2

4 ABSTRACT

resort in an arid transgressive dune system

5 Structures and infrastructures can modify aeolian sedimentary dynamics as has occurred in 6 the arid transgressive dunefield of Maspalomas (Gran Canaria, Canary Islands), where an aeolian 7 shadow zone has been formed leeward of a tourist resort (Playa del Inglés). The aim of this paper 8 is to examine and statistically analyse the influences of vegetation and topography on wind 9 flow across this shadow zone. An experiment was carried out in March 2017, collecting wind speed 10 and direction from 5 transects with anemometers at 0.40 m height. Simultaneously, a drone flight was 11 carried out, from which an orthophoto and digital elevation and surface models (DEM and DSM) 12 were obtained. Distance from the resort, and the presence of vegetation were found to influence 13 transects dominated by erosional processes. Transects that do not display erosional processes were 14 primarily affected by the presence of vegetation. The local wind field changes at a similar distance 15 across the transects downwind from the resorts indicating an acceleration or reattachment of the wind 16 at this distance downwind. The vegetation role in this aeolian shadow zone could be a key to the 17 future evolution of the area resulting in either further stabilization, or alternatively, the continued 18 deflation of the area.

Keywords: aeolian shadow zone, arid transgressive dune system, wind flow, dune vegetation,topography, human impact.

21

22 **1. Introduction**

Coastal dune systems have been significantly altered in the Anthropocene, which is characterized by the modification of natural processes due to human development (Crutzen and Stoermer, 2000), especially in recent decades (Nordstrom, 2004; Jackson and Nordstrom, 2011). Arid coastal dune systems of the Canary Islands constitute a clear example of this process. Their mild
climate has attracted millions of tourists over the last decades, and urban-tourist buildings around
these systems are producing significant environmental changes (Hernández-Calvento et al., 2014;
García-Romero et al., 2016; Hernández-Cordero et al., 2017).

30 The urban-tourist occupation induces alterations in the natural processes of coastal dune 31 systems, the greatest of which are related to geomorphological and vegetation changes (Cabrera-Vega 32 et al., 2013; Hernández-Calvento et al., 2014; García-Romero et al., 2016; Hernández-Cordero et al., 33 2017; García-Romero et al., 2019). When buildings or infrastructure are located near or inside dune 34 fields they act as rigid and impermeable structures that intrude upon and modify the regional wind 35 flow and local Internal Boundary Layer (IBL), and alter aeolian sediment dynamics (Nordstrom and 36 McCluskey, 1984; Gundlach and Siah, 1987; Nordstrom and Jackson, 1998; Tsoar and Blumberg, 37 2002; Wiedemann and Pickart, 2004). Although many natural and anthropogenic factors influence 38 dunefield mobility, the direct interaction between urbanization and physical processes remains largely 39 unexplored (Nordstrom, 1994; Jackson and Nordstrom, 2011). To address this lack of studies, 40 pioneering research on the direct impact of urban-tourist buildings on dune systems has been 41 developed in Maspalomas dune field (Gran Canaria) within the last few years, specifically on changes 42 to airflow dynamics. Hernández-Calvento et al. (2014) developed a simplified numerical wind model 43 based on a logarithmic wind velocity profile, and Smith et al. (2017) investigated regional airflow 44 modeling during successive stages of urbanization using Computational Fluid Dynamic (CFD) 45 modelling. These studies have allowed exploration of how the resort development on a high terrace 46 overlooking the dunefield has modified the aeolian sedimentary dynamics in this dune system 47 (Hernández-Calvento et al., 2014, Smith et al., 2017).

Regional disturbances of the air flow due to the development of the resorts gave rise to three geomorphological zones, namely, an acceleration zone south of the terrace, and two deceleration zones with different degrees of sedimentary stabilization and an increase in plant cover in the west (Hernández-Cordero et al., 2017). One of these deceleration zones was characterized by García52 Romero et al. (2019) based on its biogeomorphological processes (Figure 1, study plot). Two 53 processes were identified in the aeolian shadow zone (leeward of the terrace): a progressive 54 sedimentary deficit, and the increase in vegetation density. Also, three erosional aeolian landforms, 55 located at a distance of about 400-500 meters from the resort, are expanding. These erosional 56 landforms are the result of wind acceleration at a local scale resulting from the interaction of the 57 buildings on the airflow (García-Romero et al., 2017; 2019). Mir-Gual et al. (2015) speculated that 58 streets between the buildings on top of El Inglés terrace can act as wind corridors that channel the 59 airflow, locally increasing wind speed in the shadow zone and generating these three erosional 60 landforms. In fact, these processes do not occur in areas behind taller buildings (Mir-Gual et al., 61 2015). The increase in size and area covered by these erosional landforms, resulting in exhumed roots 62 of herbaceous plants, is a direct consequence of blocking sediment transport following the completion 63 of the urbanization on top of the terrace (García-Romero et al. 2019). As suggested, it is possible to 64 argue that a large deflation landform will dominate in this area in the future rather than stabilized 65 landforms (Hernández-Calvento et al., 2014; Hernández-Cordero et al., 2015), which could depend 66 on the functioning and evolution of shrub vegetation (García-Romero et al. 2019). New studies are 67 therefore required to characterize aeolian processes in this area at a local scale, including the 68 relationship between wind flow and environmental variables, such as topography and vegetation, as 69 well as the distances from the resort.

The aim of this study is to characterize and analyze aeolian processes in the aeolian shadow zone of the Playa del Inglés resort, and to relate local wind flows to topography, vegetation and distance to buildings. This follows previous suggestions by Garcia-Romero et al. (2019) who highlighted the need to acquire high temporal and spatial resolution wind records in this area to allow detailed quantification of airflow processes involved in the evolution of this erosional and/or stabilizing landscape, as well as to identify the reasons for the erosional landforms on similar distances downwind of the buildings.

78 **2. Material and methods**

79 2.1. Study area

80 The arid transgressive dune system of Maspalomas (360.9 ha.) is located on the south of Gran 81 Canaria (figure 1), on a fan-delta. Effective winds and the predominant aeolian sediment transport, 82 are ENE-WSW (Máyer-Suárez et al., 2012). The sediment enters the dune system by the eastern 83 beach (El Inglés) and is transported toward the southern beach (Maspalomas), where it returns to the 84 sea. A Pleistocene high wedge-shaped terrace (about 25 meters above sea level (m.a.s.l.)) on the 85 north-eastern boundary interacts with the wind flow and the sedimentary transport. Construction on 86 this terrace from the 1960s resulted in one of the largest tourist resorts in Spain (Domínguez-Mujica 87 et al., 2011). The urban-tourist resort has a strong impact on aeolian processes, altering the wind flow 88 and therefore the sediment transport, and generating different processes resulting in the three 89 geomorphological areas described in section 1 (Hernández-Calvento et al., 2014, Smith et al., 2017; 90 Hernández-Cordero et al., 2017). In this work we focus on the aeolian shadow zone, located leeward 91 of the tourist resort (see area C in the study plot, Figure 1).

