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THE DRIVERS BEHIND DIFFERENCES BETWEEN 
OFFICIAL AND ACTUAL VEHICLE EFFICIENCY AND 

CO2 EMISSIONS 
 

 

Abstract 
Literature explaining the gap between official and actual vehicle efficiency and CO2 
emissions focuses on descriptive analysis to calculate this gap without examining causality. 
In this paper, we explore this discrepancy in detail by drawing on a database from 
Emissions Analytics Ltd. that provides on-road emissions measurement on more than 650 
vehicles in the period 2010-2017. The data reveal concerning results: firstly, the gap in data 
relates both to hybrid vehicles (that are supposedly ‘more fuel-efficient’) and to the biggest 
selling vehicles (medium-sized cars). Secondly, the average deviation rate increased prior to 
2015, but decreased following ‘Dieselgate’. The Volkswagen scandal threw light on the 
discretionary behaviour of manufacturers on this question and highlighted how weak the 
official tests are: and this in turn points to a regulatory and compliance problem. In other 
words, the interpretation of the results suggests that after several years of adaptation to the 
protocol and the corresponding test (but no translated in real consumption), manufacturers 
have taken measures to reduce the divergence in real terms after the scandal. 
 
 

 

Keywords: Emissions; Air pollution; Vehicle Efficiency; Dieselgate 
JEL Classification: K32; O13; O33; Q53 
 



Pre-print version. Accepted at Transportation Research Part-D 

2 
 

1. Introduction 

The differences between CO2 emission and consumption1 data from official test results and 

actual ‘on the road’ figures are well-established and, considering the weight from cars of 

total European Union emissions of CO2 (European Commision fixed this percentage 

around 12%), this is not an insignificant issue. Moreover, this is not only a problem in 

Europe. In the US, as indicated by Green et al. 2015, “differences between consumers’ 

experiences with fuel economy and label values have been a source of discussion and 

dissatisfaction with the official government ratings since shortly after they were first 

introduced in 1975 (McNutt et al., 1978)”.2 Other references for the U.S. that show 

differences (ranging from 10% to 20%) between test cycle and on-road fuel economy are 

McNutt et al. (1982), Schneider et al. (1982), Rykowski et al. (2005), Huo et al. (2011, 

2012), and Greene et al. (2015). 

The International Council on Clean Transportation (ICCT) annually publish a report 

comparing real world and official figures on fuel consumption and CO2 emissions for 

passenger cars in Europe (the first study was Mock et al. 2013, and the last one is Tietge et 

al., 2017b). This database includes nearly 1.1 million vehicles from eight countries and 14 

data sources. The conclusion is unambiguous: the divergence between type-approval and 

real-world emission value has been increasing over time, from approximately 9% in 2001 to 

42% in 2016 (although they found in the last report the first sign of slowdown in the 

growth of the gap). 

The explanation of the gap, according to the literature, seems to be the type-approval 

process based on the New European Driving Cycle (NEDC), that includes measurements 

of CO2 emissions and fuel consumption of vehicles under controlled laboratory 

conditions. In Europe, the certification on pollutant emissions has been based on the 

NEDC and the respective test protocol,3 which consist, for all Euro 3 and later light-duty 

 

1 We use both terms ‘Fuel consumption’ and ‘CO2 emissions’ interchangeably in this paper. As pointed out 
by Fontaras et al. (2017a), the former is indirectly derived from the measurement of the latter, hydrocarbons 
(HC) and carbon monoxide (CO) emissions measured during the certification tests (by taking into account 
the carbon mass balance in the exhaust gas). Moreover, Euro 5 and 6 have low tailpipe CO and HC emission 
levels, contributing to approximately 1% of the fuel consumption. In short, during vehicle’s operations, CO2 
emissions can be considered to be proportional to the fuel consumed. We also empirically assess these results 
in section 3 of this paper. 

2 Actually, the US Environmental Protection Agency (EPA) provides “test cycle” and “label” values, i.e., two 
sets of fuel economy estimates. 

3 Regulation No 83 of the Economic Commission for Europe of the United Nations (UN/ECE) 
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vehicles, in a cold-start driving cycle used for emission type-approval (Euro 3 is the 

European Emission Standard regulated by Directive 98/69/EC of the European 

Parliament and of the Council of 13 October 1998 relating to measures to be taken against 

air pollution by emissions from motor vehicles and amending Council Directive 

70/220/EEC). 

The Worldwide Harmonized Light Vehicle Test Procedure (WLTP) and the corresponding 

Worldwide Harmonized Light Vehicle Test Cycle (WLTC) have both been progressively 

introduced since September 2017 in order to address divergences with the NEDC results 

(although European Commission targets with WLTP references will be established in 

2020). The European Union was the first to introduce the test procedure, followed by 

other countries as Japan (2018) and will be implemented also by China, India, South Korea. 

The US will be expected to evaluate the possible benefits before deciding whether to adopt 

it or not (Fontaras et al. 2017a). 

Lower fuel consumption and CO2 emissions under the former certification procedure can 

be attributed to a series of factors such as the actual driving profile of the NEDC which is 

of low transience, the narrow boundary conditions of the certification test (e.g. a 

temperature range of 20 – 30 deg. C.; restricted use of auxiliaries; lower vehicle mass than 

during actual driving), generating a systematic underreporting and biased recording of CO2 

emissions compared to real world ones (Fontaras et al. 2017b). The comparison reveals the 

greater accuracy of the WLTP data with real-world data; but the gap does not disappear. 

The same authors carry out a recent comparison between the two tests and real-world 

conditions.  

