t h - t  inclucied thc ahove contri- 
bution. In that paper Csanady obtained a vorticity equa- 
tion similar to the vorticity equation for topographic 
wave generation, with linear frictiori replacing the time 
derivative, and its solution was named the arrested to- 
pographic wave. iri rnar case the voriiciry Daiance was 
between the torque by both surface and bottorn stress 
and the torque by bottorn pressurc (see also Csanady 
1982, p. 188). In the present study there is no externa1 
forcing and the steady-state solution corresponds to a 

a 
FIG. 4 .  Depth-integrated vorticity budget for 1, = 21, and 1, = lm as 

inferred from Eq. (33). 

m 

balance between bottorn stress torque and planetary vor- 
ticity advection. This could be thought of as a reverse f 
Sverdrup balance, with poleward Aow sustained by bot- 
torn stress torque. e 

(1. Depth-averaged or geostrophic velocities 

We have shown that i n  the case under consideratioii 5 
(depth-averaged flow is along isobaths) the bottorn forc- 
ing in the depth-averaged and quasigeostrophic vorticity 
equations is exactly analogous, so  our results may equal- 
ly apply to one or thc other. This fully analogous de- 
pendence makes us anticipate that the difference be- : 
tween the actual depth-averaged and geostrophic veloc- 
ity and vorticity values will be small, but it seems worth- 
while to briefly examine the size of this difference. 

shore geostrophic velocities is given by u, = ( i - i ~ ~ ) / ( f h ) .  

The alongshore Ekman tr;msport is then calciil.ir:d a \  

Hence, the cross-isobath geostrophic velociiy (mid 

batti geostrophic transport. Similarly, by ~ubstiluririg thc 
definition of the depth-averaged velocities Eq. 8 )  1 into 
( - dii ir lx - - duldy i t  inay be shown that the t i ) '  1'i.i-eli .c 
berween the uepth-averageu and geostrophic \.oiiic;i' . \  
will be of (r/J)2d(v,lh2)ldx, which is typically n f x l w  

rV(fFz)2 smaller than the geostrophic vorticity unles5 tlie 
slope clkldx is very large. 

I f  the dimensional bottom friction coefficieiil 1' Pl\.'en 



by r - 5 x 10 m s ', h r  typical midslope clepths of 
about 500 111, the rlíJij f x t w  is aboui 0.01. This in- 
dicates that the cross-isobath geostrophic transport is 
much smaller than the alongshore geostrophic transport 
and clearly conlirrns that the alongshore Ekman trans- 
port is negligible. Equally. ttie difference hetwceri the 
depth-averaged arid the geostrophic vorticity will be 
negligible. 

Wtien the depth-averaged flow is not along isobaths, 
then the bottom forcing will differ by as  much as  the 
cross-isobath term in Eq. (2) or ( 5 ) .  Hecause of the 
coastal constraint, however, this term will usually be 
small over the continental slope when the coast is suf- 
frciently long. Far from the coast, for exarnple, over 
seamounts, the cross-isobath term may be relatively im- 
pvrtant, and the solution of the depth-averaged and qua- 
sigeostrophic vorticity equations h a y  substantially dif- 
fer. 

l n  section 2 we examined the interior problem, forced 
through bottom Ekman pumping, for the particular case 
when the depth-averaged flow is along isobaths. In this 
case the Ekman bottom transport is compensated 
through geostrophic cross-isobath flow, which is exactly 
analogous to  thc slope-induced torque. it is illustrative 
to appreciate the mle of the geostrophic cross-isobath 
f o w  by considering conservation of potential vorticity 
for the linear balancc: 

where h here is the thickness «f interior material col- 
umns. For the particular case of our analytical solution, 
that is, there are no changes in the y direction, this last 
or..,,s+:-.. l.-,.,.--.. Lquariuii u l ; ~ \ i i i i ~ i >  

J' dh f'dh BU, = - U  - + 
h P d X  hr3f 

I n  gewra!, thr thickness d' T ~ C  kter ior  coluz:: is E:;& 
ified through bottom Eknian pumping as 

Iii our case the second term in the right-hand d e  is 
zero because of thc ~issumed y independcricc. Substi- 
tutiiig back inlo Eq. ( 3 5 )  arid using the expressions for 
bottom Ekman transport IEq. ( 9 ) )  we get 

So. becaiise of the coaitnl constraint, wc get 1 4 ,  (S, - 
-u,h. Uciiig Eq. (%), we arrive ar u, - (ruS)l( fh) .  Sub- 
stitution of  this equation into Eq (37) lcads to our con- 
trolling equation (but without lateral friction): 

The first term on the right-hand side, proportional to 
dhldx, is always posit&e (negative) - for  northward 
(southward) flow. The interpretation is that the stretch- 
ing riecessary for meridional How takes place mainly 
through cross-isobath water movemerit. 

