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Huge losses and serious threats to ecosystems are common consequences of forest fires. This work describes a forest fire controller
based on fuzzy logic and decision-making methods aiming at enhancing forest fire prevention, detection, and fighting systems.
In the proposal, the environmental monitoring of several dynamic risk factors is performed with wireless sensor networks and
analysed with the proposed fuzzy-based controller. With respect to this, meteorological variables, polluting gases and the oxygen
level are measured in real time to estimate the existence of forest fire risks in the short-term and to detect the recent occurrence
of fire outbreaks over different forest areas. Besides, the Analytic Hierarchy Process method is used to determine the level of fire
spread, and, when necessary, environmental alerts are sent by a Web service and received by a mobile application. For this purpose,
integrity, confidentiality, and authenticity of environmental information and alerts are protected with implementations of Lamport’s

authentication scheme, Diffie-Lamport signature, and AES-CBC block cipher.

1. Introduction

Nowadays, forest fires often cause serious threats to the
environment and produce real emergency situations and
natural disasters. The response time of emergency corps
greatly affects the consequences and losses caused by them,
so the enhancement of forest fire prevention and detection
systems can be considered a main goal for conserving the
environment. With respect to this, the real-time monitoring
of certain environmental variables may make the forest fire
prevention, detection, and fighting more efficient.

Different types of environmental risk factors can be
considered for estimating the existence of forest fire risks
over different forest areas. On the one hand, static forest
fire risk factors such as vegetation layers, topography, or
the frequency of forest fires may be useful to perform a
long-term estimation of forest fire risks because vegetation

affected by weather changes over time and several topography
parameters (such as the existence of elevated slopes) may
have a direct impact on the probability of fire occurrence.
On the other hand, unusual changes of dynamic forest fire
risks such as meteorological variables, polluting gases, or
the oxygen level measured in real time can be analysed
aiming at performing a short-term estimation of forest fire
risks. Likewise, uncommon decrease of humidity values
or oxygen level jointly with increasing temperature values
or the concentrations of certain polluting gases, such as
carbon dioxide and carbon monoxide, may involve a high
probability of outbreaks of recent nearby fires. Therefore,
environmental monitoring may make the response time of
emergency corps more efficient. Fire spread can be also
estimated by analysing the values of meteorological variables,
wind direction changes, and the oxygen level over nearby
forest areas, because these variables have a direct impact on
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relevant fire propagation factors such as dryness of vegetation
and organic fuels.

A wireless sensor network (WSN) [1] based on Internet
of Things (IoT) devices and sensors can be used to perform
areal-time environmental monitoring of the aforementioned
forest fire risk factors. Their design and distribution have to be
addressed aiming at covering as much forest areas as possible.
With respect to this, several challenges must be considered,
such as the authentication of sensor nodes [2] and the security
of wireless communications among distributed sensor nodes,
taking into account possible areas out of network coverage.

Due to the uncertainty in environmental data, under-
standing environmental changes to estimate the existence of
fire risks or to detect the occurrence of a wildfire incident
is not a simple process that can be executed with complete
accuracy. Fuzzy logic [3] and decision-making methods such
as the Analytic Hierarchy Process (AHP) [4] can be used
to provide an enhancement in the real-time analysis of
environmental data. Forest fire prevention and detection may
be more accurate through the interpretation of the forest
fire risks involved in every measured environmental variable
jointly with unusual environmental changes with respect to
the typical values measured by a WSN.

The main goal of the proposal here described is to
estimate in short-term the existence of forest fire risks and to
detect the recent occurrence of fire outbreaks over different
forest areas. For this purpose, a forest fire controller based
on fuzzy logic has been implemented aiming at analysing
environmental information, such as meteorological variables,
polluting gases, and the oxygen level, measured by a dis-
tributed WSN. To this end, a particular prototype of IoT
device equipped with environmental sensors has been imple-
mented. When a fire outbreak is detected, a decision-making
method based on AHP is enabled to determine the neigh-
bouring forest area that is more likely to favour fire spread as
a result of its current environmental conditions. Moreover, a
Web service and a mobile application have been implemented
aiming at activating environmental alerts. Besides, open data
sources have been integrated to provide other relevant envi-
ronmental information such as vegetation layers or historical
information of recent fires. Particular attention has been paid
to the application of security mechanisms to protect the
integrity, confidentiality, and authenticity of measured envi-
ronmental information and alerts through implementations
of Lamport’s authentication scheme [5], Diffie-Lamport’s
signature [6], and AES-CBC block cipher [7].

This work is organized as follows. Section 2 deals with
some related works. Section 3 details the proposed forest fire
controller based on fuzzy logic. Section 4 outlines the AHP-
based detection method of fire spread. Then, the proposed
system is explained in Section 5 and the implemented secu-
rity mechanisms are sketched in Section 6. Section 7 includes
a description of several experimental results. Finally, some
conclusions and research works in progress are given in
Section 8.

2. Related Works

In the last years, different proposals have been put forward
to improve forest fire prevention, detection, and extinction
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systems. Many of those solutions are based on real-time
environmental monitoring and IoT devices. With respect to
this, the work [8] includes the implementation of a smart
system aiming at measuring carbon dioxide (CO2) emissions
from different sources such as forest fires through using
Raspberry Pi. In addition to monitoring polluting gases,
other proposals analyse the so-called Fire Weather Index for
designing an eflicient fire detection system through wireless
sensor networks and a simple data aggregation scheme
[9].

Nowadays, the combination of fuzzy logic and decision-
making methods, such as AHP, produces innovative solutions
that may enhance the accuracy in the prevention and detec-
tion of wildfire incidents.

