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Abstract—One of the biggest challenges in on-line signature 
verification is the detection of malicious and skilled attacks. This 
paper proposes a new conceivable attack for an on-line signature 
biometric scheme. The attack consists in interpolating a smoothed 
8-connected version of the forged signature and selecting the most
relevant salient points, skipping those that belong to tremor or
indecisive movements due to the faking procedure. The Sigma-
Lognormal model is then used to synthetize the new on-line
signature in the hope of obtaining an improved imitation. The 
experiments aim to prove that the False Acceptance Ratio (FAR)
is significantly worsened with the Biosecure-SONOFF public on-
line signature database. These results are expected to elicit new
automatic signature verifiers able to cope with this new kind of
attack.
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I. INTRODUCTION

Biometric systems are extensively used to identify people 
in legal and administrative tasks [1]. They are usually referred 
to as Pattern Identification systems, in which physiological or 
behavioral traits from a person are registered during the 
enrollment stage and stored as templates in a database for future 
comparisons [2] 

The accuracy and reliability of these systems have decisive 
security implications. Indeed, the detection of forged signatures 
and the development of countermeasures have attracted the 
interest of academia and industry during the last decades [1]. 
However, these systems are subject to attacks in any of their 
stages. 

In the case of on-line signature-based biometric systems, an 
attack can be performed on the input sensor, the feature 
extractor, the matcher, the decision maker or the database. The 
attack can be directed at any one of these components or any 
communication between them. 

Recent technological developments have improved the 
capabilities of sensor devices, and they can be seen in the 
growth of tablets, phablets or smart phones such as the Wacom 
Intuos, Cintiq or iPads among others. Nevertheless, their 
computational and algorithmic capabilities have brought some 
downsides in security issues which increase the possibilities of 

biometric attacks at the sensor level. In fact, it is possible to 
introduce a program that modifies the input signature to delude 
the verifier. This paper focuses on the proposal of an attack to 
be implemented in a smart sensor for on-line signature 
verification. 

Our study specifically looks at a conceivable novel attack 
at the sensor level, which consists in modifying a counterfeited 
signature in the hope of building up a more plausible genuine 
sample. 

Some hypotheses are from neuroscience are borrowed in 
order to design dexterously skilled forgery signatures. The 
kinematic theory of rapid human movements and its associated 
Sigma-Lognormal model [3] are used for this purpose. This 
theory essentially models the velocity profile of a rapid 
movement, like a signature, as a weighted vector sum of 
delayed lognormals. Each of these lognormals represents a 
stroke. The overlapping of these lognormals can produce a 
complex trajectory from a hidden trajectory action plan. Such 
an action plan consists of a sequence of virtual target points 
linked together by circular arcs. Each arc is produced as a 
response of the motor system to a set of rhythmic commands 
from the cerebellum. The overlapping of these circular arcs 
along time result in a complex movement. One of the 
advantages of this model is that it considers physical body 
features such as the neuromuscular system response to the 
production of a signature.  

It is possible to find in the literature applications of the 
Sigma-Lognormal model to model signatures. For example, in 
[4] the lognormal parameters are combined with classical
parameters to improve a signature-based biometric system.
They are also used to generate duplicated signatures to improve
the training [5] or the improvement of forgery detection [6]. It
has also been used to synthesize Western [7][8][9][10] and
Indian [11][12] signatures.

The Sigma-Lognormal model has been used in the area of 
security and specifically in [13] to synthesize more skillful on-
line forgeries. It allows more challenging data sets to be 
generated for training and testing purposes. In this study, the 
improved forgeries are produced by replacing their velocity 
profile with others closer to a genuine signature. It is carried out 
by fitting a sum of lognormals to the trajectory and resampling 
the trajectory with the new synthetic velocity profile. As a 
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result, the obtained velocity profile looks more genuine but the 
trajectory remains unchanged. That is, the trajectory keeps the 
characteristic doubtful trajectory of a forgery. 

Our procedure is a step further from [13]. In this paper, if a 
skilled forgery is rejected by the system, the rejected signature 
is smoothed and linearly interpolated. The salient points of the 
signature are estimated along with their associated virtual target 
points. At this point, time stamps are assigned to the salient 
points, the Sigma-Lognormal parameters are calculated and the 
signature is reconstructed. This procedure is summarized in 
Figure 1. 

