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Abstract 

Electrical energy production using renewable energies is one of the most important challenges 
in recent years. Among renewable energies, it is worth highlighting photovoltaic and 
thermoelectric systems due to their adaptation to the Canary Islands. One of the most 
important issues to ensure the stability for solar power systems, mostly in insular grids as 
Canary Islands, is the precise knowledge of solar radiation. In this paper, we focus in Gridded 
Satellite data suitability for modelling Global Horizontal Irradiation (GHI) in islands with 
complicated orography, as Canary Islands. Solar radiation data retrieved from CM SAF and 
McClear model were analysed and compared with 22 ground measurement stations in Canary 
Islands. Moreover, this analysis presents the results of including a site-adaptation 
methodology for improving satellite suitability. We used different procedures to perform this 
site adaptation depending on the solar radiation conditions (clear sky or cloudy sky hours), the 
location of the measurement station (we establish two clusters according to the climate 
conditions) and the season. This study could provide information about satellite models 
suitability in islands and a better knowledge of solar radiation behaviour. Furthermore, 
accurate satellite radiation data for wide spatial and temporal coverage could improve solar 
radiation modelling and forecasting. 
 

Keywords 

Solar Irradiance, Satellite images, Site adaptation, Clear sky  

 
Highlights 

• Assessment of CM SAF satellite derived solar radiation data and clear sky models in 
islands.  

• Selection of clear sky hours and clustering of the region to obtain optimal site 
adaptation. 

• Discussion of satellite assessment and proposal a site-adaptation

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.renene.2018.11.099


   

 

2 
 

1. Introduction 1 

Renewable electrical energy generation development is one of the most important issues for 2 
the next years. European Union (EU) institutions approved the renewable energies electrical 3 
generation must exceed the 20% of total generation in the EU for 2020 and EU is proposing a 4 
limit of 32% of renewable generation for 2030. According with this policy, the project 5 
“Gorona del Viento” in El Hierro island (Canary Islands, Spain) has reached 100% of 6 
renewable electrical generation for the whole island. In case of solar energy, both PV 7 
producers and CSP facilities, the knowledge of solar radiation at ground level is one of the 8 
most critical issues for increasing the percentage of electrical generation from this resource. 9 
Global horizontal irradiance (GHI), direct normal irradiance (DNI) and diffuse horizontal 10 
irradiance (DHI) are the main solar radiation components. The assessment of these data from 11 
remote sensing retrievals in islands with complex orography is not frequently found in the 12 
evaluation of satellite-derived data elsewhere.  13 
 14 
In Canary Islands, it is possible to find 22 ground measurement stations located in the seven 15 
islands and covering the whole territory. Complex orography of the islands and the effect of 16 
global winds, such as Trade Winds, generate a very local and changing climatological 17 
variations in the territory. Indeed, an accurate GHI mapping and forecasting in any location 18 
could provide better information for managing renewable electrical generation than single 19 
measurement datasets. In this sense, we can find solar radiation numerical models to obtain 20 
GHI data at any location [1]. This model takes into account the effects of geometrical, 21 
astrophysical and atmospheric considerations on the radiation at ground level. Surface GHI on 22 
the whole territory is calculated using factors as elevation, albedo, surface inclination and 23 
shadows casts [2]. This model uses an adaptive mesh of triangles to represent the terrain and 24 
its orography, a clear sky spatial model [3] and ground measurement station data. 25 
 26 
Surface solar irradiance can also be obtained using satellite models from meteorological 27 
satellites images [4], such as Meteosat or NOAA (National Oceanic and Atmospheric 28 
Satellite). With this aim, satellites analysed clouds with different spatial and temporal 29 
resolutions using different sensors. NOAA and MetOp (Meteorological Operational Satellite) 30 
polar-orbiting satellites use the Advanced Very High-Resolution Radiometer (AVHRR) 31 
sensor. This family of sensors provide images of visible (VIS), near-infrared (NIR) and 32 
infrared (IR) bands. Climate data are derived from AVHRR sensor mounted by polar-orbiting 33 
NOAA and METOP satellites. This data record is known as “the CM SAF Cloud, Albedo 34 
And Surface Radiation dataset from AVHRR data” – second edition (CLARA-A2) [5]. 35 
CLARA-A2 products present different spatial resolution, from 0.05ºx0.05º to 0.25ºx0.25º, 36 
depending on the temporal resolution and the specific product. Moderate Resolution Imagin 37 
Spectroradiometer (MODIS) instruments have improved VIS/IR imager on board of polar-38 
orbiting satellites. Terra and Aqua satellites mounted these devices. Earth's Radiant Energy 39 
System (CERES) is designed to improve the knowledge of the relation between cloud 40 
properties and solar and longwave radiation. CERES analyses data from the Tropical Rainfall 41 
Measuring Mission Visible and Infrared Scanner and the MODIS instruments covering period 42 
from 1998 to 2007 [6]. 43 
 44 
Polar orbiting satellites data presents a low temporal sampling rate. Geostationary instruments 45 
mounted in satellites improve this weakness obtaining higher temporal resolution information. 46 
Meteosat Second Generation (MSG) satellites mounted on board one of the most advanced 47 
imager in geostationary satellites, Spinning Enhanced Visible and InfraRed Imager (SEVIRI). 48 
Heliosat methods provide solar radiation data at ground level using Meteosat images. First 49 
Heliosat version provides solar radiation data using a linear relation between clearness index 50 
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and cloud index. This relation was later substituted by the clear sky index instead of clearness 51 
index [7]. In this way, Heliosat-2 estimates solar radiation using a clear sky model [8]. 52 
Moreover, Heliosat-3 introduces new formulations for clear sky transmittance and cloud 53 
index to improve the model using MSG visible channel [9]–[11]. Satellite Application 54 
Facility on Climate Monitoring (CM SAF) provides solar radiation and cloud characteristics 55 
processing images from MSG geostationary satellite network with SEVIRI sensor on board 56 
and NOAA polar satellites with AVHRR [12], [13]. Heliosat method and MAGIC approach 57 
converts satellite information and images in global and direct normal irradiance. The solar 58 
radiation data estimated with this method were validated with Baseline Surface Radiation 59 
Network (BSRN) ground stations and provided in Surface Solar Radiation Data Set – Heliosat 60 
(SARAH) database [14]. 61 
 62 
Solar radiation data retrieved from satellite models give high spatial and temporal resolutions 63 
depending on the geographical area. Satellite models provide both GHI, DNI and some 64 
information about clouds and atmosphere conditions depending on the model and 65 
geographical area. The accurateness of these satellite-derived data compared with ground data 66 
is different depending on the satellite model and location. In this way, Eissa studied the 67 
resolution of Helioclim [15], [16] data and surface downwelling solar irradiances estimated 68 
by the McClear [17] model under cloud-free skies in several stations in Egypt. They report 69 
worse errors (between 17 and 30% in general) in northern station closer to the sea. While 70 
Ineichen [18] worked with BSRN stations with hourly data a reported an assessment study 71 
with errors around 17% for global radiation and 34% for direct normal irradiance. On the 72 
other hand, using CMSAF database Antonanzas et al. [19] shows a satellite derived data 73 
assessment study for monthly and yearly time step. In this study, CMSAF was compared with 74 
a set of ground stations in Spain and obtained around 4% rRMSE. Vindel et al. [20] compared 75 
the accuracy of CMSAF and ERA-Interim reanalysis [21], provided by the European Centre 76 
for Medium-Range Weather Forecasts (ECMWF), in three stations with different climates in 77 
Spain. The results obtained in this work are in agreement with the study of Bojanowski et al. 78 
[22] (rRMSE for CMSAF among 10%-15% in zones with Mediterranean climate and among  79 
20%-30% in zones with oceanic climate). 80 
 81 
Satellite solar radiation data often shows systematic errors, such as overestimation or 82 
underestimation trends, often due to regional inconsistencies in the external aerosols input 83 
data and other systematic errors. This bias between satellite and ground data could be reduced 84 
by finding a correction factor from the correlation of both time series [23], [24], [25]. It is also 85 
possible to reduce bias using a linear fitting of both datasets, as explained by Polo et al. [26] 86 
for stations in India depending on the season. Other methods include non-linear fittings, as 87 
Mieslinger et al. [27] minimizing a quadratic error expression, Schumann [28] using 88 
cumulative distribution function characteristics or Bender et al. [29] combining short-term 89 
ground measurements with longer-term satellite data with a multi-variate linear regression 90 
analysis. Vernay et al. [30], who proposed a new method using Fourier decomposition for 91 
calibrating daily global irradiation retrieved from HelioClim-3 database. 92 
 93 
This paper reports an assessment of satellite-derived data using CMSAF hourly database for 94 
islands with complicated orography. The study divides results and discussion, taking into 95 
account the location, by clustering the region according to climatological conditions and sky 96 
conditions (distinguishing between clear sky and cloudy sky hours). The reader finds detail 97 
information about the level of certainty obtained with CMSAF and McClear model. 98 
Moreover, a method to improve solar radiation assessment by the combination of a clear sky 99 
model and a site adaptation model is proposed. In this way, this paper establish an easily 100 
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extensible methodology for satellite-derived radiation data adaptation, based on a physical 101 
clustering of data and a linear regression model. Section 2 shows the data used in this paper, 102 
both ground measurement and satellite, while Section 3 provides information about the 103 
methodology performed to obtain the results. Section 4 and 5 present the results obtained for 104 
satellite-derived data comparison with ground measurement and site adaptation results 105 
respectively. Finally, Section 6 reports the conclusion of this paper. 106 
 107 