The work [10] proposes a fuzzy system based on overlap
indices to improve forest fire detection through imple-
menting a wireless sensor network and analysing different
variables such as the lightness and the distance to the fire.
In that work, a particular generalization of the Mamdani
inference system is introduced by using overlap functions
and overlap indices. Likewise, the work [11] also proposes
the use of WSNs and the incorporation of fuzzy logic in
sensor nodes but its aim is to estimate the evidence of fire
through analysing the previous temperature and the current
temperature. For that purpose, two fuzzy approaches based
on temporal characteristics are proposed to optimize the
number of rules that have to be checked.

Regarding the use of decision-making algorithms, the
work [12] includes a model of the forest fire risk through
integrating fuzzy sets with AHP. In particular, it uses a
decision-making method including the Geographic Infor-
mation System and the fuzzy AHP method [13] to estimate
the importance related to each considered causative factor in
forest fires.

The security and the distribution of the WSN require
particular attention [14, 15]. Several security challenges and
threats are addressed in [16] with respect to wireless com-
munication. The survey [17] includes recent routing protocols
and presents a classification in categories such as data-centric,
hierarchical, and location-based. Likewise, the functional
design and the implementation of a complete WSN platform
are presented in [18] aiming at performing a long-term
environmental monitoring. Low cost, minimum number of
sensors, fast deployment, and other requirements are also
considered in the approach of WSN design in different
works.

Differently from the aforementioned works, the system
described here proposes the combination of WSN, fuzzy
logic, decision-making methods, multihop routing [19], and
security mechanisms for performing a secure real-time envi-
ronmental monitoring of dynamic forest fire risk factors. The
main aim is to estimate the existing forest fire risks in different
monitored forest areas and to detect the occurrence of
fire outbreaks. Moreover, a decision-method based on AHP
intended to determine the fire spread through nearby forest
areas has been implemented in a system composed by a Web
service and a mobile application to manage environmental
alerts and provide an enhancement in forest fire prevention,
detection, and tracking systems.
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FIGURE 1: Fuzzy-based forest fire controller and AHP-based fire spread estimator.

3. Fuzzy-Based Forest Fire Controller

The proposed method is based on environmental measure-
ments of dynamic forest fire risk factors such as meteoro-
logical variables, polluting gases, and oxygen level measured
by a distributed WSN in real time. The aim is to provide an
enhancement in the short-term estimation of forest fire risks
(prevention) and in the detection of the beginning of recent
wildfire incidents (detection). With respect to this, a fuzzy-
based forest fire controller has been implemented aiming
at calculating the probability of existing forest fire risks
(prevention module) and the probability that a fire outbreak
has recently occurred (detection module) in a particular
forest area. On the one hand, the prevention module is
intended to analyse measured environmental conditions that
may favour the occurrence of a wildfire incident (high tem-
peratures, low relative humidity values, vegetation dryness
due to low rainfall, etc.). On the other hand, the detection
module is aimed at detecting wildfire incidents that have
recently occurred. In addition to meteorological variables,
the oxygen level and the concentrations of polluting gases
(useful indicators of fire outbreaks occurrence and biomass
burning process) measured by the WSN are also analysed.
Thus, unusual environmental changes such as temperature
increase and decrease in relative humidity and oxygen values
jointly with very high concentrations of carbon dioxide and
carbon monoxide may involve the recent occurrence of a
forest fire.

In order to face the difficulty and imprecision of the
analysis of environmental changes related to forest fires,
a fuzzy logic Mamdani inference system [20] has been
considered aiming at developing a forest fire controller.
As Figure 1 shows, environmental values measured by the
deployed WSN are initially fuzzified to provide a level of
membership with different fuzzy sets proposed for each

TaBLE 1: Notation used to describe the fuzzy-based forest fire
controller.

Notations Description
Linguist variable
«, Discrete measurement of v
FD, Fuzzy Domain of v
FS i-th Fuzzy Set proposed for
Vi v

Level of membership of «,

Hrs,, (a,)

with respect to FS,,

considered linguistic variable. These fuzzy sets are intended
to express if a particular measurement may be “normal”,
“low”, “high”, or “extreme” depending on the common state
of the corresponding analysed environmental variable. Each
fuzzified measure is evaluated on the basis of a knowledge
base or inference rules to analyse the related forest fire risks
and the probability of fire outbreaks occurrence. Finally, the
obtained results are aggregated into a same output set and
defuzzified into a discrete percentage.

Mamdani’s inference steps are described using the nota-
tion in Table 1.

3.1 Input Variables Fuzzification. Dynamic forest fire risk
factors are considered as input linguistic variables of the
proposed fuzzy-based forest fire controller. With respect to
this, the corresponding environmental measurements regis-
tered by the distributed WSN for meteorological variables,
polluting gases, and the oxygen represent the input values of
the proposed fuzzy system.

Measurements of temperature, relative humidity, wind
speed, and rainfall are fuzzified into the membership function
proposed for each one of these monitored meteorological
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FIGURE 2: Membership functions of meteorological variables.
TABLE 2: Fuzzy sets and fuzzy domains proposed for every linguistic variable.
Variable Fuzzy Set Fuzzy Domain
Temperature (T) FS; = {low, medium, high, extreme} [0,100] °C
Humidity (H) FSy; = {very low, low, normal, high} [0 - 100] %
Wind Speed Wipeea) FSWspee .= {low, medium, high, extreme} [0 - 240] km/h
Rainfall (R) FSy = {low, medium, high, extreme} [0-100] mm
Oxygen (02) FSo, = {very low, low, normal, high} [0-30] %
Carbon dioxide (CO2) FSco, = {low, normal, high, extreme} [0-1000] ppm
Carbon monoxide (CO) FSco = {normal, medium, high, extreme} [0-100] ppm

variables (see Figure 2). The graphical representation of the
membership function of each linguistic variable is performed
on an ordinate axis that represents the level of membership of
measured input values with the different proposed fuzzy sets.
On the other hand, the abscissa axis represents the domain
of the linguistic variable regarding its discourse of universe
(Celsius degrees, percentages, km/h, etc.). The main aim is to
express the fuzzified value attached to every environmental
measurement as “very low”, “low”, “normal”, “high”, or
“extreme”.