The outline of the paper is as follows: Section 2 describes 
the basis of the Sigma-Lognormal model. Section 3 is dedicated 
to the salient point’s estimation while Section 4 develops the 
signature reconstruction procedure. The experimental results 
are given in Section 5 while Section 6 closes the paper with 
conclusions and discussion.  

II. SIGMALOGNORMAL MODEL 
The new signature is obtained from the Kinematic theory of 
rapid movements. It claims that a human being performs its  
movements as an overlapped sum of 𝑁 strokes in which the 
velocity profile 𝑣௝ሺ𝑡ሻ  of the 𝑗௧௛  stroke can be modeled as a 
lognormal [3]: 
 

𝑣௝ ቀ𝑡; 𝑡଴௝, 𝜇୨, 𝜎୨
ଶቁ ൌ 𝐷௝Λ ቀt; 𝑡଴௝, 𝜇௝, 𝜎௝

ଶቁ ൌ

ൌ
𝐷௝

𝜎௝√2𝜋ሺ𝑡 െ 𝑡଴௝ሻ
𝑒𝑥𝑝 ቐെ

ቂ𝑙𝑛 ቀ𝑡 െ 𝑡଴௝ቁ െ 𝜇௝ቃ
ଶ

2𝜎௝
ଶ ቑ 

(1)

where 𝑡 is time, 𝑡଴௝ the time of stroke command occurrence, 𝐷௝ 
the amplitude of the stroke, 𝜇௝  the stroke delay and 𝜎௝  the 
stroke response time, both on a logarithmic time scale. 

The overlapping of these lognormals can produce a complex 
trajectory from a hidden trajectory action plan. Such an action 
plan consists of a sequence of virtual target points linked 
together by circular arcs. Each arc is produced as a response of 
the motor system to a set of rhythmic commands from the 
cerebellum. The overlapping of these movements, in time, 
results as:  

𝑣⃗ሺtሻ ൌ ൤
𝑣௫ሺ𝑡ሻ
𝑣௬ሺ𝑡ሻ൨ ൌ ෍ 𝐷௝ ቈ

𝑐𝑜𝑠𝜙௝ሺ𝑡ሻ
𝑠𝑖𝑛𝜙௝ሺ𝑡ሻ቉ 𝐷௝Λ ቀt; 𝑡଴௝, 𝜇௝, 𝜎௝

ଶቁ
ே

௝ୀଵ

(2)

where 𝑁 is the number of lognormal strokes and 𝜙௝ሺ𝑡ሻ is the 
angular position. 

𝜙௝ሺ𝑡ሻ ൌ 𝜃௦௝ ൅
𝜃௘௝ െ 𝜃௦௝

2
቎1 ൅ 𝑒𝑟𝑓 ቌ

𝑙𝑛 ቀ𝑡 െ 𝑡଴௝ቁ െ 𝜇௝

𝜎௝√2
ቍ቏ (3)

𝜃௘௝ and 𝜃௦௝ being the starting angle and the ending angle of the 
arc that links the two virtual target points that belong to the 𝑗௧௛ 
stroke. Note that this formula describes the sweeping from  𝜃௦௝ 
to 𝜃௘௝ in a lognormal timing.  Finally, the trajectory is worked 
out as: 

𝑠ሺtሻ ൌ ൤𝑥௥ሺ𝑡ሻ
𝑦௥ሺ𝑡ሻ൨ ൌ ෍

𝐷௝

𝜃௘௝ െ 𝜃௦௝
ቈ

𝑠𝑖𝑛𝜙௝ሺ𝑡ሻ െ 𝑠𝑖𝑛𝜃௦௝

െ𝑐𝑜𝑠𝜙௝ሺ𝑡ሻ ൅ 𝑐𝑜𝑠𝜃௦௝
቉

ே

௝ୀଵ

(4)

This formula converts angles into circular arcs and overlaps 
them. Specifically, the 𝑗௧௛ term of the summation represents the 
arc of the circumference that links the virtual target points 
𝑡𝑝௝ିଵ and 𝑡𝑝௝. The radius of such circumference is 𝐷௝/ ቀ𝜃௘௝ െ

𝜃௦௝ቁ and 𝐷௝ represents the arc length. In this case, the virtual 
target points are defined by: 

𝑡𝑝௝ ൌ 𝑡𝑝௝ିଵ ൅
𝐷௝

𝜃௘௝ െ 𝜃௦௝
ቈ

𝑠𝑖𝑛𝜙௝ሺ𝑇ሻ െ 𝑠𝑖𝑛𝜃௦௝

െ𝑐𝑜𝑠𝜙௝ሺ𝑇ሻ ൅ 𝑐𝑜𝑠𝜃௦௝
቉  (5)

𝑇 being the duration or the temporal length of the signature. 
An example of an original signature, the reconstruction of 

its trajectory as sum of circular arcs between virtual target 
points and the velocity reconstruction as the sum of lognormals 
is shown in Figure 2.  