Divergences vary by segment, manufacturer, fuel, transmission, and similar. The 

‘flexibilities’ permitted by the NEDC can be exploited to obtain favorable results and this 

seems to be the main reason for the divergences (Stewart et al., 2015; Kühlwein, 2016; 

Tietge et al., 2017a). Taking into account the fact that CO2 effects are not the same in the 

laboratory as in real-world driving conditions, because of vehicle technologies or use, 

Fontaras et al. (2017a) define ‘flexibilities’ as “specific provision or interpretation of the 

certification procedure or an absence of such a provision or clear interpretation that, if 

applied, results in the measurement of lower CO2 emission values (they also summarize the 

factors relating to the flexibility: use of inertia classes, short test cycle, non-realistic vehicle 

preconditioning…)”. 
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Despite the improvement of emission and consumption figures for whole European 

Union,4 the actual improvement caused by fuel-saving technologies has not been clearly 

established because the evidence seems to point to improvements in test-oriented 

optimization and practices. 

Although some consequences could be covered by reports (for example ICCT reports), 

these divergences have important consequences for policies, and there are several reasons 

to strive to achieve more accuracy (also collected by ICCT reports). Firstly, and most 

evidently, is for society as a whole because of climate change and the need to reduce fossil 

fuel dependence. But there are also a number of effects for each sector, e.g., passengers 

might be misled because the divergences between official and actual figures of 

consumption or because environmental targets do not match. 

Moreover, it is important to note that there are implications for manufacturers and 

goverments (Tietge et al., 2017a): for the former, if manufacturers report more accurate 

CO2 values they face possible penalties; and for the last, most of EU member states base 

vehicle taxation schemes on type-approval CO2 emission values. Finally, there are industry 

effects, such as a slowdown in innovation because it seems to be unnecessary given the 

small potential reduction (Fontaras et al. 2017a). 

Therefore, the objective of this paper is to analyze which variables affect this gap. In 

particular, by drawing on on-road data from Emissions Analytics Ltd., this study seeks to 

establish, for example, whether the gap is uniform or whether there are differences across 

brands or types. It is clear that manufacturers take advantage of the ‘flexibility’, but is this 

response uniformly distributed? Are some manufacturers “cleverer” than others? Are there 

certain types of cars that show a greater gap, for example, or a certain fuel? 

As far as we know, this is the first time that such a multivariate analysis has been 

undertaken in order to define which factors underpin the differences between on-road and 

official CO2 emissions. The relevant literature has only partially addressed this issue, as we 

illustrate in section 2 (the papers that have employed multivariate analysis have missed 

some important variables). Section 3 explains the data and provides some descriptive 

statistics. The multivariate analysis and discussion of results are included in section 4. 

Finally, section 5, details our main conclusions that provide responses to the questions 
 

4 The European Environment Agency, EEA, confirmed in 2013 the achievement of specific objectives, with 
an average EU emissions of all manufacturers equal to 123.4 g CO2, for example, being below the 2015 target 
of 130 gCO2 (EEA, 2014a). In 2017, the provisional figure was 118.5 gCO2 
(https://ec.europa.eu/clima/policies/transport/vehicles/cars_en#tab-0-0). 
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mentioned in the previous paragraph: the divergence between official and on-road CO2 

emissions is not random and the results point to the central role of the manufacturer. 

2. Literature review 

There are a number of academic studies that compare reported data and real-world figures 

for CO2 emissions and consumption. However, most focus on test accuracy in a 

descriptive and/or engineering way (experimental analysis). Table 1 reviews the evolution 

of this gap between the laboratory and the real-world, and the main characteristics related 

to this study, in order to compare them. 

However, there are a number of papers not included in Table 1 that are more related to 

this work, which use multivariate analysis in order to explain the causality of the gap. First, 

Tietge et al (2017a) validates and refines a regression model developed by Mellios et al., 

(2011) and Ntziachristos et al. (2014) for the estimation of real-world fuel consumption, 

which is employed in policy-relevant applications. On the one hand, this regression model 

is employed to estimate real-world fuel consumption of new European passenger cars for 

the European Environment Agency (EEAb, 2014). On the other hand, it is employed to 

estimate real-world CO2 emissions of passenger cars using the COPERT model (Tietge et 

al. 2017a). However, there are similar regression models (for example, see Greene et al., 

2015 or Ligterink et al., 2016). COPERT is a software tool used world-wide to calculate air 

pollutant and greenhouse gas emissions from road transport 

(http://emisia.com/products/copert). It is used by several EU states for inventories and in 

policy relevant studies (EEA, 2016; Kioutsioukis et al., 2010 and EEA, 2011). 
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Table 1: Evolution of the gap between real world and type-approval vehicle CO2 
emissions, and the main characteristics 

Reference 

Real world - 
Certification 

value CO2 
shortfall 

Observations 
and period Covariates considered Estimation method 

ECMT (2005)5 12% - - Descriptive 
Zallinger et al. 

(2009) 19% n.a. n.a. n.a. 

Weiss et al. 
(2011) 21% 12  

(2004-2010) 

fuel; route characteristics; 
vehicle type; ambient 

conditions 
Descriptive 

Mellios et al. 
(2011) 25% 68  

(2005-2008) 
mass; rated power (engine 

capacity)6 Regression 

Fontaras and 
Dilara (2012) 22.5% 2000-2010 fuel type 

data + vehicle 
dynamics model + stochastic 

techniques 
Ligterink et al. 

(2013) 30% 9 
(2010-2013) 

vehicle type; route 
characteristics Descriptive 

Mock et al. 
(2014) 38% >500,000 

(2001-2013) 

it depends on the source 
(segment, manufacturer, 

fuel, transmission type,…) 
Descriptive 

Ligterink and 
Eijk (2014) 44% 

>250,000 
(excluding 
plug-ins) 

(2004-2014) 

fuel type Descriptive 

Tietge et al. 
(2015) 40% ≈500,000 

(2001-2014) 

it depends on the source 
(segment, manufacturer, 

fuel, transmission type,…) 
Descriptive 

Tietge et al. 
(2016) 42% ≈1,000,000 

 (2001-2015) 

it depends on the source 
(segment, manufacturer, 

fuel, transmission type,…) 
Descriptive 

Tietge et al. 
(2017b) 42% ≈1,100,000 

 (2001-2015) 

it depends on the source 
(segment, manufacturer, 

fuel, transmission type,…) 
Descriptive 

Source: Updated from Fontaras et al. (2017a) and own elaboration. We have extracted specific data from the 
aforementioned papers and reported information that is relevant to this research, in order to compare studies. 