Figure 1. Arid transgressive dune system of Maspalomas, with the study plot (red box), erosional
landforms (in red) and location of two wind sensors for determining local wind data. A (area of
airflow acceleration), B and C (areas of airflow deceleration), as defined by Hernández-Cordero et
al (2015).

- 97
- A study plot of 27.76 hectares was delimited leeward and westward of the tourist resort, where the data were collected (figure 2). The experiment was conducted on 24th and 25th March 2017, consisting of simultaneous capture of wind, topography and vegetation characteristics. Distances to the resort were measured using geographical information system (GIS) tools. Plant communities data inside the erosional landforms were collected to explain the role of vegetation in this zone.

103

Figure 2. Transects and wind sampling points on March 24th and 25th, 2017. Transects 1 and 5 were
outside the aeolian erosional landforms area, and transects 2, 3 and 4 were inside the area. The

semibuffer (red) with a radius of 20 meters indicates areas where other environmental variables(vegetation and topography) were measured.

108

109 2.2. Wind data

110 Airflow data were collected by 10 mobile wind stations with wireless communication. The 111 stations consisted of an anemometer-vane-data logger system and were deployed in towers at two 112 different heights: at 0.4 m height above the surface (data presented in this paper) and at 2.10 m above 113 the surface (figure 2). The inclusion of two wind stations per tower reduced to 5 the number of 114 locations that could be sampled simultaneously but provided synchronous information on the 115 dynamics of the local airflow at 2.10 m height, and on the dynamics of near-surface airflow (where 116 most sediment transport occurs). This allowed the possibility to know if these airflows are affected 117 by the resorts and at the same time also influenced by vegetation or topography. Sampling at all 118 locations was completed by moving four towers sequentially, while the fifth (control tower) remained 119 in a fixed position, outside the wind shadow zone (figure 1). A total of 5 transects were completed 120 from 28 sample points (figure 2) across areas with and without observed sediment erosion processes, 121 as well as near the vegetation, allowing complete cover of the shadow zone and ensuring that all data 122 could be collected within the same experiment. The transects were strategically located to measure 123 airflow around and inside erosional landforms, and in front and behind vegetation and in the 124 topographic lows and highs. The order to collect the data was from the simultaneous sample Run 1 125 (figure 5. wind sample points 1-4) closer to the control tower (figure 1), Run 2 (figure 5. wind sample 126 points 5-8), Run 3 (figure 5. wind sample points 9-12), Run 4 (figure 6. wind sample points 13-16), 127 Run 5 (figure 6. wind sample points 17-20), Run 6 (figure 6. wind sample points 21-24), to the Run 128 7 (figure 6. wind sample points 25-28). Additionally, wind data were collected every 10 minutes at a

station located on a beach kiosk, at 4 m height, on El Inglés beach (figure 1). Data were collected at 129 130 each location for 40 minutes. The regional wind direction varied during the data collection period. 131 Following previous studies (Delgado-Fernández et al., 2013), wind records were filtered by wind 132 direction, specifically between 40° and 70° on the 24th and between 70° and 100° on the 25th of 133 March. These ranges were calculated from the data collected at the El Inglés beach stations and the 134 control tower (Figure 3). This allowed the isolation of periods of time in all stations during which the 135 incident wind direction was similar, with changes in wind characteristics between stations due to a 136 range of other variables including topographic factors, vegetation, and distance to the resort.

Figure 3. Wind conditions at El Ingles beach weather station (Kiosk 8). The graph shows the entire
data set (every 10 minutes) recorded at the beach station during the experiment, the simultaneous
wind sampling with 4 towers (Runs 1-7), and the change of wind direction between both days
(black square).

142

137

143 In Table 1, standard deviations (m/s⁻¹) are shown to explain the errors of the mean wind speed

144 which are indicated in figures 5 and 6 in each run. In general, the standard deviations have a low

significance with respect to the wind speeds collected. The biggest standard deviations occured in

146 the first 2 runs, especially in the minutes 10, 15, 25, 30 and 40 when the wind speed is constantly

147 changing.

149Table 1. Standard deviations of the mean in every 5 minute timeslot (Figure 5 and 6) to show the150errors (m/s^{-1}) in the wind speeds analyzed.

Run	Wind sample point	wsmin5	wsmin10	wsmin15	wsmin20	wsmin25	wsmin30	wsmin35	wsmin40
	Control	0.335	0.375	0.521	0.327	0.746	0.399	0.295	0.218
	1	0.354	0.497	0.432	0.371	0.578	0.408	0.582	0.493
1	2	0.309	0.33	0.322	0.292	0.558	0.467	0.52	0.401
	3	0.353	0.325	0.3	0.372	0.519	0.491	0.514	0.408
	4	0.323	0.348	0.231	0.272	0.529	0.47	0.364	0.368
	Control	0.379	0.432	0.294	0.236	0.859	0.493	0.486	0.495
	5	0.467	0.455	0.326	0.371	0.081	0.361	0.243	0.299
2	6	0.434	0.411	0.343	0.142	0.189	0.208	0.177	0.072
	7	0.159	0.044	0.107	0.202	0.094	0.42	0.079	0.083
	8	0.456	0.419	0.398	0.23	0.27	0.182	0.245	0.144
	Control	0.217	0.421	0.389	0.316	0.247	0.262	0.326	0.283
	9	0.236	0.207	0.384	0.203	0.34	0.259	0.313	0.272
3	10	0.155	0.274	0.368	0.308	0.19	0.238	0.331	0.222
	11	0.178	0.222	0.4	0.365	0.244	0.208	0.305	0.267
	12	0.258	0.381	0.446	0.348	0.335	0.303	0.314	0.329
	Control	0.279	0.289	0.271	0.252	0.383	0.242	0.232	0.257
	13	0.309	0.317	0.338	0.236	0.592	0.269	0.266	0.348
4	14	0.308	0.31	0.297	0.324	0.398	0.365	0.231	0.304
	15	0.2	0.144	0.228	0.23	0.203	0.172	0.175	0.209
	16	0.339	0.426	0.261	0.259	0.38	0.201	0.216	0.208
	Control	0.232	0.148	0.228	0.251	0.223	0.224	0.245	0.220
	17	0.291	0.16	0.283	0.374	0.313	0.265	0.308	0.349
5	18	0.255	0.094	0.254	0.216	0.189	0.25	0.271	0.23
	19	0.143	0.168	0.194	0.202	0.221	0.178	0.207	0.136
	20	0.24	0.169	0.182	0.212	0.168	0.204	0.193	0.163
6	Control	0.261	0.256	0.257	0.264	0.337	0.290	0.351	0.437