Figure 1. Procedure to reconstruct a genuine-like signature from a forgery. 
 

 
Figure 2. Results of the trajectory and velocity representation with the 
Sigma-Lognormal model. Upper. Trajectory: original (green), 
reconstructed (blue), Virtual Target Points (red circles), arcs between 
target points (red dotted) and Salient Points (black squares). Down. 
Velocity: original (green), reconstructed (blue) and lognormals (dotted 
blue)
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III. SALIENT POINTS ESTIMATION 
This section works out the salient points in the signature 
trajectory. Bear in mind that the reconstructed signature is 
sensitive to the accurate selection of the salient points. Indeed, 
it is the initial step of the proposed procedure to synthetize a 
genuine-like signature from a forgery. The first step smooths 
the forgery’s trajectory in order to reduce the possible tremor in 
the trajectory. The second step estimates the salient points 
focusing on the most relevant corners and skipping those likely 
provoked by the faking procedure. 

A. Trajectory Smoothing 

The tremor is reduced in two steps. The first one interpolates 
the trajectory at 200Hz using cubic splines. The second step 
applies a low pass filter. Specifically, we use a linear phase FIR 
filter with cutting frequency at 16Hz. This smoothing also helps 
to avoid a false salient point due to a tremor in indecisive 
trajectories which are usually seen in a forgery’s trajectory. 

B. Estimation of the salient points 

The salient points correspond to zones with high curvature. 
These points usually represent a minimum in the velocity 
profile. Note that we are not interested in the salient points of 
the forgery but in the salient points of the signature eventually 
written by the genuine users. That is, we attempt to avoid the 
salient point due to a tremor or indecision. For this reason, a 
multiresolution salient point’s estimator has been used [14] [15] 
which defines the curvature of each point at different scales.  

The procedure is as follows. The samples of the smoothed 
signature are linearly 8-connected obtaining the trajectory of 𝑀 
samples: ሼ𝑥௢ሾ𝑛ሿ, 𝑦௢ሾ𝑛ሿሽ௡ୀଵ

ெ . 
Then, for each scale T, a distance between samples is 

described as 𝑑ሺ𝑇ሻ ൌ roundሺ𝑀 ሺ𝑇 െ 1ሻ⁄ ሻ, 𝑇 ൌ 3, … , 𝑀 . The 
curvature 𝛼்ሺ𝑛ሻ at point ሺ𝑥௢ሾ𝑛ሿ, 𝑦௢ሾ𝑛ሿሻ is worked out as the 
angle formed by the two segments, which connect 
ሺ𝑥௢ሾ𝑛ሿ, 𝑦௢ሾ𝑛ሿሻ  with ሺ𝑥௢ሾ𝑛 െ 𝑑ሺ𝑇ሻሿ, 𝑦௢ሾ𝑛 െ 𝑑ሺ𝑇ሻሿሻ and 
 ሺ𝑥௢ሾ𝑛 ൅ 𝑑ሺ𝑇ሻሿ, 𝑦௢ሾ𝑛 ൅ 𝑇ሿሻ. Then, a matrix 𝐴ሺ𝑖, 𝑗ሻ ൌ 𝛼௜ାଶሺ𝑗ሻ 
of 𝑀 െ 2 rows and 𝑀 columns is built up. 

Once the curvature matrix has been worked out, we estimate 
the curvature along the trajectory as  𝐶ሺ𝑙ሻ ൌ ∑ 𝐴ሺ𝑖, 𝑙ሻெିଶ

௜ୀଵ /
ሺ𝑀 െ 2ሻ. The salient points are selected as the peaks whose 
height/width ratio are greater than ሺ𝑚𝑎𝑥ሺ𝐶ሻ െ min ሺ𝐶ሻሻ/45 
and are separated by more than 1/10 the width of the signature. 
A velocity profile quite similar to a genuine signature is 
guaranteed, which is generally quick and swift. In this way, we 
work out the N salient points 𝑠𝑝௝, 𝑗 ൌ 0, … , 𝑁, where 𝑠𝑝଴ and 
𝑠𝑝ே  are the first and the last sample of the trajectory, 
respectively. 