2. Solar radiation data 108 

In this study, ground data from measurement stations have been used to validate both 109 
satellite-derived and clear sky models data. 110 
 111 
2.1 Ground Data Set 112 

Satellite-derived data provide information with high spatial and temporal resolution, so they 113 
are an important source to study solar radiation behavior in many locations. However, satellite 114 
models should be validated using ground measurement datasets in order to establish the 115 
accuracy of these data. In this paper, we used 22 ground stations around Canary Islands to 116 
compare and study satellite GHI data and clear sky data. Ground stations are handled by the 117 
Agroclimatic Information System for Irrigation (SIAR) and the State Meteorological Agency 118 
(AEMET). The raw data obtained for this work include the years 2010 and 2011. 119 

. 120 

Station Island Source 
Lat 

(º) 

Long. 

(º) 

Alt. 

(m) 
Period 

Nº data 

(filter) 

clear 

sky % 

Mean 

W/m2 

Std 

W/m2 

Gáldar (GAL) Gran Canaria SIAR 28.16 -15.67 16 2010-11 7250 28 455.06 251.01 

San Mateo (SMA) Gran Canaria SIAR 28.02 -15.53 785 2010-11 7250 32 447.72 283.77 

Vecindario (VEC) Gran Canaria SIAR 27.84 -15.43 76 2010-11 7267 55 537.49 264.87 

Maspalomas (MASP) Gran Canaria AEMET 27.76 -15.76 265 2010-11 7285 58 541.90 261.40 

Izaña (IZA) Tenerife AEMET 28.31 -16.50 
237
1 

2010-11 7265 72 634.24 295.68 

Garimba (GAR) Tenerife SIAR 28.51 -16.39 493 2010-11 7266 13 389.94 243.71 

Valle Guerra-Pajarillos 
(PAJ) 

Tenerife SIAR 28.53 -16.39 110 2010-11 7245 23 443.32 258.11 

El Pico (PIC) Tenerife SIAR 28.52 -16.37 256 2010-11 7103 22 446.73 266.20 

Puerto de la Cruz 
(PCR) 

Tenerife SIAR 28.41 -16.53 142 2011 3568 18 389.79 249.90 

Guía de Isora (ISO) Tenerife SIAR 28.23 -16.83 48 2011 3568 42 515.93 250.79 

La Fuente (LFU) Tenerife SIAR 28.37 -16.86 28 2010-11 7237 18 419.21 247.86 

La Laguna – Güímar 

(LLA) 
Tenerife SIAR 28.32 -16.38 156 2011 3569 47 485.28 264.89 

San Sebastián (SSB) La Gomera SIAR 28.10 -17.12 63 2010-11 7236 41 486.29 264.21 

Hermigua (HER) La Gomera SIAR 28.17 -17.20 213 2010 3670 11 382.69 281.10 

Barlovento (BAR) La Palma SIAR 28.83 -17.78 139 2010-11 7230 12 371.22 243.59 

Tazacorte II (TAZII) La Palma SIAR 28.60 -17.92 94 2010-11 7248 31 482.84 276.41 

Los Llanos de Aridane 

(ARI) 
La Palma SIAR 28.65 -17.92 281 2010-11 6730 39 492.18 258.64 

Fuencaliente (FUE) La Palma SIAR 28.49 -17.87 65 2010-11 7249 12 443.91 276.72 

Frontera (FRO) El Hierro SIAR 27.78 -18.01 54 2011 3572 18 439.54 262.06 

Haría (HAR) Lanzarote SIAR 29.10 -13.48 105 2010-11 7124 29 478.77 256.68 

Tinajo (TIN) Lanzarote SIAR 29.05 -13.66 271 2011 7260 17 435.90 243.88 

Antigua (ANT) Fuerteventura SIAR 28.33 -13.94 120 2010-11 7266 44 501.45 256.75 
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Table 1.- Ground measurement stations and datasets information. 121 
 122 

It is a common practice in solar radiation discussions to use a quality check procedure in 123 
order to avoid wrong measurement stations [31], [32], [16]. In this paper, we used the 124 
physically possible limits and maximum allowed variability to filter out raw GHI data. 125 
Moreover, in this paper the authors compared the whole data set with a clear sky model 126 
(McClear) day by day. In this way, we checked and filtered out any extremely rare situation. 127 
Indeed, only global solar radiation below exoatmospheric theoretical radiation and over zero 128 
are considered valid data. In case an hourly data is not valid, the whole day is rejected, so the 129 
final dataset only contains valid hourly data for complete days. Furthermore, to calculate 130 
errors and deviation between satellite and ground data, night values were not considered. The 131 
variable used to distinguish between night and daily data is the zenith angle, taking into 132 
account a limit of 80º. Table 1 shows the main information of each location used in this 133 
survey and the final valid data once we filtered out datasets. 134 
 135 