	21	0.243	0.287	0.259	0.254	0.308	0.327	0.379	0.479
	22	0.216	0.194	0.189	0.228	0.342	0.359	0.348	0.394
	23	0.378	0.319	0.344	0.297	0.398	0.24	0.328	0.453
	24	0.168	0.182	0.197	0.195	0.259	0.193	0.31	0.38
	Control	0.253	0.243	0.247	0.233	0.380	0.348	0.421	0.337
	25	0.368	0.365	0.362	0.296	0.438	0.341	0.408	0.354
7	26	0.179	0.295	0.26	0.211	0.49	0.364	0.438	0.355
	27	0.221	0.206	0.24	0.242	0.414	0.324	0.486	0.362
	28	0.283	0.144	0.164	0.184	0.217	0.324	0.39	0.237

The anemometer-vane-data logger systems to collect the wind data (figure 4) are wireless devices (figure 4A) that measure wind characteristics (direction and speed). All instruments store measurements in their data loggers, which are synchronized with other devices. A software specifically designed for this application controls and executes measurement options from the base station (figure 4A and 4B). The base station also communicates wirelessly with the rest of the sensors and controls the correct functioning of the entire grid in real time.

158

160 Figure 4. Characteristics of the wind sensors. A. Base station with wireless link (Xbee) to connect

- 161 with the wind-vane + anemometer + data logger system. B. Software developed to check and
- 162 synchronize the wind sensors in an experiment with 10 wind sensor systems. The data of the second
- 163 wind sensor system (orange square) can be observed in the graphics.

165	Wind speed and direction were averaged every five minutes with the purpose of ensuring a
166	sufficient time of observation and to guarantee that the entire area was affected by the same wind
167	flow over a given period. Each average speed (m s ⁻¹) of 5 minutes duration in the towers (ASP) was
168	normalized with respect to the average corresponding to the control tower of the same simultaneous
169	sampling (ACT) (Delgado-Fernández et al., 2013). This normalization (WN) was carried out in order
170	to eliminate the differences in wind speed changes during the experiment due to changes in the
171	position of the wind sampling points to cover the transect completely, and thus be able to compare
172	the data taken in the same day (equation 1). Figures 5 and 6 show these results stored in a shapefile
173	with point geometry, where the average direction is shown by rotation and the speed normalized from
174	the size of the chosen symbology.

$$175 \quad WN = ASP/ACT \tag{1}$$

where WN is the wind speed normalized and shown in the results (figure 5 and 6, left), ASP is the wind speed taken at each sample point inside the study plot (figure 2), and ACP is the wind speed taken at the control tower (figure 1).

179 2.3. Topography and vegetation

For each wind sampling point, a semibuffer with a radius of 20 m distance was established oriented into the predominant wind direction (figure 2) through GIS vectors (polygon) digitalitation. This distance was defined by Alonso-Bilbao et al. (2007) as the distance along which the wind flow is influenced by a plant obstacle of the shrub species *Traganum moquinii* in Maspalomas. Topographic and vegetation variables were measured inside this semibuffer using a digital orthophoto (spatial resolution of 0.05 m) from a photogrammetric drone flight carried out on March 25th, 2017. 186 The point mesh was used to derive topographic information (in .las format). The precision of the data 187 was tested using ground data collected with a Leica TS06 total station with laser device. For the 188 topographic information, algorithms were applied to detect occlusions (Chang et al., 2008), deriving 189 a digital elevation model (DEM) and a digital surface model (DSM). The average degree of slope and 190 the average altitude of the surface inside the semibuffers were calculated using basic algorithms 191 implemented in GIS on the MDE. The vegetation variables calculated were the mean vegetation 192 density and the maximum vegetation height in each semibuffer. The first one was calculated applying 193 the procedure developed by Garcia-Romero et al. (2018), making use of the orthophoto obtained by 194 the drone flight. The maximum vegetation height was extracted from the MDS. The vegetation cover 195 shown in the figure 8 to relate distance to the urbanization and the distribution of the vegetation was 196 calculated through GIS reclassification using the same orthophoto, the areas every 100 m were 197 calculated through proximity GIS tools and the spatial analysis using overlay tools. The plant 198 communities data for the year 2003 were obtained from Hernández-Cordero et al. (2017). The 199 vegetation data of 2017 were obtained from Garcia-Romero et al. (2019). Both data were developed 200 through visual interpretation of digital orthophotos (using variables such as color, size, density, 201 texture and spatial pattern) and supported by field work.

202

203 Distance to the urbanization

Distances between individual wind stations and the resort were measured through algorithms implemented in GIS, calculating the closest distance between vector layers: a point geometries layer representing each wind station and a polygon geometry representing the resort.

207 2.4. Principal Components Analysis

208 Principal Component Analyses (PCA) was used to explore a first statistical approximation of 209 what variables measured in the semibuffers best represent each transect. A series of components and 210 the significance of the variables that best represent each transect were obtained. To achieve a more 211 robust analysis, we use the normalized winds shown in figure 5 and 6 (for the averages 20 and 30 212 minutes in transects 1-2 and 3-5 respectively) because these time periods show greater similarity to 213 the higher wind speeds recorded. In addition, the same analysis was also done with the average 214 centered around minutes 5 and 10 for transects 1-2 and 3-5 respectively, because they show greater 215 similarity than the previous ones, although with lower speeds, especially in transects 1 and 2. From 216 transect 1 to transect 4 (averages of minutes 20 and 30), only the first and second component were 217 obtained because they explain 84.9%, 88.41%, 90.6%, 97.58% respectively of the variance, except 218 transect 5 (average centered in minute 30) where the first component explains 96.61% of the variance. 219 In the same way, the first and second components explain the 81.9%, 88.5%, 85.7%, 92.7% of the 220 variance in the averages centered around minutes 10 and 5 (transects 1-4) and the first component in 221 the transect 5 (minute 5) explains 96.7% of the variance. Finally the relationship between the variable 222 with greater significance in the first component and the wind data (speed m s⁻¹), at normalized scale, 223 was analyzed. These relationships are shown by dispersion diagrams, adjusted with second order 224 polynomial except the distance to urbanization in transects 2 and 3 that were adjusted with third order 225 polynomial. These graphics illustrate the behavior (when and where) of the wind speed (acceleration 226 or deceleration) with respect to the environmental variables measured.