A drawback to this approach is that this step is 
computationally very demanding. However, from a practical 
point of view, all the scales 𝑇 ൌ 3 … 𝑀 are not required. In fact, 
the lower scales are too coarse for a feasible detection of the 
corners. Therefore, a dozen scales uniformly distributed 
between 𝑇 ൌ 𝑀/2 and 𝑇 ൌ 𝑀 have been used to speed up the 
first step 

 A visual example is shown in Figure 2. A further description 
of this procedure can be found in [14]. 

IV. SIGNATURE RECOSTRUCTION 
The signature is reconstructed form the skilled forgery 
trajectory and its selected salient points. It is carried out 
following the Sigma-Lognormal model. Therefore, the 
signature is analytically represented as a sum of 𝑁 strokes and 
defined with their parameters, which are 𝐷௝, 𝑡଴௝, 𝜇୨, 𝜎୨

ଶ, 𝑡𝑝௝, 𝜃௦,௝ 
and 𝜃௘,௝, ∀𝑗 ൌ 1, … , 𝑁. 

A.  Stroke Segmentation 

The limits of the strokes are defined by the salient point. The 
occurrence time of each salient point 𝑡௠௜௡௝ is computed from 
the so-called Central Pattern Generators (CPG) that produces 
rhythmic patterned outputs, without sensory feedback, to 
activate different motor pools [16]. This can be observed in the 
clearly periodic pattern of the handwriting velocity. Therefore, 
if the stroke generation is assimilated into the CPG step cycle, 
the duration of each stroke can be very similar with a value 
around 0.1 seconds. This hypothesis lead us to define 𝑡௠௜௡௝ ൌ
0.1 ൈ 𝑗 sec. 

B. Velocity profile synthesis 

In this section, a lognormal is fitted in with each stroke. Let 
us assume a single stroke velocity profile given by 𝑣௝ሺ𝑡ሻ. The 
values of 𝐷௝,  𝜇୨  and 𝜎୨

ଶ  are set from the following two 
hypotheses: Firstly, the margins for natural human handwriting 
given in [3]. Secondly, it was heuristically observed that most 
of the lognormals are centered when the Biosecure-SONOFF is 
represented by using ScriptStudio [2], i.e. the lognormal peaks 
approach the center of the strokes. Therefore, we configure our 
skewness close to zero but positive and the kurtosis around 3.  

The calculation of these values is suggested as follows. From 
Eq. 1, the distance 𝑠ሺ𝑡ሻ traveled at time 𝑡 is obtained as: 

𝑠ሺ𝑡ሻ ൌ න 𝑣௝ሺ𝑡ሻ𝑑𝑡 ൌ
ஶ

ିஶ

𝐷௝

2
൮1 ൅ erf ቌ

ln ቀ𝑡 െ 𝑡0𝑗ቁ െ 𝜇௝

√2𝜎௝
ቍ൲  (6)

Then, let 𝑙௦ be the length of a stroke, i.e. the length of the arc 
between two consecutive minima. From Eq. (6) we deduce: 

𝑙௦ ൌ
𝐷௝

2
൮1 ൅ erf ቌ

ln ቀ𝑡 െ 𝑡0𝑗ቁ െ 𝜇௝

√2𝜎௝
ቍ൲  (7)

As erfሺ3ሻ → 1, a possible solution of Eq. (7) is:  
𝐷௝ ൌ 𝑙௦  (8)

𝜇௝ ൌ ln ቀ𝑡 െ 𝑡0𝑗ቁ െ 3√2𝜎௝  (9) 
Furthermore, as the lognormals are centered in the middle of 

the stroke with a low positive skew, their maximum or mode, 
defined by 𝑒𝜇𝑗ିఙౠ

మ
, is around 𝑡௠௔௫௝ ൌ 𝑡௠௜௡௝ିଵ ൅ 0.05  with a 

slightly left skew. Therefore, it holds that: 
𝑡𝑚𝑎𝑥𝑗 െ 𝑡0𝑗 ൌ 𝑒ఓೕି𝜎j

2
  (10)