 136 
2.2 Satellite-derived Data Set 137 

As explained before, satellite-derived data used in this survey were retrieved from the 138 
Satellite Application Facility on Climate Monitoring (CM SAF). CM SAF datasets estimate 139 
solar radiation from images taken with Meteosat Second Generation (MSG) geostationary 140 
satellite network with SEVIRI sensor on board and NOAA polar satellites with AVHRR 141 
sensor. The model used by CMSAF to calculate global and direct normal irradiance from 142 
satellite information and images is based on the Heliosat method and the MAGICSOL 143 
approach. The radiation data estimated with this method are validated with BSRN ground 144 
stations and provided in SARAH database [14]. In this paper, the hourly global solar radiation 145 
data comes from the “SARAH-1 database [12], specifically the v002, SIS - Surface incoming 146 
shortwave radiation, MVIRI/SEVIRI on METEOSAT, Hourly, Mean, MSG full disk (includes 147 
Europe, Africa, Atlantic Ocean)”. The region of interest retrieved for this paper corresponds 148 
to the Canary Islands, from 27º N to 30º N in latitude and from -13º W to -19º W in longitude, 149 
with a spatial resolution of 0.5x0.5º for each pixel. The period considered is 01/012010 to 150 
31/12/2011 for the whole area. The variable retrieved and studied in this paper is the Surface 151 
incoming shortwave radiation (SIS) from SARAH-1 database. SIS corresponds to the Global 152 
Solar Radiation, expressed in Wm-2, and it is considered as the irradiance reaching a 153 
horizontal plane at the Earth surface in the 0.2 - 4 μm wavelength region. 154 

 155 
This study consists of validating CM SAF hourly data for the Canary Islands ground 156 

measurement stations and provides a discussion about satellite data assessment in islands. 157 
Before calculating errors for each location with hourly data provided for the whole grid in 158 
years 2010 and 2011, we estimated daily average following CM SAF recommendations [14]: 159 

 160 

𝑆𝐼𝑆𝐷𝐴 = 𝑆𝐼𝑆𝐶𝐿𝑆𝐷𝐴
∑ 𝑆𝐼𝑆𝑖
𝑛
𝑖=1

∑ 𝑆𝐼𝑆𝐶𝐿𝑆𝑖
𝑛
𝑖=1

     (1) 161 

 162 

Where 𝑆𝐼𝑆𝐶𝐿𝑆𝐷𝐴 is the Clear sky model daily average, 𝑆𝐼𝑆𝑖  is ground IGH hourly data and 163 

𝑆𝐼𝑆𝐶𝐿𝑆𝑖 is clear sky IGH hourly data. The monthly average is calculated from the daily means, 164 

𝑆𝐼𝑆𝐷𝐴. These daily and monthly averages allow us to overview the general approach of 165 
satellite-derived data to the Canary Islands climate conditions. Fig. 1 shows monthly means of 166 
CM SAF database global solar radiation in July and October for Canary Islands. Gridded 167 
satellite shows quite satisfactorily the general trend of the climatological conditions in the 168 
whole area. In summer months, a major presence of clouds in northern areas is easily 169 
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observed. On the other hand, during fall months solar radiation shows stable levels throughout 170 
the whole grid. The presence of Trade winds, mostly during summer months, generates an 171 
accumulation of clouds because of the complex orography of the northern parts of the Islands. 172 
Satellite-derived data show consistent information according to the climatological knowledge 173 
and ground measurement. 174 
 175 

 176 

Figure 1.- SIS Monthly means of gridded satellite data for Canary Islands, July (left) and 177 
October (right) 2010. 178 

 179 
 180 

3. Methodology of satellite data assessment and adaptation 181 

Firstly, satellite hourly data are compared with ground data in every location individually. 182 
In order to establish a rigorous comparison for all types of weather conditions, we have 183 
distinguished between hours with clear skies and hours with a presence of clouds. In this way, 184 
the precision of the model can be discerned in both conditions and also compared with clear-185 
sky models. As observed in Fig. 1, the climatological conditions in the northern zone of the 186 
islands are completely different from southern one. Therefore, a division of the entire territory 187 
of the islands has been made taking into account solar radiation data retrieved from the 188 
satellite for the whole grid. We have divided both satellite and ground measurement station in 189 
two clusters and studied the comparison of both clusters separately. Indeed, the next sections 190 
explain the steps followed in this study. 191 

 192 

3.1 Clear sky models  193 

A clear sky model estimates solar radiation components at ground level only taking into 194 
account clear skies’ instants, i.e. for cloudless conditions. In the bibliography, it is possible to 195 
find several clear models with very good accuracy. Most of these models estimate global solar 196 
radiation using different atmospheric parameters that represent the state of the atmosphere in 197 
terms of attenuation of solar radiation. Most of these models use attenuation parameters as the 198 
aerosol optical depths (AODs), water vapour, ozone, Linke turbidity factor or pressure. 199 
AERONET measurement stations provide AODs and water vapour data for a wide variety of 200 
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locations and a broad period of time [33], while World Ozone Monitoring Mapping provided 201 
by the Canadian Government give the possibility of retrieving ozone values in several stations 202 
[34]. Monitoring Atmospheric Composition and Climate (MACC) project also offers AODs, 203 
water vapour, ozone and other data records on atmospheric composition for the whole world 204 
from 2004, available in [35]. In addition, the Modern-Era Retrospective analysis for Research 205 
and Applications, Version 2 (MERRA-2), is a long-term global reanalysis to assimilate space-206 
based observations of aerosols and represent their interactions with other physical processes 207 
in the climate system. MERRA-2 provides data from 1980 [36]. The results obtained 208 
comparing different clear sky models with ground measurement data only for clear sky 209 
conditions offers very good results all around the world [37], [38]. 210 

 211 
One of the most well-known clear sky models in solar energy community is Bird and 212 

Hullstrom model [39], which considers several mechanisms of interaction with the 213 
atmosphere as Rayleigh dispersion, absorption of ozone, oxygen, CO2 and water vapour or 214 
absorption and dispersion of aerosols. Another widely used in solar energy field is the REST2 215 
model [40], a dual-band model based on the CPCR2 model including spectral distribution of 216 
exoatmospheric radiation, solar constant, Angstrom turbidity, water vapour and reduced NO2. 217 
The clear sky model used in this paper is McClear sky model [41]. This model estimates data 218 
series for global horizontal clear sky irradiance (GHIcs), direct normal clear sky irradiance 219 
(DNIcs) and diffuse horizontal clear sky irradiance (DHIcs) and it is available in [35] from 220 
2004 to current day minus 2, “d-2”. This model is available worldwide with a temporal 221 
resolution of minute, hourly, daily or monthly time step. MACC project provides atmospheric 222 
composition parameters used in McClear model, such as AOD at 550 and 1240 nm, water 223 
vapour and ozone column. McClear model differs from the transmittance models mentioned 224 
above in the implementation approach. McClear is a Look-up table (LUT) model as a result of 225 
many radiative transfer calculations with libRadtran covering the whole range of values of the 226 
main involving parameters. The results of McClear are available from Copernicus 227 
Atmosphere Monitoring Service (CAMS, http://www.soda-pro.com/web-228 
services/radiation/cams-mcclear). 229 
  230 
3.2 Identification of clear sky days 231 