 

Mellios et al. (2011) sought to explain type-approval fuel consumption through 

characteristic variables (i.e. mass, engine capacity, rated power, and power to mass ratio), 

using a database of only 68 cars in the period 2005-2008 and various model specifications. 

However, the main objective of Mellios et al. (2011) is different to that of present work, 

because of the variable involved (i.e. the gap; not the type-approval figures). Ntziachristos 

 
5 This study analyzed the literature and determined that the major factors affecting shortfall included: low 
ambient temperatures; short trips; driving behaviors; highway; speed; and use of the air conditioner (other 
factors such as topography or road conditions have less impact). Next, this research analyzed effects on fuel 
economy, alternative driving cycles and shortfall data. Finally the report focused on technologies to improve 
the fuel economy of gasoline and diesel vehicles, and concluded by identifying technology and policies to 
promote technologies that improve fuel economy. 

6 Variables used in the regression model. 
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et al. (2014), using a database of 924 passenger cars (hybrid cars are not included) from 

Europe, also explain real figures versus type-approval in-use fuel consumption, by 

controlling for engine capacity and mass and power with various model specifications. 

They find a gap of 11% and 16% (for petrol and diesel, respectively).  

As noted above, Tietge et al (2017a) drew on these two papers and used a least square 

model with three parameters (type-approval fuel consumption value, engine capacity, and 

vehicle mass), to refine the model of Ntziachristos et al. (2014). They employed a database 

of 130,000 vehicles (gasoline and diesel), and added two more factors: temporal trend 

(through year dummy variables) and company vehicles. These two aspects allowed them to 

capture the increasing gap over time, and the greater gap because of company cars (i.e. 

“vehicles owned by legal persons”). 

Greene et al. (2015) analysed the American market. They collected data from the joint 

DOE/EPA website during 1984-2015,7 where customers had uploaded data from their 

own vehicles (75,000 observations). The objective is to evaluate the effectiveness of the 

government’s estimates through the estimation of the data upload from drivers through 

test figures and some variables (including manufacturer, temporal trend and vehicle type). 

Because of this, as Mellios et al. (2011), they do not estimate the gap, but an approximation 

of it because the dependent variable is not the gap itself. Specifically, their results showed a 

gap of 15%, 7%-10% and 22%-27% for gasoline, diesel and gasoline-electric hybrid from 

test cycle figures. 

Ligterink et al. (2016) published an extensive engineering report for the European 

Commission that analyzed the factors which could explain the divergences through 

different regression models from several data sources (they use data from 2000 to 2015). 

Specifically, they identify the factors that affect the actual emissions data, and they also 

make the official emissions an independent variable (in addition to some of the vehicles’ 

physical variables). Furthermore they analyzed the trend of the data (actually they analyze 

the trend of the gap) with a regression where they explain the evolution of the gap using 

only years as independent variables, and they observe a growing trend until 2014. Finally, 

they analyze similar regression models by drawing on different databases (e.g. LeasePlan 

data or Spritmonitor.de) using the same idea and variables. They conclude that there are 

four key factors: different ambient conditions and vehicle usage and weight; excluded 

 
7 www.fueleconomy.gov 
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factors from the type-approval test; optimized testing within the test bandwidth; and 

NEDC test specific vehicle technology. 

In sum, academic literature and a number of non-academic documents using various 

databases and approaches have been used to analyze the comparison between reported data 

and real-world figures for CO2 emissions and consumption, but most have not employed a 

multivariate analysis in order to jointly control for the drivers of the gap. As we show in 

Table 1, the most frequent analysis has been descriptive. Moreover, the papers that have 

employed multivariate analysis have missed some variables that could be relevant in the 

explanation. For example, Mellios et al. (2011), Ntziachristos et al. (2014) or Ligterink et al. 

(2016), do not include manufacturer or vehicle type. None of the papers reviewed include 

hybrid vehicles in their studies. Furthermore, Dieselgate8 has not been considered. With 

this paper, we try to complete and complement this previous work in order to explain the 

gap between real world and type-approval figures. 

3. Data 

As mentioned above, our database was built by drawing on real-world data from Emissions 

Analytics Ltd. (hereafter, EA).9 The main aim of this company is “to gather emissions data 

representative of the vehicle’s performance in a wide range of normal driving conditions in 

one long-form test using a Portable Emissions Measurement System (PEMS)”. Its results 

are obtained by driving cars, in the default state from the manufacturer, on real highways in 

real-world conditions.10 

Following EA’s methodology, the database contains four groups of variables: 

1. Real and official vehicle’s consumption and CO2 emissions: information about official 

consumption and CO2 emissions of vehicles was provided by manufacturers. On-road 

consumption and emissions data were obtained from Emissions Analytics. Our 

interest is to calculate the deviation from official data and, for this reason, our 
 

8 The Volkswagen emissions scandal was also called "emissionsgate" or "dieselgate". It began in September 
2015, when the United States Environmental Protection Agency (EPA) issued a notice of violation of the 
Clean Air Act to German automaker Volkswagen Group. The EPA found that VW had intentionally 
programmed diesel engines in order to control their emissions during laboratory tests. An important 
implication was the decrease in market share. 