The rule of 30, considered as a relevant preventive model
of forest fire risk, has been applied here to design fuzzy sets.
This rule considers measurements of temperature and wind
speed above 30°C and 30 km/h, respectively, jointly with
humidity values below 30 % as risk environmental conditions
that may favour the occurrence of forest fires.

Regarding fire outbreak detection provided by the pro-
posed fuzzy-based forest fire controller, measurements of
oxygen level, and polluting gases (carbon dioxide and carbon
monoxide) are also fuzzified into their corresponding mem-
bership functions. In the case of polluting gases, particles
per million (ppm) are used as their discourse of universe.
Their fuzzy sets have been proposed on the basis of unusual
increases above their typical environmental concentrations at
outdoor forest areas (see Figure 3). In contrast, unexpected
decreases of the oxygen level below 21 % levels (considered
as the current measured oxygen level at the atmosphere)
have been considered for their design. These uncommon
environmental changes may involve a high probability that
a fire outbreak has recently occurred.

For each input linguistic variable, Table 2 shows its Fuzzy
Set (FS) and Fuzzy Domain (FD). According to (1), for every
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FIGURE 3: Membership functions of polluting gases and oxygen.

TABLE 3: Average computation of monitored dynamic risk factors.

Forest fire risks Fire outbreak occurrence

Measurement frequency Average calculation

Non-existent Non-existent
Low -
High -

Extreme Low / High / Extreme

5 minutes Last 20 measurements

2 minutes Last 15 measurements
Without measurement delay Last 10 measurements

Without measurement delay Last 5 measurements

v, an environmental measurement «,, of the linguistic variable
v is measured within the considered thresholds [a, b] of its
fuzzy domain FD,. This value is fuzzified into the corre-
sponding membership function, so its level of membership
prs, (o) is calculated for the i-th fuzzy set proposed for the

environmental variable v (“very low”, “low”, etc.). Calculated
levels of membership with respect to all four fuzzy sets
proposed for every linguistic variable are added up to obtain
a final value of 100%:

Vv € (T, H, W,pe> R, 02,C02,CO) Jax,

4 (1)
€ [a,b] | ) s, (@,) = 100%

i=1

Every monitored linguistic variable is analysed by fuzzify-
ing the value of the last measured environmental value and its
average. Previous measurements of every dynamic risk factor
are used to calculate the average, which is also fuzzified into
the membership function of every input linguistic variable
aiming at expressing if the average is “normal”, “low”, “high”,

etc. The number of measurements used to calculate the
average depends on the analysed environmental conditions
with regard to every variable (see Table 3).

3.2. Inference-Rule Evaluation. A knowledge base intended
to evaluate unusual environmental changes between the last
environmental measurement and the average of each input
linguistic variable (previously fuzzified) is here proposed.
Unexpected increases of the last fuzzified values of tem-
perature, wind speed, or concentrations of polluting gases
with respect to their corresponding fuzzified averages in
a particular forest area are analysed. Likewise, unexpected
decreases in fuzzified values of relative humidity, precipita-
tion, or oxygen produce the same effect. These environmental
events are detected when there is a difference with regard to
the fuzzy set with which the last environmental measurement
and the average present a greater level of membership. For
this purpose, we have used the first neural network model for
implementing fuzzy systems, the so-called Fuzzy Associative
Memory (FAM) [21]. One FAM has been proposed for each
considered linguistic variable (temperature, humidity, carbon
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TABLE 4: Inference-rule evaluation for carbon monoxide variable.

Last CO measurement / CO average normal medium high very high
Normal NFO LFO LFO LFO
Medium LFO LFO HFO HFO
High HFO HFO HFO EFO
Extreme EFO EFO EFO EFO
Forest fire risks Fire outbreaks occurrence
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FIGURE 4: Membership functions of output variables.

dioxide, etc.). All of them compose the knowledge base of this
fuzzy-based forest fire controller. According to the consulted
expert knowledge, the triggers of the rules on the linguistic
variables are previously set through appropriate overlaps
of the fuzzy sets of input variables. These proposed FAMs
evaluate fuzzified input values on the basis of two different
objectives:

(1) Fire risk prevention module. Fuzzified values of
the last measurement and average corresponding
to temperature, relative humidity, wind speed, and
rainfall (meteorological variables) are compared with
the aim of evaluating the existence and severity of
forest fire risks (nonexistent, low, high, and extreme)
in every forest area. The objective is to evaluate the
probability of considering this forest area as a risk
zone to be affected by the beginning of a forest fire.
Therefore, the considered output linguistic variable is
the existence of forest fire risks.

(2) Fire outbreak detection module. In addition to
fuzzified values of meteorological variables, pro-
posed FAMs compare the fuzzified concentrations
of carbon dioxide, carbon monoxide, and oxygen
in order to evaluate the probability that a fire out-
break may have recently occurred in that forest
area (nonexistent, low, high, or extreme). Therefore,
the related output linguistic variable corresponds
to the probability of detecting a recent fire out-
break. Table 4 shows the proposed FAM for car-
bon monoxide that analyse the probability of fire
outbreak occurrence obtained by comparing their
tuzzified values (average and last measurement).
For simplicity, the following notation has been
used to denote the probability of Fire Outbreak:

nonexistent (NFO), low (LFO), high (HFO), and
extreme (EFO).