227

228 **3. Results and discussion**

229 *3.1.Wind data and aeolian processes*

230	Figure 5 (C, Run 1-3) shows the temporal variability of wind speeds (m s ⁻¹) collected at each
231	sampling location and in the control tower every 5 minutes on March 24th, 2017. In Run 1, wind
232	speeds at points 1 and 2 (closer to the resort) were slower than those recorded at points 3 and 4 (further
233	away from the resort). The trend showed some temporal variability: on average, centered around
234	minute 25, winds were similar at all points, while, on average, centered on minute 35, the areas closest
235	to the urbanization had higher wind speeds as a result of a change in wind direction closer to 70°
236	(Figure 3, Run 1), which produce more obliquity on wind toward the aeolian shadow zone, and the
237	wind can penetrate this area more directly and strongly. With respect to the control tower, the wind
238	speeds were significantly higher until the average of minute 25, where the shadow effect practically
239	disappeared. Also, in the average centered in minute 35 the sampling point closest to the urbanizations
240	(1) had a faster wind speed than the control tower, which could be explained because of a change in
241	wind direction and the possible urban obstacle that generated accelerations within the wind shadow
242	area. This behavior is similar to that explained previously, that is, the wind direction near to 70°
243	displays higher obliquity and accelerates the winds towards the area with the greater aeolian shadow
244	because they penetrate more directly. In terms of points 5 to 8 (Run 2), and similar to the previous
245	transect, locations furthest away from the resort (6 and 7) showed fast wind speeds compared to those
246	closest to the resort, with changes to this trend found in averages centered in the minutes 20, 25 and
247	35. The control tower presented significant differences in wind speeds (faster) with respect to the
248	sampling points. Finally, in terms of points 9 to 12 (Run 3), although the control tower collected faster
249	wind speeds, the difference was not significant. Wind speeds between sampling locations did not
250	show clear differences either, although point 35 (at a greater distance from the resort) recorded faster
251	wind speeds.

252 For the purpose of analyzing spatial patterns in wind data collected at all sampling locations, 253 (Figure 5, A and B), the average centered on minute 20 of all runs was selected because of relatively 254 strong wind speeds and because winds collected by the control tower were similar (black circle in the 255 wind time series of Figure 5, C). Also, because higher speeds can produce greater erosional processes 256 if this occurs inside the study plot. In general, winds accelerated away from the resort. However, in 257 transect 1 (figures 2 and 4, sampling points 1-7), winds were reduced in the last three sampling points, 258 coinciding with the presence of vegetation, especially shrubby plants (figure 7 profile of the transect 259 1). This increased the roughness of the terrain and reduced both wind speed and sedimentary transport 260 (Hesp, 1981; Moreno-Casasola, 1986). In transect 2 (figures 2 and 5 sample points 8-12), there was 261 only a negligible drop in the wind speed of the points located within an erosional landform, which 262 may be caused by the topographic features or by the roughness of the vegetation (Hesp, 1981; 263 Moreno-Casasola, 1986), especially and currently the herbaceous plant community Cyperus 264 *capitatus-Ononis serrata* (table 3). This also happened at the beginning of the transect, which can be 265 explained by the shadow effect of the resort (Hernández-Calvento et al., 2014, Smith et al., 2017).

266 267 Figure 5. (A) Position of the sampling points. (B) results of the normalized wind speed (ASP/ACT) 268 (minute 20, black circle of the Run's graphs) with respect to the control tower in each simultaneous 269 sampling. (C) Wind speeds (m s⁻¹), average every 5 minutes in the sampling points on March 24th, 270 2017 (right, Run 1-3).

272 In terms of the data obtained on March 25th, 2017 (Figure 6, C), a reduction in wind speed 273 was observed closest to the resort between the sampling points 13 and 16 (Run 4). Wind speeds 274 increased as the distance from the resort increased (e.g., point 16) and were higher than at the control tower. A similar trend is observed between points 17 and 20 (Run 5), although wind speeds at
locations farthest away from the resort did not exceed those recorded by the control tower.

There were no significant differences between points 21 and 24 in Run 6 (ranging from 3 to 4 m s⁻¹), although point 21, the closest to the resort, registered the highest wind speeds, except for the average centered on minute 30, when all points record similar speeds, but still exceeding those recorded by the control tower.

281 Finally, in Run 7, points 25, 26 and 27 showed similar wind speeds at all times. Point 28, at 282 a greater distance from the resort, registered higher wind speeds than the control tower. Similar to 283 Figure 5, normalized wind speeds were plotted at all instrument locations (Figure 6, A and B) for the 284 average centered on minute 30 (black circle in Figure 6, C) coinciding with the lowest differences in 285 wind speeds in the control tower. The wind, again, accelerated as it moved away from the resort, 286 regardless of the presence of erosional landforms. In transect 3 (figure 2 and 6, sampling points 13-287 18), a wind speed reduction was observed at the first two points (13 and 14). In relation to the first 288 one, this could be explained by the shadow effect of the resort, as detected by Hernández-Calvento et 289 al. (2014) and Smith et al. (2017). In relation to the second one, it could be due to the presence of 290 vegetation, as in the aforementioned case. From this location, the wind accelerated constantly, 291 although within the erosional landform there was a setback that could be explained by the topographic 292 features, which slowed the wind slightly because it is a trough blowout (Hesp, 2002), or by the 293 presence of vegetation due to the roughness of the terrain that can reduce the wind speed and sediment 294 transport (Mayaud et al., 2017). In the latest case, there was only a herbaceous plant community 295 (Cyperus capitatus-Ononis serrata, Table 3) between 2003 and 2017 according to Hernández-296 Cordero et al. (2017) and Garcia-Romero et al. (2019). Transect 4 (figure 2 and 6, sample points 19-297 24) had constant wind speeds likely regulated by vegetation (Mayaud et al, 2016), similar to transect 1 where there was shrubby vegetation at the beginning of the transect (Figure 6, profile of the transect
4). In this case, the vegetation detected inside the erosional landform was the herbaceous plant
community *Cyperus capitatus-Ononis serrata* and null or low vegetation (table 3).