9 The data we have is a mixture of vehicles tested in the United Kingdom and Germany. All of them are 
European Union homologated vehicles and they are sold at all EU. For further information, see: 
http://emissionsanalytics.com/ 

10 For more information about the technical approach, visit: https://drive.google.com/file/d/0B0-
iHSV9dj9hVldLR1BnMDZiUjA/view?usp=sharing 
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endogenous variable will be the average deviation rate (ADR) between these two 

figures, namely: 

  [1] 

2. Vehicle characteristics: the literature review (see, for example, Fontaras et al., 2017a or 

Tietge et al., 2017a,b) found the main vehicle factors affecting car efficiency. 

Specifically, Fontaras et al., (2017a) categorize factors that affect fuel consumption 

and CO2 emissions into three groups: factors related to vehicle characteristics and 

systems, factors related to environmental and traffic conditions, and factors related 

to the vehicle driver. The only group with information available is the first of these 

three. But it is the latter two groups that comprise the major reason why the gap 

between real world and type-approval figures may exist. Ntziachristos et al. (2014) 

and Tietge et al. (2017a) suggest that type-approval fuel consumption value, engine 

capacity and vehicle mass accounts for a large portion of the variance in real world 

fuel consumption (coefficients of determination greater than 0.85). For this reason, 

we consider vehicle characteristics as being the main drivers of consumption and 

emissions. In this sense, the database contains detailed information about the 

number of doors, seats, gears, wheel drives (2 or 4-wheel drive), fuel (petrol, diesel 

or hybrid), transmission (automatic or manual) and engine capacity (engine CC).11 

3. Brands and model characteristics: as far as we know, previous papers have not taken into 

account the effects on endogenous variable by brand or vehicle type in regressions. In 

a descriptive way, some studies have sought to highlight differences between brands 

and segments (see for example Greene et al., 2015 or Tietge et al., 2017b). We take into 

account not only the brand, but also the type of car (bodystyle)12 and segment13 in our 

regressions. 

4. Trends: finally, two variables are included in order to test whether the average rate of 

deviation changes over time: a year variable (2010-2017) and a ‘Dieselgate’ variable. 

 

11 We also have information about horse power and cylinders for each vehicle; but they show high correlation 
(>0.8) with the size of the engine. In order to avoid multicollinearity problems, only engine CC was used. 

12 The options for this variable are: convertible, coupe, coupe-convertible, estate, hatchback, MPV, SUV, 
Saloon, Saloon-long wheelbase and targa. 

13 In this case, the options are: Executive Car (E), Large Car (D), Luxury Car (F), Mini Car (A), Multipurpose 
Car (M), Small Car (B), Sport Utility Offroad Vehicle (J) and Sports Coupe (S). 

ADR = Real consumption or emission-Official consumption or emission
Official consumption or emission
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The latter takes value 1 following the announcement of the investigation into VW car 

emissions. This has been included in order to test ‘changes in trend’ following this 

announcement. If ADR depends only on a car’s characteristics, this variable should 

not be statistically significant. 

Descriptive statistics of 655 vehicles on the database are included in Table 2. Plug-in hybrid 

electric vehicles are not included in our database. The main point to highlight is that the 

average rate described in equation [1] (i.e., ADR) reaches values around 38%. 

 

Table 2: Descriptive statistics 

Main covariates Obs. Average S.D. Min Max 

Average rate on-road vs official. 
Consumption (from eq. [1]) 

655 0.36 0.13 0.02 0.85 

Average rate on-road vs official. CO2 
Emissions (from eq. [1]) 

655 0.38 0.13 0.03 0.88 

Number of doors 655 4.50 0.90 2 6 
Number of seats 655 4.97 0.72 2 7 
Engine capacity in cubic centimeters 655 1868.03 635.30 875 6592 
Number of gears 655 6.14 1.32 1 9 

Source: Own elaboration from Emissions Analytics data. 
 

Figures 3 and 4 show the average deviation rate by brand, and Table 4 (see Annex) 

incorporates both the number of vehicles included in our sample by brand (within 

brackets, next to the name of the brand) and the average and standard deviation of ADR.  

 

[Insert Figures 3 and 4 and Table 3 here] 
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It is important to highlight the fact that the ADR around 0.35 is the modal value (0.36 and 

0.38 is the average value, respectively, as Table 2 details), although some differences exist 

by brand. For example, we note the highest values are from DS (0.56) or Alfa Romeo 

(0.55). On the right-hand side, Rolls Royce (0.19), Porsche (0.21) and Subaru (0.22) 

represent the lowest deviation from official data supplied by manufacturers.14 

Figures 1 and 2 (see annex for the later) show the evolution of the ADR over the analyzed 

period (2010-2017), in function of each car type. 

 

Figure 1: Variation Rate On-road vs. Official, by segment vehicle. Consumption 

Source: Own elaboration from Emissions Analytics 

 

Despite previous descriptive outcomes, a multivariate analysis is needed in order to 

estimate the drivers of the relative contribution to the deviation rate. We now turn to 

section 4, which details the empirical strategy and results. 

 
14 There is a positive and high correlation between data on ADR CO2 emissions and consumption; 
specifically 0.99 (see footnote 1). 
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4. Regression model and results 

Our regression model is based on a multivariate analysis by adding, in different estimations, 

several covariates that may affect the endogenous variable we have considered (Average 

Deviation Rate of vehicle’s CO2 emissions and consumption). Specifically, we estimate the 

following general equation [2]: 

 

 [2] 

We progressively add each group of variables, in order to test the robustness of the 

estimated coefficients. In fact, four models are analyzed. Firstly, vehicle characteristics, fuel, 

segment, body style and temporal variables (registration year and periods after Dieselgate) 

are examined as possible drivers. In estimation 2 we include brands as a new driver; and 

this is the most complete estimation we do. 