3.3. Aggregation of Outputs and Defuzzification. Once infer-
ence rules have been used to evaluate fuzzified values for both
modules (prevention and detection), the results obtained
with respect to evaluating every input linguistic variable
are aggregated into two different global output sets and
fuzzified into the proposed output membership functions.
One of the two output sets includes all the results of the
inference-rule evaluation corresponding to the existence of
fire risks (prevention module). The second one is composed
of the results of the inference-rule evaluation with respect
to the probability that a recent fire outbreak has occurred
(detection module). The percentage highlights the discourse
of universe of both output linguistic variables. Thus, all
fuzzified outputs obtained from the inference-rule evaluation
step are represented in the range of 0-100%.

Figure 4 shows the fuzzy sets proposed for both out-
put linguistic variables: “nonexistent”, “low”, “high”, and
“extreme”. The inference rules relate input fuzzified variables
with those fuzzy sets through FAMs.

Both obtained output sets are defuzzified through apply-
ing the centroid method [22] whose aim is to obtain the
gravity center of each output set. On the one hand, a nonfuzzy
discrete percentage of the forest fire risks existing in the
corresponding forest area is obtained that represents the
result required by the prevention module. On the other hand,
the probability that a fire outbreak has recently occurred
is obtained by applying the aforementioned defuzzification
method in the other output set. Finally, the Web service is
responsible for activating environmental alerts and notifying
emergency corps depending on the estimated forest fire risks
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TABLE 5: Notation used for analysing fire spread.

Notations Description

Node IoT device located in the forest area where fire was detected
wind_direction Linguistic variable of wind direction

Loc(n) Function that calculates the location of a WSN node n

Fuzzyfire spread(x)

Fuzzification of location x of a node into fire spread membership function

(%) and the obtained evidence of fire outbreaks occurrence
(%).

4. AHP-Based Fire Spread Estimator

If the fuzzy-based forest fire controller detects evidences
that a fire outbreak has recently occurred in a particular
forest area, a decision-making method for analysing the
fire propagation is activated. For this purpose, AHP has
been used with the aim of evaluating and selecting which
neighbouring forest areas are more likely to favour fire spread
and to be affected by nearby fire outbreaks as consequence
of their environmental conditions. With respect to this,
seven criteria have been defined in order to select the best
alternative (nearby forest area) as Figure 5 shows.

The values of meteorological variables (such as tem-
perature, relative humidity, rainfall, and wind speed) and
the oxygen level have been considered among the seven
criteria. For this purpose, fuzzified input values of these
measured environmental variables for sensor nodes located
in a nearby forest area from where the fire outbreak was
recently detected are considered. These sensor nodes are
considered neighbours of the affected area. One of them and,
in particular, the WSN sensor node located in a neighbouring
forest area that is more likely to be affected by the fire outbreak
recently detected is selected as the best alternative. These
meteorological criteria are relevant because they have a direct
impact on the state of existing vegetation or organic fuel,
thus favouring fire spread. Required fuzzified environmental
values are returned by the Input Variables Fuzzification
step of Mamdani’s inference, when new environmental data
packages (measured by every nearby forest area) are analysed
by the proposed fuzzy-forest fire controller.

The wind direction measured in the forest area where the
fire outbreak was detected is considered as a main criterion.
Every WSN node is capable of measuring this environmental
variable in degrees with respect to the North. On the one

hand, each IoT device knows the location in degrees of
every neighbouring WSN node with respect to the North.
Through comparing their locations and the wind direction,
it is determined whether every neighbouring WSN node may
be “extremely near”, “very near”, “near”, “moderately near”,
or “far” with regard to the direction of fire spread that is
affected by the current state of wind in that forest area. Table 5
shows the notation used to describe this process.

According to (2), the difference between the location of
every neighbouring WSN node and the current wind direc-
tion, both measured in degrees to the North, is calculated and
fuzzified into the membership function that Figure 6 shows.
This membership function has been implemented aiming
at calculating the proximity of the node to the fire spread
direction. In this example, the difference between the location
of the neighbouring node 1 and the last measurement of
wind direction registered by the sensor node located in the
forest area recently affected by fire outbreaks is fuzzified into
this membership function. A value of 100% is obtained with
respect to the fuzzy set “extremely near” and 0% for the rest
of fuzzy sets. This result involves that the fire spread direction
may be extremely near the location of the neighbouring
node 1. Fuzzy sets for the wind direction variable have been
proposed according to the features of the used sensor.

Vn € {neighbouring WSN nodes of Nodeﬁre} , dx

€ [0°,360°] such that
X = min (|LOC (1’1) - ‘xwind_directionl) - (2)
Ay € {extremely near, very near, near,

moderately near, far} | y = Fuzzy e spread (%)

In addition to the hierarchical structure of the proposed
criteria, a comparison scale has been implemented to provide
different pairwise comparison levels: “equally important”
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TABLE 6: Matrix pairwise criteria comparison.
Criteria Temperature Humidity Rainfall 02 Wind e Wind j,ection Vegetation
Temperature 171 171 171 1/1 1/3 1/5 1/5
Humidity 1/1 1/1 1/1 11 1/3 1/5 1/5
Rainfall 1/1 1/1 1/1 171 1/3 1/5 1/5
02 171 1711 171 1/1 1/3 1/5 1/5
Wind, pee 3/1 3/1 3/1 3/1 171 13 13
Wind g, ocsion 5/1 5/1 5/1 5/1 3/1 1/1 171
Vegetation 5/1 5/1 5/1 5/1 3/1 1/1 1/1

(referenced as comparison number 1), “moderately more
important” (number 3), and “strongly more important”
(number 5). Regarding paired-wise comparisons among
alternatives according to each criterion, the importance level
assigned to every alternative with respect to the others
depends on the forest fire risks associated with their fuzzified
values.