Combining Eq. (9) and Eq. (10) we obtain: 
𝜎j

2 ൅ 3√2𝜎௝ െ ln𝑘 ൌ 0  (11)
Thus, in the case of an isolated stroke of length 𝑙௦ and 

duration 0.1 sec, the simplified approach leads us to estimate 
𝜎୨

ଶ as the positive solution of the simple second order equation 
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Eq.(11), and 𝜇୨ by substituting 𝜎୨
ଶ in Eq. (10). The value 𝐷௝ is 

worked out later as we do not know 𝑙௦ yet.  
Regarding 𝑡଴௝, it is well-known that the movement action 

motion is issued in the cortex. It then passes through the Basal 
Ganglia, which decodes the message in order to activate the 
different pool of muscles to carry out such movement. In a well-
learned movement, it is reasonable to assume that the time 
between the movement action is issued and the performed 
movement should be rather similar for each stroke. In our 
procedure, this tramission time is approched by 𝑡௠௜௡,௝ିଵ െ 𝑡଴௝ 
which is known to be around 0.3 seconds [17]. Speciffically, in 
our case, 𝑡଴௝ ൌ 𝑡௠௜௡,௝ିଵ െ 0.3. 

C. Location of the Initial Virtual Target Points 𝑡𝑝௝ 

Given that the virtual target points refers to spatial trajectory, 
these points are directly estimated from the original trajectory. 
Each salient point 𝑠𝑝௝ is associated to a virtual target point 𝑡𝑝௝, 
𝑗 ൌ 0, … , 𝑁. Specifically, 𝑡𝑝଴ ൌ 𝑠𝑝଴ and  𝑡𝑝ே ൌ 𝑠𝑝ே which are 
the first and last point of the trajectory. This way, the virtual 
target point 𝑡𝑝௝, ∀𝑗 ൌ 1, … , 𝑁 െ 1, is calculated using 𝑠𝑝௝ିଵ, 
𝑠𝑝௝ and 𝑠𝑝௝ାଵ, which form a triangle. The initial virtual target 
point is located on the median of the vertex 𝑠𝑝௝ , which is a 
straight line through the vertex 𝑠𝑝௝ and the midpoint ሺ𝑠𝑝௝ିଵ ൅
𝑠𝑝௝ାଵሻ/2 of the opposite side, at a distance 𝑙𝑡𝑝௝ from the vertex 
𝑠𝑝௝, defined as: 

𝑙𝑡𝑝௝ ൌ ℎ𝑡𝑝௝𝑐𝑜𝑠൫𝜑௝/2൯ (12) 
 
where ℎ𝑡𝑝௝  is the distance between the vertex 𝑠𝑝௝  and the 
midpoint of the opposite side and 𝜑௝ is the angle of the vertex 
𝑠𝑝௝. Applying the cosine function we see that the closer angles 
of the vertex 𝑠𝑝௝ produce greater distances of 𝑡𝑝௝ from 𝑠𝑝௝. An 
example of this procedure is shown on the left hand side of 
Figure 3.  

D. Estimation of Initial 𝜃௦௝ and 𝜃௘௝ 

The angles of the circumferences that link virtual target points 
are defined with their start 𝜃௦௝  and end 𝜃௘௝  angles for 𝑗 ൌ
1, … , 𝑁  where 𝑁  is the total number of strokes. The spatial 
characteristic of the signature requires that the estimates use the 
original spatial trajectory. 

They are calculated as follows: 
1. The middle point 𝑚𝑝௝ of the trajectory of the 𝑗௧௛  stroke 

between the salient points 𝑠𝑝௝ିଵ  and 𝑠𝑝௝  is worked out. 
Middle point in this context means the same distance on 
the trajectory from 𝑚𝑝௝ to 𝑠𝑝௝ିଵ and 𝑠𝑝௝. 

2. A circumference that passes by these three points is 
obtained. 

3. The angle 𝜃௦௝ is computed as the angle of the tangent of 
the circumference in 𝑠𝑝௝ିଵ. Then, the angle 𝜃௘௝ is obtained 
as the angle of the tangent of the circumference in 𝑠𝑝௝. 

An illustration of this procedure is shown on the right hand 
side of Figure 3. 