Estimation 3 and 4 use a subset of the dataset. The former seeks to estimate whether there 

are differences among car groups (i.e., common behavior among particular brands that 

operate under the same scheme).15  

The latter estimation (number 4 in Tables 4 and 5) replicates estimation 2 but we only 

consider the top ten brands by sales in UK.16 

[Insert Table 4 and 5 here] 

As we detail in footnote 1, the high correlation between emissions and consumption yields 

similar outcomes for estimations made for these two endogenous variables. For this 

 
15 In our database, the groups are: VW, which includes Audi, VW, Seat, Skoda, Bentley, Bugatti, Lamborghini, 
and Porsche. The Toyota group is Toyota and Lexus; General Motors include Vauxhall and Chevrolet; BMW 
has Mini, BMW and Rolls Royce; Mercedes Benz is part of the Daimler group; and the Fiat-Chrysler 
Automobiles Abarth group includes Alfa Romeo, Fiat, Jeep and Maserati. 

16 Brands that had more than 88% of combined market share in 2016-17 in the UK were (in order, from 
highest to lowest): Ford, Vauxhall (Opel), Volkswagen, Mercedes-Benz, Audi, BMW, Nissan, Toyota, Kia, 
Hyundai, Peugeot, Skoda, Land Rover, Renault, Mini, Seat, Citröen, Honda and Fiat. Source: SMMT. 
https://www.smmt.co.uk/vehicle-data/ 

ADRit = b0 + b1Doors + b2Seats + b3Ln(engineCC) + b4Gears +

+b5Drivenwheels + b6Transmission + b jCombustible +
j=8

11

å

+ b jSegment + b21RegistrationYear + b22Dieselgate + b jGroupit
j=23

29

å
j=12

20

å +

b jBrand +
j=30

67

å b jBodystyleit + eit
j=68

77

å
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reason, the following results apply to both variables. In general, the overall explanatory 

power of all estimations shows R2 in the range [0.3-0.43]. The coefficients estimated are 

very stable, regardless of the sample selected (estimations 3 and 4) and the covariates we 

add (estimations 1 and 2). 

Regarding coefficients, estimations describe several outcomes: First, the car’s characteristics 

related to both consumption and emissions are: engines (average effect of 18% change by 

1% increase of cubic centimeters), number of driven wheels (ADRs are lower in 4x4 

vehicles) and transmission (ADRs are lower in automatic vehicles). 

Taking diesel cars as the reference, petrol cars have Average Deviation Rates smaller than 

Diesel cars (3,0% - 4,2%), but Petrol Hybrid cars have Average Deviation Rates that are 

higher than for Diesel cars 10,1% - 18,5%. This is consistent with the literature, which 

points to their greater susceptibility to specific factors, such as ambient temperature (see, 

for example, Fontaras et al. 2017b). 

Moreover, there are studies that have highlighted plug-in hybrid electric vehicles (PHEV) 

as the worst case regarding divergence estimates, as they frequently exceed 200% of 

divergence (see for example Tietge et al., 2017b). The principal reason is the low electric-

drive share in real-world conditions, compared to official tests, where a high amount of 

electric driving is used (on the battery charged through the electric mains). Actually, the 

distance covered by electricity is around 15%-30% of total distance in real world conditions 

(Ligterink and Eijk, 2014). In this sense, and following Ligterink et al. (2016), policies 

encouraging the purchase of PHEVs face the challenge of ensuring that they are charged in 

an appropriate manner to increase electric-drive shares.  

While PHEVs are not directly considered in this paper, the broader point is that hybrid 

petrol and plug-in hybrid electric vehicles stand to gain market share. If the divergence is 

high for these types of vehicle, the implications for consumers are correspondingly a 

concern. 

Turning to the various segments, ‘Luxury’ and ‘Executive’ show on-road data that is closer 

to official figures, compared to the Medium Car (C) segment (the reference). This result 

implies a second relevant outcome: some of the biggest selling cars17 are those with higher 

ADRs. 

 
17 See for example the page 16 of “European vehicle market statistics pocketbook 2017-18” by The 
International Council of Clean Transportation. 
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Time variables (Registration Year and Dieselgate) are also very relevant and they show 

another outcome of these estimations. Both variables show opposite results: while ADR 

increases over time (a positive coefficient of around 1.5 percentage points by year), they 

clearly decrease after Dieselgate (a negative coefficient of around 4 percentage points by 

year).18 The latter is one more justification for the gaps: if there were no technical or legal 

changes at this time, why does the ADR decrease after this shock? Only discretionary 

behaviour by brands can explain it. 

We have to bear in mind that Dieselgate relates to NOX emissions, which could have led to 

manufacturers focusing less on optimizing CO2 after this external shock, and less 

optimization may mean greater gaps. In other words, if this hypothesis is true, 

manufacturers have been more focused on NOX in recent years, and some of the strategies 

they have employed have increased the gap, and even caused increased real-world fuel 

consumption. In this case, a new estimation of estimation 1 to 4 of the equation [2] - but 

using on-road emissions as endogenous - would conclude that the coefficient of binary 

variable Dieselgate would be positive. However, this outcome does not emerge and, in fact, 

this estimated parameter shows statistical significance and is negative (i.e., on-road 

emissions decrease after Dieselgate). 

On the other hand, if manufacturers focus on NOX, they could have greater levels of CO2 

(and thus consumption) because they have not continued taking advantage of possible 

“flexibilities” in tests as we have stated in section 1.19 This situation will decreased the gap 

if on-road emissions decrease and official emissions are more stable. We repeated 

previously cited estimations, this time using official emissions as an endogenous variable, 

and no change was found after Dieselgate. 

In the analyses developed by Groups (estimation 3), all have higher values of average 

deviation rates rate than the Toyota group (the reference). Finally, considering the effect of 

Brands in our estimations (estimations 2 and 4), a few brands have different values from 

VW (the reference brand). 

 
18 In order to make a simple robustness check, we applied estimations 3 of Tables 4 and 5, but considering 
two fake periods. Concretely we move the date of Dieselgate one year after and one before. These two 
estimations include no statistical significance of Dieselgate covariate (and Registration variable is still 
statistical significance). They support our main results. 