A very important issue when studying a clear sky model is to assess the accuracy to 232 
estimate solar radiation comparing with ground measurements. Firstly, it is necessary to 233 
separate the clear skies (cloud free skies) from the cloudy skies in our ground dataset. In this 234 
was, it is possible to compare the clear sky model with clear skies ground data. It is possible 235 
to find different methods in the bibliography to find out only clear sky hours. A group of 236 
methods estimates clear sky hours using and relating global, beam and diffuse radiation. 237 
Ineichen [37], [42] proposes a method to detect clear skies studying the stability of clearness 238 
index and the broad band AOD and relating diffuse, global and beam solar radiation. Lefevre 239 
et al. [38], in the same way, propose studying clearness index, corrected clearness index, 240 
direct normal radiation clearness index and diffuse fraction.  241 

 242 
In this paper, the method proposed detects clear sky individual hours from the ground 243 

datasets only using GHI [43], [44]. The model separates clear and cloudy skies comparing for 244 
each period a clear sky model with the ground data,. To evaluate the comparison of both data 245 
series for each day, we calculate the correlation coefficients matrix, C, and its determinant, 246 
Eq. (2). If this determinant is lower than a threshold this period is considered clear sky. The 247 
threshold should be established experimentally once we have observed the data. 248 

 249 

http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-mcclear
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𝐶 = [
𝜌𝐺𝐻𝐼,𝐺𝐻𝐼 𝜌𝐺𝐻𝐼,𝐺𝐻𝐼𝑐𝑠
𝜌𝐺𝐻𝐼𝑐𝑠 ,𝐺𝐻𝐼 𝜌𝐺𝐻𝐼𝑐𝑠,𝐺𝐻𝐼𝑐𝑠

] = [
1 𝜌𝐺𝐻𝐼,𝐺𝐻𝐼𝑐𝑠

𝜌𝐺𝐻𝐼𝑐𝑠 ,𝐺𝐻𝐼 1
] , 𝐹 = det(𝐶) (2) 250 

 251 

𝜌𝐺𝐻𝐼𝑐𝑠,,𝐺𝐻𝐼 =
𝐶𝑜𝑣(𝐺𝐻𝐼𝑐𝑠,𝐺𝐻𝐼)

𝜎𝐺𝐻𝐼𝑐𝑠𝜎𝐺𝐻𝐼
      (3) 252 

 253 

Where cov denotes the covariance, σ means the standard deviation, GHI and GHIcs denote 254 

the hourly time series for global irradiance measured and that of clear sky estimated, 255 
respectively. This method separates daily periods of clear and cloudy skies, so we obtained 256 
days completely cloud-free to evaluate the clear sky models. However, to obtain a higher 257 
number of clear sky hours, Reno and Hansen [38][45] use a moving window of period of 258 
times with 1 min. data series to detect individual cloud-free conditions. This method separates 259 
clear and cloudy skies using several conditions and thresholds. These conditionsare the 260 
maximum GHI value in each period, the mean GHI value in each period and three different 261 
parameters to study the variability of each period. As in the previous case, the threshold of 262 
each condition should be considered experimentally once we have observed ground hourly 263 
data. If the considered period meets all the conditions, the hours of this period are considered 264 
clear sky.  265 

 266 
In this paper, a methodology using both previous methods to detect clear skies individual 267 

hours is proposed. First, if one single day meets the daily correlation determinant condition, F, 268 
the whole hours of this day are considered clear skies [43]. If not, we used the moving 269 
window method to detect possible individual cloud-free hours. As, Reno and Hansen [45] 270 
works with 1 min. data series, we should stablish new threshold for each condition. Each 271 
moving window, with four hours each window, should meet five conditions to be considered 272 
clear sky. If one hour belongs at least to a window considered clear sky, this hour is also 273 
considered cloud-free. The conditions and thresholds used in this paper are obtained 274 
experimentally studying the data: 275 

 276 

• Daily correlation determinant (F) between clear sky model and ground data, 277 
Eq. (2), should be lower than 0.02.  278 

• Mean value of GHI in the window should be lower than 30 W/m2. 279 

• Maximum value of GHI in the window should be lower than 30 W/m2. 280 

• Line length (L) of GHI in the window, Eq. (4), should be between -19 and 19, 281 
with the GHI length calculated with hourly data in W/m2. Where “t” is the time 282 
step, in this case hourly data. 283 

 284 

𝐿 = ∑ √(𝐺𝐻𝐼𝑖+1 − 𝐺𝐻𝐼𝑖)2 + (𝑡𝑖+1 − 𝑡𝑖)2
𝑛−1
𝑖=1    (4) 285 

 286 

• Standard deviation of rate of change (s), Eq, (5), in GHI in the window should 287 
be lower than 0.24 calculated with hourly data in W/m2. 288 

 289 

𝑠𝑖 =
𝐺𝐻𝐼𝑖+1−𝐺𝐻𝐼𝑖

𝑡𝑖+1−𝑡𝑖
∀𝑖 ∈  {1, 2,… . , 𝑛 − 1}    (5) 290 

 291 

• Maximum difference (X) between changes in GHI and clear sky time series in 292 
the window, Eq. (6) should be lower than 26 W/m2. 293 

 294 

𝑋 = 𝑚𝑎𝑥{|(𝐺𝐻𝐼𝑖+1 − 𝐺𝐻𝐼𝑖+1,𝑐𝑠) − (𝐺𝐻𝐼𝑖 − 𝐺𝐻𝐼𝑖,𝑐𝑠)|}∀𝑖 ∈  {1, 2,… . , 𝑛} (6) 295 
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 296 
  297 

3.3 Clustering using satellite solar radiation data 298 

As explained in Section 2.2, satellite-derived data show a clear difference between northern 299 
and southern areas of the islands. The northern area apparently presents lower solar radiation 300 
values and major presence of clouds. This fact is consistent with the previous knowledge of 301 
the Canary Islands general climatological conditions. Trade Winds from Northeast direction 302 
induce a major presence of clouds in the north area because of the complex and high 303 
orography. This issue is also observable in ground measurement data for all stations. Northern 304 
stations mostly present less than 40% of clear sky hours in general, while southern stations 305 
present more than 40% of clear sky hours, Table 1. Moreover, the yearly mean of the hourly 306 
solar radiation data for all northern stations is higher than for southern stations, Tables 1 and 307 
2.  308 