When two alternatives present the same fuzzy value
(such as “high” or “low”) for a given criterion (temperature,
humidity, etc.), a comparison level of 1 “equally important”
is used. However, when they are not equal, each fuzzy set
of difference between both fuzzy values involves one higher
level of importance that will be assigned to the sensor
node whose fuzzy value may cause more forest fire risks.
For example, regarding the membership function and fuzzy
sets proposed for temperature (“normal”, “medium”, “high”,
and “extreme”), “normal” and “high” fuzzy values of two
alternatives or WSN nodes are considered. For this criterion,
the second alternative highlights with respect to the first one
through a comparison level of “strongly more important” as
consequence of existing two fuzzy sets of difference between
fuzzy values (medium and high). With respect to this, the
second alternative is more likely to favour fire spread as
result of its fuzzy temperature value. Thus, the differences
with respect to fuzzy sets have a direct impact on the
importance level or weight difference assigned to every WSN
node.

Regarding criteria comparison, Table 6 shows the weight
comparison matrix for the seven criteria.

5. Proposed System

The proposed system is based on a WSN, a Web service, and a
mobile application. The WSN is in charge of performing real-
time environmental monitoring. The Web service integrates
the fuzzy-based fire controller and the AHP-based fire spread
estimator aiming at analysing the existence of forest fire
risks in every monitored forest area, detecting recent fire
outbreaks, and estimating fire propagation. With respect to
this, the activation of environmental alerts depending on
the results obtained by the proposed fuzzy-based forest fire
risk controller and decision-making method is implemented.
Through the proposed mobile application, members of the
emergency corps are notified. Therefore, the proposed system
is responsible for the following:

(1) Analysing the states and unusual variations of the
monitored environmental variables through the pro-
posed distributed WSN.

(2) Coordinating active and deployed members of emer-
gency corps in areas at risk of forest fires, ensuring
their safety and tracking their location at any time.

(3) Managing efficiently the state and energy of the
system resources deployed in the environment, such
as the battery level of WSN nodes.

For the coordination of emergency corps, the imple-
mented mobile application allows establishing a real-time
communication service with the Web service and the emer-
gency corps headquarters.
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5.1. Wireless Sensor Network. The proposed WSN is aimed
at implementing an environmental monitoring interface
capable of measuring meteorological variables (such as tem-
perature, humidity, wind, and rainfall), polluting gases (such
as carbon dioxide and carbon monoxide) and oxygen level.
Every WSN node is based on a particular prototype of
IoT device that is distributed through different forest areas,
composing a distributed WSN.

Regarding the proposed prototype of IoT device, it is
based on Arduino platform and mainly composed of a
mainboard, seven environmental sensors, and a support
board for allowing their integration. Two particular mod-
ules are also assembled in order to provide 4G and Wifi
communications. On the one hand, the 4G module allows
sending the environmental information measured by sensors
to the Web service. It also provides a GPS service capable
of accessing the location of every IoT device. On the other
hand, the Wifi module is aimed at providing Wifi-Direct
communications [23] among IoT nodes. The 4G and Wifi
modules do not transmit information simultaneously. Wifi-
Direct communications are only enabled when a particular
sensor node is not able to transmit wirelessly through 4G
the recent measured environmental information to the Web
service as a consequence of being out of network coverage
in that moment. Thus, these communications are intended
to provide a multihop-routing protocol among nearby IoT
devices aiming at reaching a sensor node with 4G network
coverage.

Temperature and humidity are measured by a same digital
sensor capable of providing operational ranges between -
40°C and +85°C and 0 - 100%, respectively. Wind parameters
(speed and direction) are measured by an anemometer (with
measurement range between 0 and 240 km/h) and a wind
vane. In addition, a pluviometer composed of a small bucket
for measuring rainfall is assembled. A maximum bucket
capacity of 0.28 mm of water is allowed. Pollutant gases are
measured by two different sensors. On the one hand, the
carbon dioxide measuring range allows the measurement of
concentrations up to 10000 ppm with a response time of 60
seconds. On the other hand, the carbon monoxide sensor
is able to perform environmental measurements below 1000
ppm (with response time of 1 second). Finally, the oxygen
level can be measured between 0 and 30% (with response time
of 15 seconds).

The power supply of the IoT device prototype is based on
an external rigid solar panel of 7 volts (V) that can provide a
maximum charging current of 300 mA, aiming at recharging
a connected rechargeable lithium-ion battery. This battery
provides 6600 mA x h and a continuous nominal voltage of
3.7 V. To reduce the energy consumption below 33 A, several
sleep modes may be enabled when forest fire risks do not exist
in the corresponding forest area. In addition, Web service
monitors in real time the current battery level of every sensor
node through the last sent environmental measurement.

Once environmental variables are measured, environ-
mental measurements and other device parameters (such as
the battery level) are formatted to obtain a new environmen-
tal data package. Every dynamic risk factor (temperature,
humidity, etc.) is referenced by an alias of a few characters

to decrease the size of the package that will be sent. The
proposed environmental data package format is as shown in
the following.