19 NOX and CO2 are largely decoupled thanks to after-treatment systems 



Pre-print version. Accepted at Transportation Research Part-D 

15 
 

5. Conclusions 

Differences between test figures and actual figures are real, and the relevant literature has 

confirmed this especially for the past two decades. Several papers have studied this gap, 

comparing test results with on-road figures and drivers’ reports, comparing old and new 

tests, and so on. However, this issue needed a causal analysis in order to determine factors 

that can explain this gap.  

In this paper, we used a database from Emissions Analytics, a company that runs 

comparable tests of real-world car fuel and consumption and CO2 emissions. More than 

650 observations from 2010 to 2017 comprise the database. By using regression analysis, 

we have sought to analyze this gap, by simultaneously taking into account car 

characteristics, brands, segments, model characteristics and time trends. The results have 

allowed us to establish some conclusions. 

As mentioned above, the gap exists and it is around 36-38%; but this is an average of 

descriptive data. A causal analysis has allowed us to explain the drivers of this gap. Thanks 

to this analysis, firstly we found that the average deviation rate between official and real 

CO2 emissions increased over this period (2011-2015), but it decreased after Dieselgate. 

The latter is an interesting reflection on manufacturer behaviour because, as far as we 

know, there were no technical or other changes that can explain this outcome. 

Secondly, the petrol hybrid group shows higher rates of deviation than the other segments. 

We must remember that cars in the hybrid sector are often sold to a highly conscientious 

population who may be more concerned about the gap between on-road and official 

results. Thirdly, the segment that is probably one of the biggest-selling (that of the 

medium-sized car) displays higher gaps than that of the Luxury and Executive segments. 

All these outcomes support some of the previous results found in the literature and 

highlight others that have been less studied, giving us information about causal analysis on 

this issue. The change to WLTP and the corresponding test cycle may improve the 

situation, but we have to be cautious due to the behaviour of manufacturers that could take 

advantage (again) of possible “weaknesses” in the test protocol. 

Finally, we have to remember that these differences have specific consequences for 

policies, as well as other factors (such as climate change, the misleading of consumers and 

motorists, taxation policy where based on consumptions or emissions and rates of 
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innovation). Accordingly there are many important reasons to strive to achieve greater 

accuracy. 
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Annex 

Figure 2: Variation Rate Real vs. Official, by segment vehicle. Emissions 

Source: Own elaboration from Emissions Analytics 

 

Figure 3: Average Deviation Rate. Consumption 

 
Source: Own elaboration from Emissions Analytics 
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Figure 4: Average Deviation Rate. CO2 Emissions 

 

Source: Own elaboration from Emissions Analytics 
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Table 3: Average Deviation Rate (ADR). On-road vs. Official. By brand 

Brand ADR 
Consumption 

ADR CO2 
Emissions 

Brand ADR 
Consumption 

ADR CO2 
Emissions 

Alfa Romeo [5] 0.55 (0.25) 0.58 (0.27) Mini [16] 0.38 (0.14) 0.41 (0.14) 
Audi [50] 0.37 (0.11) 0.40 (0.11) Maserati [1] 0.41 0.41 
BMW [55] 0.35 (0.09) 0.36 (0.09) Mazda [18] 0.33 (0.09) 0.34 (0.09) 
Bentley [1] 0.21 0.27 Mercedes-Benz [43] 0.38 (0.11) 0.39 (0.11) 
Chevrolet [4] 0.26 (0.10) 0.27 (0.11) Mitsubishi [6] 0.29 (0.06) 0.31 (0.07) 
Citröen [15] 0.35 (0.09) 0.37 (0.09) Nissan [22] 0.35 (0.12) 0.38 (0.13) 
DS [2] 0.56 (0.02) 0.58 (0.05) Peugeot [19] 0.42 (0.13) 0.45 (0.14) 
Dacia [2] 0.37 (0.12) 0.38 (0.12) Porsche [10] 0.21 (0.09) 0.22 (0.10) 
Fiat [9] 0.33 (0.19) 0.35 (0.22) Renault [23] 0.38 (0.11) 0.41 (0.13) 
Ford [43] 0.41 (0.14) 0.44 (0.14) Rolls Royce [1] 0.19 0.23 
Honda [13] 0.28 (0.06) 0.30 (0.07) SEAT [25] 0.33 (0.11) 0.37 (0.13) 
Hyundai [22] 0.32 (0.11) 0.34 (0.11) Skoda [32] 0.37 (0.11) 0.40 (0.11) 
Infiniti [7] 0.43 (0.12) 0.45 (0.10) SsangYong [5] 0.23 (0.08) 0.25 (0.09) 
Jaguar [14] 0.42 (0.13) 0.41 (0.13) Subaru [5] 0.22 (0.06) 0.23 (0.07) 
Jeep [4] 0.30 (0.15) 0.31 (0.17) Suzuki [6] 0.23 (0.06) 0.27 (0.07) 
Kia [19] 0.35 (0.13) 0.37 (0.13) Toyota [23] 0.35 (0.13) 0.38 (0.15) 
Land Rover [11] 0.35 (0.14) 0.35 (0.14) Vauxhall (Opel) [31] 0.39 (0.15) 0.39 (0.13) 
Lexus [7] 0.24 (0.03) 0.28 (0.03) Volkswagen [60] 0.37 (0.13) 0.40 (0.13) 
MG Motor UK [2] 0.33 (0.09) 0.35 (0.07) Volvo [24] 0.42 (0.13) 0.43 (0.14) 

Source: Own elaboration from Emissions Analytics. Standard deviation by brand in parenthesis. 
Observations by brand are closed to its commercial name. 
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Table 4: Estimation of Average Deviation Rate (ADR). Consumption 