 309 
In this study, we proposed a comparative study between satellite and ground data series 310 

separating northern and southern stations. As a site-adaptation for satellite data is proposed, it 311 
is necessary to stablish the border between the two geographical areas using the whole grid 312 
information. In this case, we propose to separate both regions using the GHI (W/m2) satellite-313 
derived data series for the whole year. The clustering analysis will allow the identification of 314 
regions with different radiation patterns, where we can analyze the specific behavior of this 315 
variable. K-means algorithm [46], [47] is the most widely used technique for clustering, and 316 
thus, it has been the method chosen for our analysis. This technique employs an algorithm to 317 
minimize the sum of squared distances between the objects of each group and the centroid of 318 
this group. The algorithm is implemented as follows: first, initial clusters are selected 319 
randomly; the distances between centroids and data of these initial clusters are obtained; each 320 
data is allocated within the cluster in which its distance to the centroid is the lowest; from 321 
these new data, new centroids are calculated. This process must be repeated until the sum of 322 
distances between cluster centroids and data converges. 323 

 324 

325 
Figure 2.- Cluster north (blue) and south (yellow) according to climate conditions observed in 326 
satellite data. The ground measurement stations used in this study in red. 327 

 328 
Fig. 2 shows the two clusters obtained for the whole Canary Islands region  according to k-329 

means algorithm. Both regions are completely consistent with previous knowledge of 330 
climatological condition. Fig. 3 shows images taken from the Meteosat Second Generation 331 
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(MSG) at several days, where a very similar pattern of clouds can be observed. Besides, the 332 
separation of North and South regions is observed in many days throughout the year. 333 
Moreover, in general, most of the measurement stations situated in Cluster South present a 334 
higher mean and more percentage of clear sky days than stations in Cluster North. Only, TIN 335 
(south) presents less than 40% of clear days and ISO (north) presents more than 40%, being 336 
both placed in the border of both regions. 337 

 338 
 339 

340 
Figure 3.- Satellite images of Canary Islands in summer months obtained with MSG. It is 341 
possible to view the presence of clouds in northern area. 342 

 343 
 344 

3.4 Site-adaptation methodology 345 

Satellite-derived data series are basically based on the estimation of clouds’ properties and 346 
their influence in sky conditions. Satellite models need information of some atmospheric 347 
components to calculate the sky transmittance under cloudless conditions. Indeed, the 348 
accuracy of these models can be affected by several uncertainty sources. Satellite data series 349 
provide information of solar radiation of almost every location on Earth, however they cannot 350 
estimate some local effects, as complex terrain effects or snow albedo. Nevertheless, many 351 
improvements have been performed in satellite models in recent years [48]–[55]. Despite the 352 
improvements achieved recently, the use of simultaneous ground data can help reduce even 353 
more the uncertainty by correcting some systematic errors on the retrieval; these techniques 354 
are commonly referred to as site-adaptation [56].  355 

 356 
In this paper, a linear method is used to correct the bias with ground data estimating a 357 

correction factor [26]. It is possible to study the bias between two series using scatter plots 358 
between satellite and ground data, shown in Fig. 4 and Fig. 5. Clouds of points linear fitting 359 
shows a deviation with ideal linear fitting. Linear fitting obtained in the scatter plot between 360 
satellite and ground data is estimated using least squares method. Both linear regression 361 
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coefficients, {a,b}, are linear equation coefficients. Linear site adaptation tries to move 362 
satellite linear fitting to the ideal fitting with ground data using the following expression: 363 

 364 

𝑦𝑠𝑎𝑡,𝑛𝑒𝑤 = 𝑦𝑠𝑎𝑡 − [(𝑎 − 1)𝑥𝑔𝑟𝑜𝑢𝑛𝑑 + 𝑏]    (7) 365 

 366 

Where 𝑦𝑠𝑎𝑡 represents the original CM SAF solar radiation, 𝑥𝑔𝑟𝑜𝑢𝑛𝑑 is the ground dataset 367 

and {a,b} are the linear regression coefficients obtained in the scatter plot between satellite 368 
and ground data. Hence, expression in Eq (7) gives us a new GHI satellite-derived dataset, 369 

𝑦𝑠𝑎𝑡,𝑛𝑒𝑤, using the original satellite data and ground data at each location or cluster. The new 370 

dataset has been adapted to ground observed data and presents a smaller bias and dispersion. 371 
Eq. (7) is based on both satellite original data and ground data, so it is only useful at locations 372 
with available ground measurement. In order to establish an expression extended to the whole 373 
Canary Islands’ grid, we calculated a new comparison between new satellite data corrected 374 
with Eq. (7) and original satellite data. The following linear expression provides the 375 
possibility of calculating corrected satellite data for the rest of the grid, Eq. (8). 376 
 377 

.𝑦𝑠𝑎𝑡,𝑛𝑒𝑤 = 𝑎∗ ∙ 𝑦𝑠𝑎𝑡 + 𝑏∗     (8) 378 

 379 
Again, {a*,b*} are the linear regression coefficients obtained in the scatter plot between 380 

satellite original and adapted satellite data. So, these two new coefficients relate directly 381 
original satellite data with adapted satellite data. As Eq (8) only use satellite data and not any 382 
ground data, this equation allow us to estimate adapted data for the whole grid.  As explained, 383 
when observing ground and satellite data, a meaningful clear difference between south and 384 
north data is observed. Indeed, in order to find the optimal bias removal, we separated Canary 385 
Islands in two clusters according to climatological conditions. Both clusters contain all data 386 
series for ground stations belonging geographically to this cluster, so {a*,b*} linear 387 
coefficients allow us to estimate adapted satellite data for each whole cluster respectively. We 388 
used a training dataset to establish the model to find optimal correction factor. This model 389 
will be later validated with another independent set, testing dataset. In this way, it is possible 390 
to avoid overfitting and study the accuracy of the model when new data are presented for the 391 
whole grid. Table 2 presents all cluster dataset. Cluster north dataset offers a lower mean 392 
value than south dataset as obtained in individual ground stations data. Moreover, the 393 
presence of clear skies in cluster north is lower than 30% and in cluster south it is over 40%. 394 
The division between training and testing datasets (60 and 40% of the total respectively) 395 
preserves these conditions. 396 

  397 
 398 

CLUSTER 
Nº data 

(filter) 

Mean 

W/m2 

clear sky 

(%) 

Std 

W/m2 

NORTH 72206 436.37 23 260.50 

SOUTH 39747 507.18 46 262.43 

NORTH (TRAINING) 43324 437.47 23 260.68 

SOUTH (TRAINING) 23848 506.44 46 261.68 

NORTH (TESTING) 28882 434.72 23 260.22 

SOUTH (TESTIING) 15899 508.28 46 263.58 

Table 2.- Cluster datasets divided in training and validating. 399 
 400 
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 401 

 402 

Figure 4.- SIS hourly datasets comparison between ground data and CMSAF data for all 403 
ground stations in Cluster North, cloudy sky 404 
(left) and clear sky (right) for 2010 and 405 
2011. 406 