There were no erosional landforms along transect 5 (figure 2 and 6, sample points 25-28). Wind speeds recorded at the first points along this transect were affected by shrubby vegetation (figure 7, A. profile of the transect 5), similar to transects 1 and 4. Wind speeds significantly accelerated at the last point coinciding with the erosional landform of transect 4.

307 Figure 6. (A) Position of the sampling points. (B) results of the normalized wind speed (*ASP/ACT*)

308 (minute 30, black circle of the Run's graphs) with respect to the control tower in each simultaneous

309 sampling. (C) Wind speeds (m s⁻¹) average every 5 minutes in the sampling points on March 25th,

310 2017 (right, Run 4-7).

311 3.2. PCA Analysis of Vegetation, Wind and Proximity to Infrastructure Data

Table 2 shows significant variables in the first and second components obtained from PCA 312 313 analyses in each transect. Transect 1 was characterized by variables related to vegetation. Normalized 314 wind data at averages centered in the minutes 20 and 10 (transect 1, day 24th) correlated well with vegetation density ($R^2 = 0.8774$ and 0.777). Although wind is a multifactorial variable, the graph 315 shows that as vegetation density increased, the wind speed decreased. In transect 2 (day 24th), the 316 317 averages centered in minutes 20 and 10 showed a higher correlation with the mean slope of the 318 sampling point taken from the DEM (i.e., with a topographic variable) ($R^2 = 0.9184$ and 0.8393). 319 According to the dispersion graphic (figure 7, B), the steeper the slope, the lower the wind speed. 320 However, slopes steeper than 5° led to wind acceleration as a result of speed up processes (Garés and 321 Pease, 2015). Transect 3 (day 25th), averages centered in the minutes 30 and 5 were influenced by all 322 variables, although winds were best correlated with slopes ($R^2=0.753$ and 0.7382). Interestingly, wind 323 speed decreased with increasing slopes on this occasion, with maximum wind acceleration coinciding with average slopes of 5°. In the two last cases (transects 2 and 3), the wind behavior is not 324 325 aerodynamic related to the mean slope. In transect 2, maybe the answer lies in the next significant 326 variables in the first principal components such as the distance to the buildings, or the elevation, or 327 the combination of both, because in these scatter diagrams, an increase in wind speed is observed. 328 For example in transect 3, the slope also does not show an aerodynamic behavior, because the speed 329 is reduced when the slope increases, but maybe the answer is in the second variable of the first 330 principal component (vegetation density), because in this case, maybe the wind at 40 cm height it is 331 being slowed down by the vegetation regardless of whether the slope increases, the scatter diagram 332 is similar to the mean slope. Transect 4 (day 25th), the averages centered in the minutes 30 and 5 were 333 influenced mainly by distance from the resort ($R^2 = 0.8132$ and 0.6718), with increasing wind speeds 334 correlated with increasing distance. The elevation also shows a similar behavior increasing the wind 335 speed, and finally the vegetation density role tends to cushion the wind speed. Finally, transect 5 (day 336 25^{th}) the averages centered in the minutes 30 and 5 were also characterized by altitude (R²= 0.9983) 337 and 0.999), with more wind acceleration at higher elevations. In the scatter diagrams it is possible to 338 observe that as the elevation increases and also the slope increases, the wind speed increases. 339 However, the vegetation density produces a deceleration of the wind if it increases. This last transect, 340 perhaps the least reliable due to the few wind sample points, can affect the statistics, and results in 341 an incomplete understanding of this area of the aeolian shadow zone.

342

Table 2. Results of the Principal Components Analysis in each transect using all measured variables

and normalized wind speed. Units shown in transect 1.

Variables	Principal Con (minutes 20	nponents and 30)	Principal Components (minutes 10 and 5)		
Transect 1 (minutes 20 and 10)	1	2	1	2	
Mean vegetation density (normalized between 0-1)*	-0.907	0.194	-0.898		
Max. Vegetation height (m)*	-0.814	0.345	0.856		
Distance to the urbanization (m)*	0.733	-0.229	-0.801	-0.346	
Elevation (m.a.s.l.)	0.358	-0.862	0.333	-0.901	
Slope (degree)	0.567	0.711	0.664	0.662	
Transect 2 (minutes 20 and 10)	1	2	1	2	
Slope*	0.954		0.892	0.359	
Distance to the urbanization*	0.915		0.844	0.467	
Elevation*	0.803	0.1	0.933		
Max. Vegetation height	-0.693	0.833	-0.521	-0.893	
Mean Vegetation density	-0.523	0.712	-0.630	-0.772	
Transect 3 (minutes 30 and 5)	1	2	1	2	
Slope*	-0.925	0.27	0.915		

Mean vegetation density*	-0.811	0.33	-0.892	0.351
Distance to the urbanization*	0.745	0.661	0.765	0.643
Max. Vegetation height	-0.741	0.398	0.439	-0.793
Elevation	0.652	0.73	0.690	0.707
Transect 4 (minutes 30 and 5)	1	2	1	2
Distance to the urbanization*	0.923	0.128	0.899	
Mean vegetation density*	-0.878	-0.363	-0.857	-0.453
Elevation*	0.867	-0.448	0.853	
Slope	-0.129	0.968	-0.651	0.745
Max. Vegetation height	-0.201	0.962	0.670	-0.713
Transect 5 (minutes 30 and 5)	1	2	1	2
Elevation*	0.969		0.968	
Mean vegetation density*	-0.936		-0.933	
Slope*	0.844		0.891	
Max. Vegetation height	-0.878		0.871	
Distance to the urbanization	0.839		0.831	

* Variables showed in the scatter diagrams of the figure 7

345

346 Overall, transects with no erosional landforms presented a greater influence of vegetation 347 variables on wind speed reduction. In transect 5, elevation had the greatest significant correlation, 348 followed by plant density. In general, winds across transects with erosional landforms (2, 3 and 4) 349 were more affected by variables related to topography. Distance to the resort was significant in all 350 transects, which reinforces the hypothesis that, although the wind speed in this area has been reduced 351 by 50% by urbanizations (Hernández-Calvento et al. al., 2014), there are local wind accelerations 352 (Smith et al., 2017) that result in the formation of erosional landforms. However, this variable in 353 transects 2 and 3 is adjusted with a third polynomial order due to deceleration inside the aeolian 354 erosional landforms 2 and 3. This pattern has also been observed in parabolic dunes and trough 355 blowouts (Hesp and Walker, 2013; Delgado-Fernandez et al., 2018) because under oblique winds, the 356 topography of these aeolian erosional landforms is highly efficient at steering the incoming winds 357 such as the airflow inside the landform becomes parallel to its main axis (Byrne, 1997; Hansen et al., 358 2009; Hesp & Pringle, 2001; Pease & Gares, 2013). Transect 3 could also be explained by the 359 topographic features and the roughness of the vegetation (Hesp, 1981; Moreno-Casasola, 1986;