T : (value) , H : (value) ,Wipeoq : (value) , Wy crion = (value) ,

R : (value);
3)
02 : (value) ,CO2 : (value) ,CO : {value) ;

BatteryLevel : (value) , Lat : (value) , Lng : (value)

Time frequency of environmental measuring can be
updated depending on the previously estimation of forest
fire risks, detection of recent fire outbreaks, or activation of
external forest fire alerts by the emergency corps. Instead
of measuring the considered dynamic risk factors every 5
minutes, the sensor nodes located near the affected forest
area will measure without any time delay. Likewise, WSN
nodes that are neighbours of an IoT device located in a
forest area at risk of fire will also increase the frequency
of environmental measuring. The Web service is in charge
of adjusting the environmental measurement cycle of every
WSN node depending on the continuous forest fire risks
analysis (shown in Table 3).

5.2. Web Service. Environmental information measured by
the WSN is continuously sent to the Web service, which is
mainly composed of a server that integrates the proposed
fuzzy-based forest fire controller. The Web service is in charge
of maintaining an environmental dataset history for every
monitored forest area including:

(1) Every environmental measurement registered by the
WSN.

(2) Average of monitored dynamic risk factors and corre-
sponding coefficient of variation (aimed at analysing
its variability and detecting possible errors in values
measured by the WSN).

(3) Results given by the fuzzy-based forest fire con-
troller for each received environmental data package,
including short-term forest fire risk estimation and
probability that a fire outbreak has recently occurred.

Interactive elements such as linear and bar graphs, visual
gauges, and maps are used to represent environmental infor-
mation. The Web service is also responsible for the activa-
tion of environmental alerts depending on results obtained
by the fuzzy-based forest fire controller. According to the
proposed fuzzy sets of output variables, a colour code has
been integrated into every proposed visualization element.
“Nonexistent” results provided by the fuzzy-based forest
fire controller are displayed with green and “Low”, “High”,
and “Extreme” results with yellow, orange, and red colours,
respectively. The aim is to improve the visual interpretation
of the severity of estimated forest fire risks and detected fire
outbreaks.

The forest fire risks and the probability that a wildfire
incident has recently occurred are immediately sent to the
involved emergency corps. For this purpose, notifications
sent by the Web service are received by the proposed mobile
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FIGURE 7: Structure of information designed for the system.

application aiming at providing an improvement of the
response time of emergency corps. If a fire outbreak in a
particular forest area is detected, results given by decision-
making method based on AHP are also sent to the involved
emergency corps via the mobile application. With respect to
this, nearby forest areas with the most propitious environ-
mental conditions to favour fire spread are notified. Finally, a
real-time coordination module has been integrated into the
Web service and the mobile application to enhance forest
fire prevention and fighting operations among the members
of emergency corps. Besides, their locations and movements
around the affected forest areas are tracked and represented
through an interactive map displayed in both the mobile
application and the Web service.

Open data sources, like the Spanish Agencia Estatal de
Meteorologia (AEMET), have also been used to extend the
environmental information managed by the Web service and
to access certain forest resources that may be relevant to forest
fire prevention, detection, and monitoring systems aiming
at designing the structure of information of the proposed
system (see Figure 7).

6. System Security

The proposal includes different security mechanisms aimed
at providing secure communications among WSN nodes,
the Web service, and the mobile application. In particular,
relevant security requirements for IoT deployment such
as data privacy, confidentiality, and integrity together with
authenticity have been considered in the implementation.

6.1. Insecurity in WSN Used for Environmental Monitoring.
WSN nodes are susceptible to different hazards capable of
compromising their integrity, confidentiality, and availability.

When used for environmental monitoring, if WSN nodes
are compromised, the fuzzy-based forest fire controller is
not able to estimate risks and fire outbreak occurrences, so
the response time of emergency corps, losses, and damage
caused by forest fires to the ecosystems may be significantly
increased.

Communication channels between nodes or between
node and Web service may be attacked to get unauthorized
access to the environmental information measured by the
WSN or to interrupt the transmission of environmental
data packages. In addition, environmental data may be
manipulated to activate false forest fire alerts, so involving
threats to the integrity and confidentiality of data measured
by sensor nodes. Once activated, these alerts would reach
the implemented mobile application (wrongly notifying the
emergency corps). Other manipulation attacks may aim at
hiding the existence of fire risks or of the beginning of a forest
fire. Besides, data may be also duplicated through forwarding
an environmental data package that was previously sent by a
WSN node successfully authenticated.

6.2. Implemented Authentication, Signature and Encryption.
An authentication scheme for environmental data packages
measured by IoT devices has been implemented through
the combination of Lamport’s authentication scheme and
Lamport-Diffie signature. In particular, a private/public key
generation mechanism necessary for the signature of every
environmental data package and for the authentication of [oT
devices has been implemented following the Lamport’s One-
Time Password Authentication Scheme.

The procedure based on the Lamport’s authentication
process is performed as follows. Firstly, every IoT device
chooses a secret value w and applies » times a hash cryp-
tography function H(w) on it. The result is a list of n
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FIGURE 8: Authentication and signature methods proposed for WSN sensor nodes.

one-time private/public key pairs. The last generated key
H"(w) is sent from the corresponding IoT device to the Web
service. This key is used as public key for authenticating the
first environmental data package sent by the IoT device. For
an initial value of n = 100 given as an example, the first key
sent to the server would be H'*(w).

Once the value of n is defined, the IoT device selects
the key H"'(w) for the i-th environmental data pack-
age from the list of keys in order to perform its corre-
sponding signature. At this moment, the selected key is
considered as a private key and is associated with the
key H""*'(w) previously stored in the server database.
Through the application of the hash function to this pri-
vate key, the second one (public key) is obtained, so that
both compose an authentication key pair according to the
Lamports authentication scheme. For an example with n
= 100, the key H (w) — HY'w) — H”®W) is
selected from the aforementioned key list to sign the content
of the first environmental data package. Therefore, keys
H"(w) (private key) and H"*(w) (public key) compose
an authentication key pair for the i-th environmental data
package.