E. Reconstructed Spatial Trajectory 

The above procedure produces an estimation of the parameters 
of the Sigma-Lognormal model 𝑡଴௝, 𝜇୨, 𝜎୨

ଶ, 𝜃௦௝  and 𝜃௘௝, ∀𝑗 ൌ
1, … , 𝑁 and 𝑡𝑝௝, ∀𝑗 ൌ 0, … , 𝑁, from the original salient points 
𝑠𝑝௝,, ∀𝑗 ൌ 0, … , 𝑁 and observed samples ሼ𝑥௢ሺ𝑡ሻ, 𝑦௢ሺ𝑡ሻሽ,   in the 
range 0 ൏ 𝑡 ൏ 𝑇. These parameters are used to calculate the 
parameters 𝐷௝  and reconstruct the signature 𝑇௥ሺ𝑡ሻ ൌ
ሼ𝑥௥ሺ𝑡ሻ, 𝑦௥ሺ𝑡ሻሽ , following equations (3) and (4). 𝑇௥ሺ𝑡ሻ  is the 
trajectory obtained from the skilled forgery that imitates a 
genuine one. 
 
1) Estimation of 𝐷௝ 
The value of the lognormal amplitude 𝐷௝  describes the 
amplitude of the movement and is defined without ambiguity 
by the position of the virtual target points 𝑡𝑝௝ିଵ, 𝑡𝑝௝, 𝜃௦,௝ and 
𝜃௘,௝. It is calculated as:  

𝐷௝ ൌ 𝑟௝ ቀ𝜃௘௝ െ 𝜃௦௝ቁ ,    𝑗 ∈  1, … 𝑁 (13) 
where 𝑟௝ is the radius of the circunference that goes from 𝑡𝑝௝ିଵ 
to 𝑡𝑝௝ . To work out 𝑟௝ , we first calculate the center of the 
circumference as the intersection of the line that transverses 
𝑡𝑝௝ିଵ with slope െ1/tan 𝜃௦௝ and the line that transvverses 𝑡𝑝௝ 
with slope െ1/tan 𝜃௘௝.Then, 𝑟௝ is the distance from the center 
of the circumference to either 𝑡𝑝௝ିଵ or 𝑡𝑝௝.  

An example of a recovered spatial trajectory is shown in 
Figure 4. Note that the execution time has been reduced by two 
meaning that the signature has been written quicker and swifter. 

 
 

Fig. 3. Left: Estimation of the target point 𝑡𝑝ଶ from salient points 𝑠𝑝ଵ, 𝑠𝑝ଶ, and 𝑠𝑝ଷ. Right: Estimation of values 𝜃௦ଶ and 𝜃௘ଶfor the second stroke 
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Furthermore, the trajectory is more rounded even in the areas 
where the original forgery reveals more doubts uncertainty or 
indecision. Therefore, it is expected that the reconstruted 
signature will be seen more genuine-like than the original 
forgery by the classifier 

V. EXPERIMENTS 
The experiments are aimed to verify whether the 

reconstructed signatures are more genuine-like than the original 
forgeries, using the following steps: 1) The performance of an 
on-line signature database is worked out for skilled forgeries by 
using two on-line ASV; 2) The skilled forgeries are 
reconstructed and 3) The performance of the database with the 
reconstructed skilled forgeries is worked out and compared 
with the original skilled forgeries. In this way we can study the 
reach of the improved biometric attack for on-line signature 
ASV.  

A. Database 

The experiments have been carried out with the publicly 
available database called Biosecure-SONOFF, that comprises 
both on-line and off-line signatures. The signatures were 
simultaneously acquired by fixing a sheet over a Wacom 
Intuos3 A4/Inking pen tablet. Each donor was asked to sign on 
the paper his inked signature with the inked tablet pen. After 
registering the on-line signature, the paper sheet was scanned 
and the signature image saved with the same codename.  It was 
recorded through 4 sessions spanning 4 months, each session 
contains 4 genuine signatures and 3 forgeries. In total 132 users, 
16 genuine and 12 forgeries [18]. 

B. Comparing False Acceptance and Rejection Rate curves 

We compare the False Acceptance Rate (FAR) and False 
Rejection Rate (FRR) curves of both original skilled forgeries 
and reconstructed signatures from skilled forgeries. The 
evaluation considers two state-of-the-art on-line ASV: a 
Dynamic Time Warping (DTW) [19] and an own 
implementation of the Manhattan-based distance ASV [20].  