360	Mayaud et al., 2016)., In both cases (transects 2 and 3), in the last point of the transect (the end of the
361	erosional landform to the SSW), winds are accelerated facilitating erosion because the airflow is
362	accelerated along the basin toward the depositional lobe, with wind speeds at the crest in this location
363	being roughly double of those measured in the basin (cf. Delgado-Fernandez et al., 2018). These
364	landforms appear at a similar distance from the urbanization (400-500 meters) (García-Romero et al.,
365	2017), suggesting that this is the distance at which wind speeds recover after being decelerated by the
366	urbanization.

369 Figure 7. Profiles of the transects studied (DEM and DSM) and the wind sampling points locations

370 (A). Scatter diagrams of the most significant variables obtained by the Principal Components

371 Analysis (B).

- 372 *3.3. Vegetation role in the aeolian shadow zone*
- 373 *3.3.1.* Distribution of the vegetation cover in the aeolian shadow zone

374 Increases in vegetation cover were classified into 100 m buffers from buildings (to the northwest of 375 the study site, Figure 8). This allowed exploration of the effect of human activities on vegetation 376 based on the distances to buildings. The vegetation cover continually increases to the southwest from 377 the edge of the buildings, to 400 meters distance. A relationship ($R^2 = 0.7616$) can be observed when 378 only the buildings are considered (figure 8). The results also provide information about the changes 379 experienced by the vegetation in the aeolian shadow area, related to the urban-tourist infrastructures. 380 Actions such as the existence of gardens and its irrigation do occur, as has happened in Argentina or 381 Germany (Grunewald, 2006; Grunewald and Schubert, 2007; Faggi and Dadon, 2010, 2011). 382 However, in the analyses carried out, around 400 meters from the urban-touristic buildings is where 383 less vegetation is concentrated, coinciding with the appearance of the erosional landforms. This is the 384 sector that has experienced the greatest erosion since 1987 (García-Romero et al., 2019). It also 385 coincides with the distance proposed in figure 6 where the wind data analyses indicated that 386 acceleration processes were detected. This reason could be conditioning the non-colonization of 387 plants in this area, and not the presence or absence of water. We must consider that one of the plant 388 communities that have experienced a greater increase in surface in the areas of greater volume of sand 389 is Cyperus capitatus-Ononis tournefortii (table 3). It is a strictly psammophilous plant community, 390 so it does not need the existence of a water table (Hernández-Cordero et al., 2015, 2017). In this sense,

- 391 the hypothesis presented in the previous section is also reinforced, thus justifying an experiment with
- 392 empirical wind data (speed and direction) and maybe a model derived from them.

Figure 8. Distribution of the vegetation cover from the urban-tourist buildings to to the southwest of the study area. The relationship between vegetation cover (%) and distance to the urbanization (m) is showed with polynomial (degree 2).

393

398 *3.3.2.* Plant communities and their role of the aeolian erosional landforms

399 Table 3 shows the percent change in plant communities between 2003 and 2017 inside the 400 aeolian erosional landforms area in the study area. In 2003, the erosional landform detected in transect 401 2 (figure 2) was covered by a community of herbaceous plants Cyperus capitatus-Ononis serrata 402 (79.95%). Other areas where the vegetation was not detected were classified as null or low vegetation 403 cover (20.04%). In 2017, the plant community Cyperus capitatus-Ononis serrata covers 100% of the 404 erosional landform. The only community detected in the erosional landform located in transect 3 405 (figure 2) was also the herbaceous Cyperus capitatus-Ononis serrata, both in 2003 and 2017. 44.92% 406 of the aeolian erosional landform in transect 4 (figure 2) was covered by Cyperus capitatus-Ononis 407 serrata community in 2003, with an increase to 81.03% in 2017. The rest of erosional landform 4

408 was not occupied by vegetation in 2003 (55.08%) and in 2017 (18.97%). All erosional landforms 409 were detected in 2003 (García-Romero et al., 2017) but they have evolved in different ways 410 depending on the vegetation cover. Landforms in transects 2 and 4 showed a greater increase in area 411 and eroded volume (García -Romero et al., 2019) because a portion of their surface was not covered 412 by vegetation in 2003 (Table 3). This lack of vegetation favored wind acceleration and sediment 413 erosion. Landform 3 showed greater stability since 2013 due to the presence of vegetation, which 414 reduced wind speeds and prevented strong erosion (Hesp, 1981; Moreno-Casasola, 1986). Note that 415 all landforms showed visible exhumated roots of *Cyperus capitatus-Ononis serrata* (psammophilous 416 perennial rhizomatous forb; psammophilous annual forb) (García-Romero et al., 2019). This is a 417 herbaceous species common in the dune systems of the Canary Islands (Del Arco Aguilar et al., 2010) 418 and a pioneer plant in the colonization of semi-stabilized dunes in the Canaries (Hernández-Cordero 419 et al., 2015), and hence successful at growing in locations with strong sediment transport such as the 420 ones studied here.

421

Table 3. Changes of the plant communities between 2003 and 2017 inside the aeolian erosionallandforms detected in the study area.

Transect/Erosional	Diant communities	%		
landform	Plant communities	2003	2017	
2	C. Cyperus capitatus-Ononis serrata	79.95	100	
2	Null or low vegetation	20.04	0	
3	C. Cyperus capitatus-Ononis serrata	100	100	
4	C. Cyperus capitatus-Ononis serrata	44.92	81.03	
4	Null or low vegetation	55.08	18.97	

In general, the results indicate that the urban-tourist buildings play a predominant role influenceing wind speed patterns over the shadow zone, and that influence is less when incident winds are not across the resort but oblique to it. However, when incident winds flow across the urban-touristic

428 center, an acceleration is detected as the wind moves away from the urbanizations, coinciding with 429 the aeolian erosional landforms detected and with the area where the buildings have lower heights 430 (figure 9). Slower wind speeds in the shadow zone lead to a more rapid vegetation colonization and 431 growth, which in turns plays an important role in decreasing wind speeds and where aeolian erosional 432 landforms are not detected currently.