407 
 408 
Figure 5.- SIS hourly datasets comparison between ground data and CMSAF data for all 409 
ground stations in Cluster South, cloudy sky (left) and clear sky (right) for 2010 and 2011. 410 

In cluster north, Fig. 4, CM SAF data presents an overestimation for low solar radiation 411 
values and an underestimation for high radiation conditions in cloudy sky hours, while a bias 412 
deviation from ideal linear fitting is clearly observable. On the other hand, for clear sky 413 
conditions bias deviation is quite lower, only for high radiation conditions. For cluster south, 414 
Fig. 5, comparison between CM SAF and ground data give much better results, as a 415 
consequence of a major presence of cloud-free conditions. For cloudy hours, Fig. 5 shows an 416 
overfitting mostly for low solar radiation values, while for clear sky hours deviation is almost 417 
non-existent. 418 

 419 
Errors between ground and satellite data also present different trends if we study datasets 420 

divided by months. In Fig. 6, cluster north shows higher residual values for summer months 421 
because of the stronger effect of Trade winds during this season. Indeed, it is recommendable 422 
to estimate a site adaptation model for bias removal taking into account these differences. In 423 
this paper, several correction factors were obtained and discussed for cluster north and south, 424 
cloudy and clear sky hours and for each season. 425 



   

 

13 
 

 426 
Figure 6.- SIS residuals between CM SAF data and ground data for cluster north and cloudy 427 

sky conditions by months. 428 

 429 
Finally, to obtain the optimal site-adaption for both Canary Islands clusters we tested 430 

different linear fitting using all the separated datasets. For each group of data, the regression 431 
is estimated with the training dataset and then is validated with testing dataset. During this 432 
survey, we verified the following regressions to generate new satellite data: 433 

 434 

• Op-1.- Clear sky linear regression using CM SAF original data and ground data. 435 

• Op-2.- Substitute clear sky CM SAF for a clear sky model (McClear) and adapt this 436 
model using a linear regression with ground measurement. 437 

• Op-3.- Cloudy sky linear regression using CM SAF original data and ground data. 438 

• Op-4.- Cloudy sky linear regression using CM SAF original data and ground data 439 
for each season individually. 440 

• Op-5.- All sky (both clear and cloudy skies) linear regression using CM SAF 441 
original data and ground data. 442 

 443 
The best option for both clusters in Canary Islands is using the Op-2 for clear sky days and 444 

Op-4 for cloudy days. In Cluster north, where the difference between sky conditions in each 445 
season is more visible, the improvement for using Op-4 instead of Op-3 is higher. In the next 446 
section, we show the results with these two models. 447 
 448 

4.  Satellite data assessment results 449 

For each station, we compared GHI ground measurement data with CM SAF GHI data and 450 
with McClear data (only in case of clear skies) in order to evaluate the accuracy of the 451 
models. In the same way, we compared Cluster North and South datasets.  452 

 453 
4.1 Error metrics 454 

In order to evaluate the performance of each method, we used two standard error metrics 455 
widely used in the solar forecasting community: the Root Mean Square Error (RMSE) and 456 
Mean Bias Error (MBE). Dividing both absolute error by the average of the hourly GHI data, 457 
we compute their relative metrics (% rRMSE and % rMBE). 458 

 459 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐺𝐻𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖 − 𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1     (9) 460 
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𝑀𝐵𝐸 =
1

𝑁
[∑ (𝐺𝐻𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖 − 𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖)

𝑁
𝑖=1 ]    (10) 461 

 462 

4.2 Clear sky days 463 

Table 3 shows the results from the comparison of CM SAF satellite data and McClear 464 
model with ground data for clear sky conditions. Errors in terms of MBE and RMSE are 465 
presented for all the stations and for both clusters. 466 
 467 

Station & Cluster 
MBE RMSE %MBE %RMSE 

MC CMSAF MC CMSAF MC CMSAF MC CMSAF 

Gáldar (GAL) 11.52 -12.49 30.51 72.59 2.19 -2.37 5.80 13.80 

San Mateo (SMA) 26.83 -5.41 52.16 65.67 4.42 -0.89 8.59 10.82 

Vecindario (VEC) 1.51 7.42 30.01 60.04 0.25 1.24 5.03 10.07 

Maspalomas (MASP) 5.06 -7.97 30.43 53.38 0.87 -1.37 5.22 9.16 

Izaña (IZA) -4.50 -200.64 26.13 289.26 -0.65 -28.89 3.76 41.65 

Garimba (GAR) 11.30 -9.54 49.66 78.75 2.02 -1.70 8.87 14.06 

Valle Guerra-Pajarillos 

(PAJ) 
3.37 -9.06 32.91 65.90 0.61 -1.65 5.98 11.97 

El Pico (PIC) -6.60 -32.87 36.19 89.02 -1.16 -5.78 6.37 15.66 

Puerto de la Cruz 
(PCR) 

13.87 3.37 34.42 83.18 2.45 0.59 6.08 14.69 

Guía de Isora (ISO) 17.47 -3.55 42.03 87.25 3.05 -0.62 7.34 15.23 

La Fuente (LFU) 9.31 -5.40 34.35 74.76 1.69 -0.98 6.24 13.58 

La Laguna – Güímar 

(LLA) 
20.65 13.02 36.69 50.15 3.51 2.21 6.23 8.51 

San Sebastián (SSB) 26.24 26.39 43.13 63.06 4.62 4.65 7.60 11.11 

Hermigua (HER) 6.85 10.22 38.11 55.25 1.11 1.65 6.15 8.92 

Barlovento (BAR) 26.99 18.01 44.70 56.44 5.14 3.43 8.51 10.74 

Tazacorte II (TAZII) 28.18 -20.55 54.56 143.93 4.75 -3.46 9.20 24.26 

Los Llanos de Aridane 

(ARI) 
28.93 -39.85 49.36 121.56 5.04 -6.94 8.60 21.17 

Fuencaliente (FUE) 24.16 -1.79 55.79 109.48 4.02 -0.30 9.28 18.22 

Frontera (FRO) 30.25 12.51 48.42 84.85 5.49 2.27 8.79 15.41 

Haría (HAR) 5.29 8.92 30.76 59.86 0.95 1.60 5.51 10.72 

Tinajo (TIN) 20.74 20.17 57.83 72.15 3.84 3.73 10.70 13.35 

Antigua (ANT) 20.04 23.91 40.44 53.51 3.52 4.20 7.11 9.41 

CLUSTER NORTH 16.11 -14.58 42.81 97.04 2.86 -2.59 7.61 17.25 

CLUSTER SOUTH 11.83 10.50 35.19 57.06 2.05 1.82 6.08 9.86 

Table 3.- Errors between Satellite or Clear sky model and ground measurement for clear sky 468 
hours. 469 
 470 