After selecting the private key H"(w), the IoT device
applies the hash function on the content of the new environ-
mental data package to be signed, according to the Lamport-
Diffie one-time signature scheme (see Figure 8). This package
is mainly composed of environmental measurements and
other device data. Then, the obtained result is expressed in
a binary sequence, so the bits 0 and 1 are used aiming at
selecting the corresponding elements of the private key in use
H"(w) for the i-th message. Then, the IoT device sends to
the server:

(1) Signature. It is composed of the original message
(involving the set of registered environmental mea-
surements for each monitored dynamic risk factor
and other parameters such as the battery level) and
the elements selected from the current private key in
use H" (w).

(2) Private Key in Use. The key H "i(w) is used to verify
the signature of the package and to authenticate the
IoT sensor node in the Web service. If this signature

verification is successful, this key is stored in the
server database as the new public key to be used
to authenticate the next environmental data package
that reaches the Web service.

When the Web service receives a signed environmental
data package from an authenticated IoT device, it verifies the
attached signature. In order to do it, according to Lamport’s
authentication scheme, the server checks if the key H " ()
obtained in this package is associated with the last public key
stored in the database for the i-th message H "=*1(). For this
purpose, the cryptographic hash function is applied to the
first one and the obtained result is compared to the second
one, aiming at verifying their match. Regarding an initial
value of n = 100 and the second environmental package
sent to the Web service (i = 2), authentication is performed
following

H(Hn—i (lU)) — Hn—i+1 (lU) N
H (HIOO—Z (w)) — pgl00-2+1 (w) — (4)
H(H” (w)) = H” (w)

The hash function used in the implementation is SHA-3
(Secure Hash Algorithm 3), which is the latest member of the
Secure Hash Algorithm family of standards [24].

Every key available in the list initially generated by the
IoT device through the secret chosen value w is considered
as a private key or public key depending on its current use.
On the one hand, every key is used as a private key to sign
an environmental data package. On the other hand, the same
key is considered as a public key when it is stored in the
database aiming at authenticating the sensor node that has
recently sent a new environmental data package to the Web
service.

Table 7 shows an example of the signature process and
the keys used for the first three environmental data packages
registered and sent by the IoT device to the Web service.

Regarding signature verification, the server applies the
hash function to the content of the environmental package
received from the IoT device. The Web service can deduce
which elements of the private key in use should have been
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TaBLE 7: Authentication for the first three packages.

i-th message

Private key H' " (w)

Public key H" " (w)

Authentication

1

HlOO*l (w) — H99(w)

H10071+l (w) — HIOO(w)

H(HIOOfl (w)) — H10071+1 (w)

2 HlOO*Z (w) — H98(w) H10072+l (w) — H99(w) H(H10072 (w)) — H10072+1(w)
3 H10073 (w) — H97(w) H10073+l (w) — H98(w) H(HIOO{; (w)) — H10073+1(w)
TaBLE 8: Environmental dataset defined for estimating forest fire risks.

p T H Wpeed R Av.T Av.H Av.W Av. R

1 41,6 39 55 10 37 46 30 9,5
2 28 57 23 14,7 25 54 25 12
3 22 63,19 7.5 28,83 22,2 64,42 9,5 32,52

TABLE 9: Oxygen level and polluting gases for experimental results.

P 02 CO2 CO Av. 02 Av. CO2 Av.CO
1 16,5 876 47,8 18 592 13,6
2 21 395 10 20 350 7

3 19,1 546 17,61 21,35 454 1,47

(=2

HEYSEH AN

FireOutbreaksOccur...
ForestFireRisks

Max

FIGURE 9: Generation of proposed fuzzy-based forest fire controller in fuzzyTECH app.

selected by the IoT device in the signature process. If the
signature verification of the i-th message and the node
authentication are completed successfully, the server replaces
the current public key stored in the database H" **! (w) by the
new public key H "~i(w) contained in the last environmental
data package. This last one will be used during the signature
verification process of the next (i+1)-th message, and the IoT
device will select the private key H" ! (w) for signing a new
environmental message.

In the implementation of the proposal, before the trans-
mission of a new environmental package to the Web service,
every IoT device encrypts the content of each environmental
package through AES block cipher in Cipher Block Chaining
(CBC) mode, with keys of 256 bits and zero padding [25].
The use of this algorithm does not involve a significant
additional cost of time in the environmental measurements
management by the IoT devices. For this purpose, a key
predistribution process has been implemented to provide the
necessary secret keys based on Lamports scheme using the
hash function.

7. Experimental Results

We have performed an environmental simulation to analyse
the results obtained by the proposed fuzzy-based forest fire
controller for a particular dataset of environmental measure-
ments. FuzzyTECH application has been used to simulate the
proposed fuzzy-based forest fire controller (see Figure 9).

As Table 8 shows, an environmental dataset has been
defined aiming at providing the content of three different
environmental data packages sent by an IoT device. These
packages are referenced as P1, P2, and P3 and composed of
the last measurement of temperature (T'), humidity (H), wind
speed (W'Speed), and rainfall (R). In addition, averages (Av.) of
every linguistic variable are included to be analysed. These
values are used by the fuzzy-based controller to estimate the
existence of forest fire risks (%) in that forest area.

Fire outbreak detection only requires measures of tem-
perature and humidity as meteorological variables.

For every environmental data package, the oxygen level
and the concentrations of polluting gases are also measured
and included in the dataset, as Table 9 shows.
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FIGURE 11: Fuzzified carbon dioxide values.