Figure 9. General scheme of the wind behavior in the aeolian shadow zone crossing the urban-tourist
buildings. The thicker the black arrows across the study site (boxed in red) the greater the wind speed.

436

437 **4.** Conclusions

This work presents preliminary results from experiments carried out on March 24th and 25th, 2017 to study airflow dynamics in an aeolian shadow zone developed as a result of a tourist development in an arid transgressive coastal dune system. Results indicate that: (i) the regional wind direction influences the degree of wind speed change across the study area such that when winds blow 442 across the urban development the wind speed is more affected than when winds blow at an oblique 443 angle or from outside the urbanization; (ii) in general, tourist infrastructure moderately (transect 3) to 444 strongly (transects 4 and 2) influences wind speeds and directions in the study area with PCA 445 correlations ranging from 0.7 to 0.9; (iii) vegetation cover and height have a significant influence in 446 some of the transects (transects 1 and 5) and modify the flow fields accordingly. As vegetation density 447 increased, the wind speed decreased.

448 In this aeolian shadow zone, a suite of erosional landforms is present, located at a similar 449 distance from the urban-touristic infrastructure. This could indicate an acceleration or reattachment 450 of the wind at this distance downwind. The simultaneous collection of wind data, topography and 451 vegetation, as well as distances from the urbanizations and the Principal Components Analysis, 452 indicate that the surface wind (at 0.40 m height) accelerates as it moves downwind from the 453 urbanization, with topography and vegetation introducing variations in the local wind speed. These 454 data provide a valuable field data set for validating future numerical modelling using Computational 455 Fluid Dynamics (CFD) tools, which will allow a greater statistical and spatial analyses of wind speed, 456 direction and turbulence, and to better elucidate the reasons for the presence of erosional landforms 457 in this area.

The role that the community of herbaceous plants *Cyperus capitatus-Ononis serrata* is playing in this aeolian shadow zone could be a key to the future evolution of this area. So far we know that this community is growing spatially in those places where erosion is taking place. If this continues into the future, this community will possibly minimize the role that these erosional processes may have (cf. Hernández-Calvento et al.,2014; Hernández-Cordero et al., 2015).

463

464 Acknowledgements

465	This work is a contribution of projects CSO2013-43256-R and CSO2016-79673-R (Spanish
466	National R + D + i Plan) co-financed with ERDF funds and a PhD contract of the Canary Islands
467	Agency for Research, Innovation and Information Society and by the European Social Fund (ESF).
468	Also thanks for the help in the fieldwork to Adrián López Medina, Antonio Ramos Suárez and
469	Carolina Peña Alonso. This article is a publication of the Unidad Océano y Clima of the Universidad
470	de Las Palmas de Gran Canaria, a R&D&i CSIC-associate unit.
471	
472	References
473	Alonso-Bilbao, I., Sánchez-Pérez, I., Rodríguez, I., Pejenaute-Alemán, I., Hernández-Calvento. L.,
474	Menéndez-González, I., Hernández-Cordero, A., Pérez-Chacón, E., 2007. Aeolian dynamic changes
475	due to the obstacle generated by Traganum moquinii. Conferencia Internacional sobre
476	Restauración y Gestión de las Dunas Costeras (ICCD 2007). Santander, Spain, pp. 11-18.
477	
478	Byrne, M. L. 1997. Seasonal sand transport through a trough blowout at Pinery Provincial Park,
479	Ontario. Canadian Journal of Earth Sciences, 34(11), 1460–1466. https://doi.org/10.1139/e17-118
480	
481	Cabrera-Vega, L.L., Cruz-Avero, N., Hernández-Calvento, L., Hernández-Cordero, A.I.,
482	Fernández-Cabrera, E., 2013. Morphological changes in dunes as indicator of anthropogenic
483	interferences in arid dune fields. Journal of Coastal Research, SI 65, 1271-1276.
484	
485	Chang, Y.C., Habib, A.F., Lee, D. C., Yom, J.H., 2008. Automatic classification of lidar data into
486	ground and non-ground points. Paper presented at the ISPRS Congress Beijing 2008, Beijing, China.
487	

488	Crutzen, P.J., Stoermer, E.F., 2000. The "Anthropocene". Global Change Newsletter, 41, 17-18.
489	Domínguez-Mujica, J., González-Pérez, J. y Parreño Castellano, J.M. (2011): Tourism and human
490	mobility in Spanish Archipelagos. Annals of Tourism Research, 38, 586-606.
491	
492	Del Arco Aguilar, M.J., González-González, R., Garzón-Machado, V., Pizarro-Hernández, B., 2010.
493	Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodiversity
494	and Conservation 19, 3089–3140
495	
496	Delgado-Fernandez, I., Jackson, D. W., Cooper, J. A. G., Baas, A. C., Beyers, J. H., Lynch, K., 2013.
497	Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-
498	dune system. Journal of Geophysical Research: Earth Surface, 118(2), 706-721.
499	
500	Delgado-Fernandez, I., Smyth, T. A. G., Jackson, D. W. T., Smith, A. B., Davidson-Arnott, R. G.
501	D., 2018. Event-scale dynamics of a parabolic dune and its relevance for mesoscale evolution.
502	Journal of Geophysical Research: Earth Surface, 123. https://doi.org/10.1029/2017JF004370
503	
504	Domínguez-Mujica, J., González-Pérez, J., Parreño Castellano, J.M., 2011. Tourism and human
505	mobility in Spanish Archipelagos. Annals of Tourism Research, 38, 586-606.
506	
507	Faggi AM, Dadon J. 2010. Vegetation changes associated to coastal touristurbanizations.
508	Multequina, 19: 53–76.
509	

510 Faggi AM, Dadon J. 2011. Temporal and spatial changes in plant dune diversity in urban resorts.

511 Journal of Coastal Conservervation, 15: 585–594.

512

513 García-Romero, L., Hernández-Cordero, A.I., Fernández-Cabrera, E., Peña-Alonso, C., Hernández-

514 Calvento, L., Pérez-Chacón, E., 2016. Urban-touristic impacts on the aeolian sedimentary systems of

the Canary Islands: conflict between development and conservation. *Island Studies Journal*, 11(1),
91-112.

517

518 García-Romero, L., Hernández-Cordero, A.I., Delgado-Fernández, I., Hesp, P.A., Hernández-

519 Calvento, L., Viera-Pérez, M., 2017. Evolución reciente de geoformas erosivas inducidas por impacto

520 urbano turístico en el interior de un sistema de dunas transgresivo árido (Maspalomas, islas Canarias).