Both ASVs were trained with the first 5 genuine signatures 
of the Biosecure-SONOFF database. For FRR, we used the 
remaining 11 genuine signatures of the same signer. The FAR 

curves were calculated using the 12 available skilled forgeries 
of each signer.  

The resulting FAR and FRR curves are shown in Figure 5. 
Notice that the FAR curve of the reconstructed skilled forgeries 
is closer to the FRR curve than the FRR of the original skilled 
forgeries. The same effect is observed on both classifiers. This 
means that the reconstructed skilled forgeries are closer to the 
genuine signature than the forgeries. Therefore, it can be seen 
that the proposed procedure produces improved forgeries that 
are more difficult to detect.  

Table I and II also compare the exact rates of the FRR for 
forgeries and reconstructed forgeries at certain FAR rates. In 
this table, it is possible to appreciate the deterioration of the 
ASV when using this kind of biometric attack. In the case of 
the DTW, for a given FRR around the EER, the results worsen 
by around 65% which means that the FRR is multiplied by 1.7. 
In the case of the classifier based on the Manhattan distance, 
the deterioration is less, around 7% on average. Nevertheless, 
both ASV show that better improvements are obtained when 
FRR is reduced. 

VI. CONCLUSION 
This paper proposes a biometric attack case study for on-line 

signature verification. The attack consists in generating an 
improved imitation from a forgery. 

While a well-trained forger can accurately imitate the 
genuine signature trajectory, they usually fail to feasibly 
emulate the velocity profile. Therefore, a way to generate an 
improved imitation would be to reconstruct the forgery with a 
genuine-like velocity profile and a smoother trajectory. 

The new improved forgeries are generated using the 
kinematic theory of rapid movements and its associated Sigma-

 
Figure 5. FAR and FRR curves for genuine, forgery and reconstructed 
signatures. 

Figure 4.Original and reconstructed skilled forgery trajectory (upper) 
and velocity (below).  
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Lognormal model. 
The procedure smooths the forgery’s trajectory to avoid 

tremor and indecisive trajectories and selects salient points 
related with a genuine handwritten signature. The salient points 
are then used to obtain the virtual target points from which the 
Sigma-Lognormal model parameters are calculated. The 
timeline is generated using the hypothesis of a periodic pattern 
of the handwriting velocity with a period around 0.1 second. 

The experiments show the success of the biometric attack by 
analyzing the improvement in the FAR curve for any point in 
the FRR curve. These experiments were conducted with two 
conceptually different on-line ASV in order to measure the 
generalization of the biometric attack. As a result, it is shown 
that this procedure is more effective with classifiers based on 
alignment such as DTW than with a classifier based on a 
histogram of distances such as the Manhattan one. 

Some further work is still required to improve the 
reconstruction, mainly in the selection of the target points. As 
future research, a reliable and accurate way of detecting such 
reconstructed signatures would be an essential countermeasure.  
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TABLE I. FAR AND FRR WITH DTW-BASED ASV 
GENUINE FORGERIES RECONSTRUCTED DETERIORATION FRR FAR FAR 
0,0252 0,017 0,0284 67,06% 
0,022 0,0227 0,0366 61,23% 

0,0189 0,0309 0,0505 63,43% 
0,0157 0,0429 0,0657 53,15% 
0,0126 0,0455 0,0751 65,05% 
0,0094 0,0537 0,0997 85,66% 
0,0063 0,0568 0,1155 103,35% 
0,0031 0,0814 0,1926 136,61% 

0 0,6585 0,9931 50,81% 
 
 

TABLE II. FAR AND FRR WITH MANHATTAN-BASED ASV 
GENUINE FORGERIES RECONSTRUCTED DETERIORATION FRR FAR FAR 
0,0452 0,036 0,0372 3,33% 
0,0395 0,0391 0,0398 1,79% 
0,0339 0,0467 0,048 2,78% 
0,0282 0,0549 0,0587 6,92% 
0,0226 0,0631 0,0682 8,08% 
0,0169 0,077 0,0846 9,87% 
0,0113 0,0979 0,1124 14,81% 
0,0056 0,1225 0,1427 16,49% 

0 0,3535 0,5246 48,4% 
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