For ground stations in cluster south, we obtained errors below 11% rRMSE for clear sky 471 
conditions calculated with CM SAF, while McClear model provide errors between 5-7% 472 
rRMSE. Only (TIN) station, located in the border of both clusters, presents error over these 473 
limits. In terms of % rMBE, both models show very similar results with errors lower than 5%. 474 
Almost in all cases, both CM SAF and McClear overestimate comparing with ground data. 475 
Only (MASP) station presents underestimation with CM SAF data. For Cluster South dataset, 476 
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both models give around 2% rMBE, while in terms of % rRMSE McClear present better 477 
results than CM SAF, 6% and 10% respectively. 478 

 479 
In case of cluster north, we obtained in general higher errors than in cluster north. In terms 480 

of % rRMSE, CM SAF estimates solar radiation for clear sky with errors between 10 and 481 
18%, while McClear offers results between 5 and 10%. Only in (TAZII) and (ARI) CM SAF 482 
obtained errors higher than 21%. As it happens with cluster south, in terms of % rMBE both 483 
models obtained similar results, always below 5%. For Cluster North dataset, both models 484 
give between 2.5-3% rMBE, but CM SAF underestimate radiation and Mc Clear overestimate 485 
radiation compared with ground data. On the other hand, in terms of % rRMSE McClear 486 
present 7.5% errors results and CM SAF satellite errors are over 17%. 487 

 488 
In particular, it is worth mentioning the results obtained in Izaña station (IZA). In terms of 489 

both % rMBE and % rRMSE, CM SAF offers higher errors than McClear. CM SAF errors are 490 
around 29% and 41% in terms of % rMBE and % rRMSE respectively, while McClear results 491 
are both below 4%. (IZA) station is located over 2000 meters high in Tenerife Island and 492 
McClear fits ground measurement. This station is not included in any cluster because of its 493 
particular conditions.  494 
 495 
4.3 Rest of the days 496 

As for clear sky conditions, cloudy hours present different results for each cluster. In cluster 497 
north, CM SAF offers results over 30 or 40% rRMSE for cloudy skies at almost all locations. 498 
In terms of % rMBE, CM SAF radiation errors compared with ground stations state between 499 
10 and 30% both over and underestimate. For cluster north dataset, CM SAF provides errors 500 
of 4% rMBE and 38% rRMSE for cloudy sky conditions, while for all sky it conditions 501 
obtains 2% rMBE and 32% rRMSE.  502 

 503 
On the other hand, in cluster south for cloudy sky conditions CM, SAF obtains results 504 

below 25% in terms of RMSE at mostly locations. In terms of % rMBE, for all ground 505 
stations in cluster south CM SAF overestimate ground measurements. Most of the stations 506 
present results below 12% rMBE. Taking into account whole clusters’ datasets, it is 507 
observable that CM SAF obtains better results for cluster south than for cluster north in terms 508 
of % rRMSE, while in terms of % rMBE cluster north presents better results. That is because 509 
in cluster north MBE presents both over and underestimate results, so when all stations are 510 
used for the whole cluster we obtained lower errors. Individually, errors for each station are 511 
higher than in cluster south.  512 

 513 
For cluster south dataset, CM SAF provides errors of 12% rMBE and 28% rRMSE for 514 

cloudy sky conditions, while for all sky conditions it obtains 7% rMBE and 20% rRMSE. As 515 
for clear sky conditions, (IZA) station present higher errors because of its altitude. In terms of 516 
MBE, CM SAF underestimates solar radiation both for cloudy sky conditions and for all sky 517 
conditions, with errors of -22% and 27% respectively. Furthermore, for RMSE, CM SAF 518 
offers worse results at this location, with errors over 45% both for cloudy sky and all sky 519 
conditions. (PAJ), (PIC) and (GAR) stations are located almost in the same latitude and 520 
longitude but with different altitudes. It is observable that errors increase for cloudy and all 521 
sky conditions with altitude, both for MBE and RMSE.  522 

 523 

Station & Cluster 
CLOUD SKY ALL DATA (cloud & clear) 

MBE RMSE %MBE %RMSE MBE RMSE %MBE %RMSE 
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Gáldar (GAL) -28.75 121.88 -6.72 28.48 -24.25 110.47 -5.33 24.28 

San Mateo (SMA) 57.69 165.13 15.50 44.37 37.40 141.01 8.35 31.50 

Vecindario (VEC) 28.62 106.24 6.15 22.82 16.95 84.03 3.15 15.63 

Maspalomas (MASP) 15.55 98.95 3.20 20.37 1.91 75.93 0.35 14.01 

Izaña (IZA) -108.48 239.64 -22.55 49.82 -174.61 276.15 -27.53 43.54 

Garimba (GAR) 84.20 167.14 23.12 45.90 71.86 158.35 18.43 40.61 

Valle Guerra-Pajarillos 
(PAJ) 

3.08 118.63 0.75 28.89 0.24 108.63 0.05 24.50 

El Pico (PIC) 20.17 172.37 4.89 41.77 8.56 157.94 1.92 35.35 

Puerto de la Cruz 
(PCR) 

25.59 151.07 7.31 43.14 21.52 141.10 5.52 36.20 

Guía de Isora (ISO) -72.94 174.01 -15.36 36.63 -43.93 144.23 -8.51 27.95 

La Fuente (LFU) -25.94 132.93 -6.63 33.97 -22.34 124.72 -5.33 29.75 

La Laguna – Güímar 
(LLA) 

82.45 151.02 21.03 38.52 49.58 114.88 10.22 23.67 

San Sebastián (SSB) 111.18 177.36 25.86 41.26 76.43 142.10 15.72 29.22 

Hermigua (HER) 98.67 167.36 28.00 47.49 88.64 158.68 23.16 41.46 

Barlovento (BAR) 71.75 132.59 20.49 37.86 65.31 125.92 17.59 33.92 

Tazacorte II (TAZII) -6.43 176.18 -1.49 40.74 -10.85 166.76 -2.25 34.54 

Los Llanos de Aridane 
(ARI) 

-54.62 174.03 -12.44 39.65 -48.80 155.50 -9.92 31.59 

Fuencaliente (FUE) 51.01 174.01 12.07 41.17 44.72 167.63 10.07 37.76 

Frontera (FRO) 43.55 159.16 10.49 38.35 37.94 148.52 8.63 33.79 

Haría (HAR) 36.17 101.28 8.12 22.73 28.17 91.10 5.88 19.03 

Tinajo (TIN) 90.33 162.23 21.82 39.18 78.20 150.56 17.94 34.54 

Antigua (ANT) 52.95 113.63 11.77 25.26 40.32 92.41 8.04 18.43 

CLUSTER NORTH 16.40 152.82 4.12 38.35 9.25 141.90 2.12 32.52 

CLUSTER SOUTH 54.14 127.00 12.10 28.39 34.23 101.28 6.75 19.97 

Table 4.- Errors between Satellite model and ground measurement for cloudy sky hours and 524 
all hours. 525 
 526 

5. Site-adaptation results 527 

Site-adaptation’s best option for both clusters in Canary Islands is using linear regression 528 
for McClear model in case of clear sky days, Op-2, and linear regression for each season 529 
individually for cloudy days, Op-4. Tables 5 and 6 show errors’ results for both clusters 530 
testing dataset in terms of RMSE and MBE in clear sky, cloudy sky and all sky conditions.  531 