521 *Geotemas*, 17, 263-266.

522

523 García-Romero, L., Hernández-Cordero, A. I., Hernández-Calvento, L., Pérez-Chacón, E., González

524 López-Valcarcel, B., 2018. Procedure to automate the classification and mapping of the vegetation

525 density in arid aeolian sedimentary systems. Progress in Physical Geography: Earth and

526 Environment, 42 (3), 330–351. https://doi.org/10.1177/0309133318776497

527

528 Garcia-Romero, L., Delgado-Fernández, I., Hesp, P. A., Hernández-Calvento, L., Hernández-

529 Cordero, A.I., Viera-Pérez, M., 2019. Biogeomorphological processes in an arid transgressive

530 dunefield as indicators of human impact by urbanization. Science of the Total Environment, 650,

531 73-86. https://doi.org/10.1016/j.scitotenv.2018.08.429

533	Garés, P.A.	, Pease, P., 201	5. Influence	of topography	on wind speed	l over a coastal	dune and blowout
-----	-------------	------------------	--------------	---------------	---------------	------------------	------------------

- 534 system at Jockey's Ridge, NC, USA. *Earth Surface Processes and Landforms*, 40(7), 853-863.
- 535
- 536 Grunewald R. 2006. Assessment of damages from recreational activities oncoastal dunes of the
 537 Southern Baltic sea. Journal of Coastal Research 22 (5): 1145–1157.
- 538
- 539 Grunewald R, Schubert H. 2007. The definition of a new plant diversity index "H'idune" for assessing
- human damage on coastal dunes—derived from theShannon index of entropy H'1. Ecological
 indicator 7: 1–21.
- 542
- 543 Gundlach, E.R., Siah, S.J., 1987. Cause and Elimination of the Deflation Zones Along the Atlantic
 544 City (New Jersey) Shoreline. Coastal Zone'87, 1357-69.
- 545
- 546 Hansen, E., DeVries-Zimmerman, S., van Dijk, D., Yurk, B. 2009. Patterns of wind flow and aeolian
- 547 deposition on a parabolic dune on the southeastern shore of Lake Michigan. Geomorphology, 105(1-
- 548 2), 147–157. https://doi.org/10.1016/j.geomorph.2007.12.012
- 549
- 550 Hernández-Calvento, L., Jackson, D.W.T., Medina, R., Hernández-Cordero, A.I., Cruz, N., Requejo,
- 551 S., 2014. Downwind effects on an arid dunefield from an evolving urbanised area. *Aeolian Research*,
- 552 15, 301-309.
- 553

554	Hernández-Cordero, A.I., Pérez-Chacón Espino, E., Hernández-Calvento, L., 2015. Vegetation,
555	distance to the coast, and aeolian geomorphic processes and landforms in a transgressive arid
556	coastal dune system. Physical Geography, 36 (1), 60-83.
557	
558	Hernández-Cordero, A.I., Hernández-Calvento, L., Pérez-Chacón Espino, E., 2017. Vegetation
559	changes as an indicator of impact from tourist development in an arid transgressive coastal dune field.
560	Land Use Policy, 64, 479-491.
561	
562	Hesp, P.A., 1981. The formation of shadow dunes. Journal of sedimentary and petrology, 51 (1),
563	101-112.
564	
565	Hesp, P. A., Pringle, A. 2001. Wind flow and topographic steering within a trough blowout. Journal
566	of Coastal Research, 34, 597-601. http://www.jstor.org/stable/25736325
567	
568	Hesp, P.A., 2002. Foredunes and blowout: initiation, geomorphology and dynamics. Geomorphology,
569	48, 245-268.
570	
571	Hesp, P. A., Walker, I. J., 2013. Aeolian environments: Coastal dunes. In J. Shroder, N. Lancaster,
572	D. J. Sherman, & A. C. W. Baas (Eds.), Aeolian geomorphology. Treatise on geomorphology (Vol.
573	11, pp. 328–355). San Diego, CA: Academic Press
574	

- 575 Jackson, M.L., Nordstrom, K.F., 2011. Aeolian sediment transport and landforms in managed coastal
- systems: a review. Aeolian Research, 3 (2), 181-196. 576

578	Mayaud, J. R., Wiggs, G. F., Bailey, R. M., 2016. Characterizing turbulent wind flow around dryland
579	vegetation. Earth surface processes and landforms 41(10), 1421-1436.
580	
581	Mayaud, J. R., Wiggs, G. F., Bailey, R. M., 2017. A field-based parameterization of wind flow
582	recovery in the lee of dryland plants. Earth Surface Processes and Landforms 42(2), 378-386.
583	
584	Moreno-Casasola, P., 1986. Sand movement as a factor in the distribution of plant communities in a
585	coastal dune system. Vegetatio, 65, 67-76.
586	
587	Nordstrom, K.F., McCluskey, J.M., 1984. Considerations for control of house construction in coastal
588	dunes. Coastal Management, 12, 385-402.
589	
590	Nordstrom, K.F., Jackson, N.L., 1998. Aeolian transport of sediment on a beach during and after
591	rainfall, Wildwood, NJ, USA. Geomorphology, 22, 151-157.
592	
593	Nordstrom, K.F., 1994. Beaches and dunes of human-anthropized coasts. Progress in Physical
594	<i>Geography</i> , 18 (4), 497–516.
595	
596	Nordstrom, K.F., 2004. Beaches and dunes of developed coasts. Cambridge University Press.
597	

598	Pease, P., Gares, P. 2013. The influence of topography and approach angles on local deflections of
599	airflow within a coastal blowout. Earth Surface Processes and Landforms, 38(10), 1160-1169.
600	https://doi.org/10.1002/esp.3407
601	
602	Smith, A.B., Jackson, D.W.T., Cooper, J.A.G., Hernández-Calvento, L., 2017. Quantifying the Role
603	of Urbanization on Airflow Perturbations and Dunefield Evolution. Earth's Future, 5 (5): 520-539.
604	
605	Tsoar, H., Blumberg, D.G., 2002. Formation of parabolic dunes from barchan and transverse dunes
606	along Israel's Mediterranean coast. Earth Surfuce Processes and Landforms, 27, 1147-1161.
607	
608	Wiedemann, A.M., Pickart, A.J., 2004. Temperate zone coastal dunes. In: Martinez, M.L., Psuty, N.P.
609	(Eds.), Coastal dunes. Ecology and Conservation. Ecological Studies, 171. Springer, pp. 54-65.