Covariates Estimation 
(1) 

Estimation 
(2) 

Estimation 
(3) 

Estimation 
(4) 

Doors 0.002 0.008 0.004 0.007 
 [0.009] [0.008] [0.012] [0.009] 
Seats 0.004 0.014 0.009 0.011 
 [0.009] [0.009] [0.014] [0.011] 
Ln(engine cc) -0.178*** -0.198*** -0.148*** -0.184*** 
 [0.024] [0.025] [0.032] [0.027] 
Gears 0.020*** 0.013** 0.019** 0.013* 
 [0.006] [0.006] [0.009] [0.007] 
Driven wheels -0.021** -0.016* -0.029** -0.016* 
 [0.008] [0.009] [0.012] [0.010] 
Transmission -0.044*** -0.043*** -0.043** -0.044*** 
 [0.013] [0.013] [0.019] [0.015] 
Diesel Hybrid 0.045 0.022 -0.018 0.021 
 [0.051] [0.050] [0.083] [0.051] 
Petrol -0.030*** -0.033*** -0.023 -0.042*** 
 [0.011] [0.011] [0.016] [0.012] 
Petrol Hybrid 0.101** 0.161*** 0.185*** 0.178*** 
 [0.040] [0.043] [0.064] [0.050] 
Executive Car E -0.066** -0.087*** -0.057* -0.062** 
 [0.026] [0.026] [0.031] [0.029] 
Large Car D -0.017 -0.021 -0.026 -0.027 
 [0.016] [0.016] [0.021] [0.018] 
Luxury Car F -0.062 -0.115*** -0.064 -0.070 
 [0.038] [0.043] [0.048] [0.064] 
Mini Car A 0.007 0.043 0.045 0.046 
 [0.028] [0.029] [0.039] [0.030] 
Multipurpose Car M -0.016 -0.002 -0.030 -0.005 
 [0.026] [0.026] [0.037] [0.029] 
Small Car B 0.016 0.018 0.035 0.020 
 [0.015] [0.015] [0.022] [0.016] 
Sport Utility Offroad J -0.030 -0.033 -0.069 -0.044 
 [0.023] [0.024] [0.042] [0.029] 
Sports Coupe S -0.041 -0.032 -0.038 -0.035 
 [0.026] [0.025] [0.030] [0.026] 
Registration Year 0.010** 0.014*** 0.016*** 0.011** 
 [0.004] [0.004] [0.006] [0.005] 
After Dieselgate -0.017 -0.035** -0.047** -0.041** 
 0.002 [0.016] [0.022] [0.017] 
VW group   0.099***  
   [0.031]  
General Motors Group   0.086**  
   [0.035]  
Toyota Group   Reference 

group 
 

    
BMW Group   0.088**  
   [0.035]  
Daimler Group   0.090**  
   [0.038]  
Abarth Group   0.096**  
   [0.041]  
AlfaRomeo  0.133***   
  [0.050]   
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(continuation Table 4) 

Covariates Estimation 
(1) 

Estimation 
(2) 

Estimation 
(3) 

Estimation 
(4) 

Audi  0.044**  0.041* 
  [0.021]  [0.022] 
BMW  0.006  0.005 
  [0.021]  [0.022] 
Bentley  0.206*   
  [0.120]   
Chevrolet  -0.085   
  [0.055]   
Citroen  -0.023  -0.027 
  [0.031]  [0.032] 
DS  0.149*   
  [0.077]   
Dacia  -0.019   
  [0.077]   
Fiat  -0.083**  -0.089** 
  [0.041]  [0.042] 
Ford  0.045**  0.044** 
  [0.022]  [0.022] 
Honda  -0.099***  -0.098*** 
  [0.033]  [0.033] 
Hyundai  -0.091***  -0.095*** 
  [0.027]  [0.028] 
Infiniti  0.041   
  [0.044]   
Jaguar  0.091**   
  [0.037]   
Jeep  0.002   
  [0.056]   
Kia  -0.040  -0.037 
  [0.028]  [0.029] 
LandRover  0.070*   0.075* 
  [0.038]  [0.040] 
Lexus  -0.107**   
  [0.054]   
MGMotorUK  -0.029   
  [0.076]   
MINI  0.033  0.028 
  [0.032]  [0.032] 
Maserati  0.135   
  [0.114]   
Mazda  -0.015   
  [0.029]   
MercedesBenz  0.015  0.013 
  [0.024]  [0.025] 
Mitsubishi  -0.040   
  [0.047]   
Nissan  0.031  0.033 
  [0.029]  [0.030] 
Peugeot  0.038  0.034 
  [0.029]  [0.029] 
Porsche  0.014   
  [0.042]   
Renault  -0.014  -0.016 
  [0.027]  [0.027] 
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(continuation Table 4) 

Covariates Estimation 
(1) 

Estimation 
(2) 

Estimation 
(3) 

Estimation 
(4) 

RollsRoyce  0.159   
  [0.122]   
SEAT  -0.038  -0.041 
  [0.026]  [0.026] 
Skoda  -0.006  -0.007 
  [0.024]  [0.024] 
SsangYong  -0.093*   
  [0.050]   
Subaru  -0.100*   
  [0.051]   
Suzuki  -0.172***   
  [0.046]   
Toyota  -0.084***  -0.093*** 
  [0.030]  [0.031] 
Vauxhall  0.005  0.007 
  [0.024]  [0.024] 
Volvo  0.056**   
  [0.026]   
Body style Included Included Included Included 
Constant -18.705** -25.662*** -31.667** -21.276** 
 [8.527] [8.521] [12.130] [9.453] 
Sample All sample All sample Only Car 

groups 
Only Big 
firms by 
market 
share 

Observations 655 655 352 531 
R-squared 0.263 0.387 0.299 0.310 

Note: Standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Estimation of Average Deviation Rate (ADR). CO2 Emissions 