 532 
In general, site-adaptation proposed in this paper obtained non-bias results for clear sky, 533 

cloudy sky and all sky conditions in terms of MBE for cluster north. In terms of RMSE, site-534 
adaptation offers 7% (39.51 W/m2) results for clear skies, 41% (165.47 W/m2) for cloudy 535 
skies and a mean of 33% (146.67 W/m2) for the whole cluster north dataset. Linear site-536 
adaptation reduce almost to zero MBE errors compared with initial CM SAF for clear, cloudy 537 
and all sky conditions, while in terms of RMSE, the proposed model improves only results in 538 
clear sky condition. For cloudy and all sky conditions, site-adaptation reduces bias but 539 
slightly increases RMSE results. Fig. 7 shows a bias removal compared with the previous 540 
figure for the same cluster, both in clear and cloud sky conditions. 541 

 542 
Cluster south results have also been improved using site-adaptation proposed in this paper. 543 

In terms of MBE, new dataset general bias has disappeared compared with previous CM SAF 544 
results, with errors below 1% rMBE. Furthermore, unlike cluster north, in terms of RMSE 545 
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site-adaptation also improves initial errors. CM SAF corrected dataset obtains 5% (31.33 546 
W/m2) results for clear skies, 27% (119.46 W/m2) for cloudy skies and a mean of 18% 547 
(92.23W/m2) for the whole cluster north dataset. Fig. 8 shows a bias removal and a lower 548 
dispersion compared with the previous figure for the same cluster both in clear and cloud sky 549 
conditions. 550 
 551 

552 
 553 

Figure 7.- SIS hourly datasets comparison between ground data and CMSAF new dataset for 554 
all ground stations in Cluster North, cloudy 555 
sky (left) and clear sky (right) for 2010 and 556 
2011. 557 

 558 

Figure 8.- SIS hourly datasets comparison between ground data and CMSAF new dataset for 559 
all ground stations in Cluster South, cloudy sky (left) and clear sky (right) for 2010 and 2011. 560 

 561 
 562 

 563 

Station & Cluster 
CLEAR SKY 

MBE RMSE %MBE %RMSE 

CLUSTER NORTH 
(training) 

0.98 39.79 0.17 7.02 

CLUSTER SOUTH 
(training) 

-0.13 31.75 -0.02 5.49 
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CLUSTER NORTH 
(testing) 

0.80 39.51 0.14 7.10 

CLUSTER SOUTH 
(testing) 

0.14 31.33 0.02 5.41 

Table 5.- Site adaptation final results for clear sky hours, both for training and testing 564 
datasets. 565 
 566 

Station & Cluster 
CLOUD SKY ALL DATA (cloud & clear) 

MBE RMSE %MBE %RMSE MBE RMSE %MBE %RMSE 

CLUSTER NORTH 
(training) 

0.43 165.82 0.11 41.62 0.99 146.45 0.23 33.51 

CLUSTER SOUTH 
(training) 

1.12 122.18 0.25 27.33 0.23 91.51 0.05 18.08 

CLUSTER NORTH 

(testing) 
0.52 165.47 0.13 41.52 -0.27 146.67 -0.06 33.68 

CLUSTER SOUTH 
(testing) 

1.60 119.46 0.36 26.68 1.46 92.23 0.29 18.13 

Table 6.- Site adaptation final results for cloudy and all hours, both for training and testing 567 
datasets. 568 
 569 

6. Conclusions 570 

This work studies CM SAF and McClear global solar radiation assessment in several 571 
stations in Canary Islands. This survey used clear and cloudy sky conditions separately in 572 
order to establish the best option in all conditions. 573 

 574 
CM SAF data reproduce quite satisfactorily GHI results, even taking into account complex 575 

local climatological variations in Canary Islands. However, some areas and locations show 576 
improvable bias and errors. Northern areas present a higher occurrence of clouds especially in 577 
the summer months when Trade Winds meet with high mountains. Canary Islands satellite 578 
gridded information was separated in two clusters, South and North, using GHI datasets for 579 
2010 and 2011 years. Cluster datasets include all ground GHI values for measurement stations 580 
belonging to each cluster. In this way, CM SAF and McClear data accuracy in comparison 581 
with ground data were studied for each ground station individually and using both cluster 582 
datasets.  583 

 584 
For clear sky conditions, McClear model obtained better results for both clusters in terms of 585 

% rRMSE, while in terms of % MBE both models offer similar results. Cluster south presents 586 
errors between 5-7%, while stations in cluster north errors are situated between 5-10%. 587 
Normally, McClear and CM SAF clear sky data tend to overestimate GHI data compared with 588 
ground stations. For cloudy skies, CM SAF GHI data offer higher errors for both clusters. In 589 
terms of % rRMSE, cluster north presents errors normally over 30%, while for cluster south 590 
general results show errors below 25%. Cloud presence in cluster north, both generated or 591 
coming from trade winds direction, provoke a lower accuracy in GHI satellite radiation. In 592 
terms of % MBE, cluster south results provide always positive errors due to an overestimation 593 
of satellite data. While in cluster north for cloudy sky conditions we obtained both positive 594 
and negative MBE results depending on the measurement station. Thus, combining both 595 
McClear for clear skies and CM SAF for rest of the days offers good results. 596 

 597 
Finally, this paper proposes a site adaptation linear correction of satellite derived data to 598 

obtain a bias removal. Different site adaptation regression was studied, taking into account the 599 
cluster, clear or cloudy sky conditions and season of the year. The optimal adaption proposed 600 
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in this paper is using linear regression for McClear model in the case of clear sky days, Op-2, 601 
and linear regression for each season individually for cloudy days, Op-4. For cluster north, 602 
clear skies give errors below 0.2% rMBE and 7% rRMSE, improving initial results in 2% and 603 
10% respectively. In case of cloudy skies, new satellite dataset improves results in terms of % 604 
rMBE, almost 4%, but % rRMSE initial results are 3% lower. For all sky conditions, site 605 
adaptation provide a bias removal in terms of MBE and similar errors in terms of RMSE. In 606 
cluster south, the linear regression proposed in this paper obtained better results for both clear 607 
and cloudy sky conditions in terms of MBE and RMBE. For clear sky conditions, site 608 
adaptation improves errors in 2% rMBE and 5% rRMSE, while for cloudy sky conditions 609 
errors are almost 12% rMBE and 1.5% rRMSE lower than initial CM SAF data. Furthermore, 610 
individually at each location, it is possible to get a bias removal using a linear site adaptation. 611 

 612 
Both CM SAF and McClear models provide GHI data with great spatial and temporal 613 

resolution for Canary Islands and offer quite satisfactory accurate data. At locations and areas 614 
where satellite models provide data with an important bias or errors, these site adaptation 615 
techniques could improve final uncertainty. These data could improve forecasting and 616 
downscaling models as a means of obtaining better knowledge on solar radiation in these 617 
islands.  618 
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