At this point i t  is worthwhile to emphasize the po- 
tentially critica1 role played by the dynamics of the bot- 
tom boundary layer. In our ver) simple representation 
these dynamics are al1 hidden in the bottom friction 
coefficient. wliicli we have chosen as constant. Wc have 
shown, howcver, that the bottoni fiictiori coefíicient ii 
indeed proportional to the vertical eddy viscosity, so 
this coefficient will surely change in the cross-isobath 
direction depending on  the dynarnics of'the interior flow, 
inducing some typc of fecdback process. I'or the y 111- 
dependen1 case, the slope-induced bottom torque would 
need to be replaced by v(rh '),. 

Ari argument against ihe potential importante o f  
Stommel's (1948) bottom friction model has been thal 
where a western boundary current touchcs bottoin, s o  
that bottom friction is high, jts curl jntcgrates (o  zero 
hecause the velocity rnwt he small at both sidcs o f  the 
strearn icsanady 1988). For a f a t  bottom the simplified 
balance between bottom stress curl and planetary vor- 
ticity advectinn is given by (again with dimensional 
variables) 

and the poleward transport integrated across the westcrn 
boundary section is zero: 

This is not necessarily true anymore over the continental 
slope. In this case the simplified balancc i s  

.. 0.: - 8  
wi i iLr i .  wiici i  iniegraicd a c r t w  lile westei-n ~ ~ ( I U I I ~ N )  

xxtiori. lcads to 
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FIG. 5. %mal structure oí' velocity and vonicity when 1, = 2.41, as 
inferred frorn Eq. (45). 

after using dhld-x = Hll, = a. The total transport now 
depends oii the ratio Jh, everywhere positive for north- 
ward fiow. 

The general solution tn Bq. (42) 1s 

where C is the arbitrary constant. It is important to note 
that, since the layer depth h ( x )  vanishes at the coast (x 
= O), the no-slip condition is automatically satisfied. 
For ihe Uiscoriiinuous sheii; ihe pressure rnusi be con- 
tinuotis at the shelf break which, froni the inomeiituni 
equations, means that v must be continuous. The arbi- 
trary constant C is related to the flow rate and can be 
reatiily detcrmiried by the matching condition. -. I he upshot is th:it the simple solution (44) of the 
quasigeostrophic vorticity eqiiatioti (42), with only the 
b»tt«rn frictioti (including thc slopc-inducerl bottoiii 
frictioii) arid heta tei-riic. satislies the no-slip conditiim 
cveri withotit liite~.ül friction. Of coiirse. this does riot 
rneari that the solution will be as realistic as the one that 
includes lateral friction. For n linear contincntal slope 
this solution becoines 

I !u , ,  e x -  i P H \  ;X,J for s > i,. 

FK;. O. Lkpth-integrakd wrticiry budget for 1, =- 2.41. as inferrcd 
from Eq. (45) 

which is illustrated in Fig. 5 .  It is to be nnted that the 
vorticity is discontinuous at the slielf break (the ~riaicli- 
ing point) due to the absence of lateral friction. Nev- 
ertheless, the solution is rernarkahly realistic. while pro 
viding a simple interpretation on the dynarnics of wezi- 
'>Tm h,-\,,.,,i~~., ,.,,.-,.o**<, 
L.,,' L I , I L I I I " ' l I ,  C " L I C I I ~ < , .  

The above solution illustrates thüt. as Iong a> I ,  > 1,. 
the axis of the alongshore streani is located c w r  the 
contincntal slope. a feature frequently observed in rriany 
western boundary currents including the Gulf Stream in 
the Sotith Atlantic Bight. A length scale for the offsliore 
dis lacement of the stream axis is given by L -- =e__ 
V 2rI,Ba, where a HII, is the bottom slope. This scali. 
is identical t o  the width of  the arrested topographic waic 
íCsanatiy i978 j provicieci rhat ,3 repiaces ,jk. where ií ii 

the wave!iunit>er of the aloiigshore periodic wind stress 
forcing. The length scüle rnay also be writtzn as  1, :: 
(2  1,1,)"-. which is consistent with the observed featiirc. 
that the flow movw offshorr: wiih increasing 1,. I f  1; . 
l b ,  tticii t he  length scale becon-ies l s  itcelf, which i.; tlii. 
naiural spatial seale arising frotn Ilq. (42).  

'l'tie tfepth-integrated vorticity budgci i h  ploticc! 1 1 1  

Iiig. 6 .  I t  contirms that the iiiaiii balance i \  herwctrl 
planctary vorticity atlveciiori and the sl«p-iiicluxd hoi- 
turn stress torque, while the torque ucting ori coiiat:iiil 
depth colurnns has (he sai-rie sign as planeiary \ w i i c i i ~  
advectiori over inost of the ilopc and chiitipcb s i p  O \ C ~  

deep \~.!ers, 'T..!: exp!2n:;ti~?!; f ~ ?  this i'; Ci!il~!c. 1;>1 

lows. 'Tlie velocity iricrcasei; froiri the westcrii h o u n d . ~ ~  ! 
io tlie strcaiii axis st) thni the voriiciiy iridui;ccl by iIic 

bottorri stres5 curl (or torque ori constant-dcpth wiitci 
colutnns) is negative o n  the cyclonic side of the s t i - ~ ~ l ~ i i  
mcl pusitive on ihe aniicyclonic side. 0 1 1  tlie othcr l i ~ i i ~ l .  