Covariates Estimation 
(1) 

Estimation 
(2) 

Estimation 
(3) 

Estimation 
(4) 

Doors 0.011 0.017** 0.017 0.016* 
 [0.009] [0.008] [0.011] [0.009] 
Seats 0.001 0.012 0.003 0.010 
 [0.009] [0.009] [0.014] [0.010] 
Ln(engine cc) -0.194*** -0.214*** -0.162*** -0.205*** 
 [0.024] [0.025] [0.031] [0.027] 
Gears 0.020*** 0.013** 0.018** 0.012* 
 [0.006] [0.006] [0.009] [0.007] 
Driven wheels -0.021** -0.016* -0.033*** -0.016* 
 [0.008] [0.008] [0.011] [0.010] 
Transmission -0.046*** -0.042*** -0.044** -0.044*** 
 [0.013] [0.013] [0.019] [0.014] 
Diesel Hybrid 0.053 0.032 -0.014 0.029 
 [0.051] [0.050] [0.081] [0.051] 
Petrol 0.002 -0.001 0.004 -0.010 
 [0.011] [0.011] [0.015] [0.012] 
PetrolHybrid 0.143*** 0.211*** 0.228*** 0.225*** 
 [0.040] [0.043] [0.063] [0.049] 
Executive Car E -0.069*** -0.090*** -0.059** -0.063** 
 [0.026] [0.026] [0.030] [0.029] 
Large Car D -0.018 -0.020 -0.022 -0.023 
 [0.016] [0.016] [0.020] [0.018] 
Luxury Car F -0.058 -0.108** -0.056 -0.072 
 [0.038] [0.043] [0.047] [0.063] 
Mini Car A 0.004 0.047* 0.053 0.050* 
 [0.028] [0.029] [0.038] [0.030] 
Multipurpose Car M -0.014 0.006 -0.013 0.005 
 [0.026] [0.026] [0.036] [0.028] 
Small Car B 0.019 0.024 0.048** 0.027* 
 [0.015] [0.015] [0.021] [0.016] 
Sport Utility Offroad J -0.030 -0.026 -0.061 -0.033 
 [0.023] [0.024] [0.041] [0.029] 
SportsCoupeS -0.039 -0.030 -0.032 -0.032 
 [0.026] [0.024] [0.029] [0.026] 
Registration Year 0.014*** 0.018*** 0.022*** 0.016*** 
 [0.004] [0.004] [0.006] [0.005] 
After Dieselgate -0.025 -0.044*** -0.059*** -0.050*** 
 [0.016] [0.015] [0.022] [0.017] 
VW group   0.112***  
   [0.030]  
General Motors Group   0.062*  
   [0.034]  
Toyota Group   Reference 

group 
 

    
BMW Group   0.094***  
   [0.034]  
Daimler Group   0.105***  
   [0.037]  
Abarth Group   0.100**  
   [0.040]  
AlfaRomeo  0.138***   
  [0.049]   
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(continuation Table 5) 

Covariates Estimation 
(1) 

Estimation 
(2) 

Estimation 
(3) 

Estimation 
(4) 

Audi  0.044**  0.041* 
  [0.021]  [0.022] 
BMW  -0.001  -0.002 
  [0.021]  [0.022] 
Bentley  0.234**   
  [0.119]   
Chevrolet  -0.100*   
  [0.055]   
Citroën  -0.029  -0.033 
  [0.031]  [0.031] 
DS  0.128*   
  [0.077]   
Dacia  -0.026   
  [0.076]   
Fiat  -0.096**  -0.102** 
  [0.041]  [0.042] 
Ford  0.043**  0.044** 
  [0.021]  [0.022] 
Honda  -0.108***  -0.106*** 
  [0.033]  [0.033] 
Hyundai  -0.096***  -0.100*** 
  [0.027]  [0.027] 
Infiniti  0.035   
  [0.044]   
Jaguar  0.075**   
  [0.037]   
Jeep  -0.012   
  [0.055]   
Kia  -0.044  -0.041 
  [0.028]  [0.029] 
LandRover  0.059  0.065* 
  [0.038]  [0.039] 
Lexus  -0.119**   
  [0.054]   
MGMotorUK  -0.050   
  [0.075]   
MINI  0.026  0.021 
  [0.031]  [0.032] 
Maserati  0.118   
  [0.113]   
Mazda  -0.029   
  [0.029]   
MercedesBenz  0.019  0.017 
  [0.024]  [0.024] 
Mitsubishi  -0.044   
  [0.046]   
Nissan  0.027  0.029 
  [0.029]  [0.030] 
Peugeot  0.031  0.027 
  [0.028]  [0.029] 
Porsche  0.012   
  [0.041]   
Renault  -0.005  -0.006 
  [0.026]  [0.027] 
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(continuation Table 5) 

Covariates Estimation 
(1) 

Estimation 
(2) 

Estimation 
(3) 

Estimation 
(4) 

RollsRoyce  0.161   
  [0.121]   
SEAT  -0.030  -0.032 
  [0.025]  [0.026] 
Skoda  -0.010  -0.011 
  [0.024]  [0.024] 
SsangYong  -0.107**   
  [0.050]   
Subaru  -0.108**   
  [0.050]   
Suzuki  -0.184***   
  [0.045]   
Toyota  -0.095***  -0.104*** 
  [0.030]  [0.031] 
Vauxhall  -0.037  -0.035 
  [0.024]  [0.024] 
Volvo  0.055**   
  [0.026]   
Body style Included Included Included Included 

Constant -26.241*** -35.082*** -42.544*** -30.926*** 
 [8.516] [8.443] [11.821] [9.350] 
Sample All sample All sample Only Car 

groups 
Only Big 
firms by 
market 
share 

Observations 655 655 352 531 
R-squared 0.300 0.427 0.352 0.362 

Note: Standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 