Environmental data package P1 presents high values of
temperature and polluting gases. These environmental condi-
tions may involve a nearby burning process of biomass where
the IoT device is located. In fact, both last carbon dioxide
and carbon monoxide concentrations indicate a significant
increase with respect of their typical average concentrations.
In contrast, the last environmental measurement of relative
humidity (39%) has decreased with respect to the humidity
average (46%). Oxygen level has also decreased from 18 %
(average) to 16,5 % (last measurement), so increasing the
probability that a recent wildfire incident may be consuming
the oxygen in that forest area. On the other hand, packages
P2 and P3 do not present significant changes between the last
measurement and the average of meteorological variables. In
addition, measurements of temperature, humidity, and wind
speed do not involve “high” forest fire risks due to complying
with thresholds proposed by the rule of 30 aforementioned.
However, package P3 presents polluting gases concentrations
higher than package 2. Therefore, the result of fire outbreaks
occurrence (%) provided by the fuzzy system should be
higher with respect to package P2.

Discrete values of every environmental package are
fuzzified into the corresponding membership function. For
example, Figure 10 shows the last measurement of humidity
(package P1) fuzzified into the proposed humidity member-
ship function. “Low” (59%) and “normal” (40%) fuzzy values
are obtained for a humidity discrete value of 39 %.

Figure 11 shows the last measurement of carbon dioxide
(package P3) fuzzified into the membership function pro-
posed for CO2.

Thus, the input fuzzification step is applied on every value
of the proposed dataset. Table 10 shows all the obtained fuzzy
values and their levels of membership. On the left, the last
measurements of every variable are fuzzified. On the right,
the same process is applied to the averages.

The fuzzified values are evaluated on the basis of the
proposed knowledge base and FAMs for every linguistic
variable. The aim is to analyse the existence of forest fire
risks and fire outbreaks depending on existing unusual
changes between the last measurements and the averages
that compose the dataset. For every proposed environmental
package, Figure 12 shows the result of aggregating all the
obtained outputs into the membership function proposed for
the output variable related to the existence of forest fire risks.

Outputs related to the probability that a wildfire incident
has recently occurred are also aggregated into another output
set (see Figure 13). These aggregated outputs are defuzzified
by the Centroid method. Regarding the environmental data
P1, 56,458% has been obtained as the result of the defuzzifi-
cation process applied to the aggregated output set associated
with fire outbreaks occurrence.

Before defuzzification, the output set involved 87%
“extreme”, 84% “high”, 59% “low”, and 40% “nonexistent”
of probabilities that a wildfire incident may have recently
occurred.

Therefore, an unusual increase in polluting gas con-
centrations and temperature together with the decrease in
humidity and oxygen levels show a probability higher than
50% of fire outbreak occurrence. In contrast, 24,074% value
has been obtained for P2 after the defuzzification process.
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TaBLE 10: Fuzzy values obtained by the fuzzifier.
P Variable Value Fuzzy values Variable Value Fuzzy value
T 41,6 High(84%),Extreme (15%) Av.T 37 High(100%)
H 39 Low(59%),Normal(40%) Av. H 46 Normal(100%)
Wipeed 55 High(74%), Medium(25%) AV. Wpeq 30 Medium(100%)
1 R 10 Medium(100%) Av. R 9,5 Medium(100%)
02 16,5 Low (100%) Av. 02 18 Normal(33%),Low(66%)
CO2 876 High(12%),Extreme(87%) Av.CO2 592 High(100%)
CcO 47,8 Extreme(77%), High(22%) Av.CO 13,6 Medium(79%),High(20%)
T 28 Low(40%), Medium(60%) Av.T 25 Low(100%)
H 57 Normal(100%) Av. H 54 Normal(100%)
Wipeed 23 Low(35%),Medium(64%) AV W, peeq 25 Low(24%),Medium(75%)
2 R 14,7 Medium(32%),High(67%) Av. R 12 Medium(100%)
02 21 Normal(100%) Av. 02 20 Normal(100%)
CO2 395 Normal(100%) Av. CO2 350 Normal(100%)
CO 10 Medium(100%) Av.CO 7 Medium(69%),Normal(30%)
T 22 Low(100%) Av.T 22,2 Low(100%)
H 63,19 Normal(54%),High(45%) Av. H 64,42 Normal(55%),High(44%)
Wipeed 7.5 Low(100%) AV W, peeq 9,5 Low(100%)
3 R 28,83 High(100%) Av.R 32,52 High(74%), Extreme(25%)
02 19,1 Normal(69%),Low(30%) Av. 02 21,35 Normal(100%)
CO2 546 High(100%) Av. CO2 454 Normal(46%), High(53%)
CcO 17,61 Medium(29%),High(70%) Av. CO 1,47 Normal(85%),Medium(14%)
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FIGURE 12: Forest fire risks (%) for P1 (top left), P2 (top right) and P3 (bottom middle).

With respect to this, the aggregated output set of P2 involved
100% “nonexistent” and 69% “low” of probabilities with
regard to recent wildfire incidents occurrence. Regarding
P3, 100% “nonexistent”, 29% “low”, and 70% “high” of
probabilities were aggregated for its output set. Although

meteorological variables did not involve significant forest
fire risks, in the same way as P2, an unusual increase of
polluting gases jointly with decreasing oxygen level involve
a higher percentage of fire outbreaks occurrence with regard
to P2.
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TaBLE 11: Comparison of results provided by fuzzy-based forest fire controller.
Forest Fire risks(%) Fire outbreaks occurrence(%)
P Defuzzified result Aggregated output set Defuzzified result Aggregated output set
Non-existent(40%) Non-existent (40%)
0y 0,
1 50,964% Low(59%) 56,458% Low (59%)
High(100%) High (84%)
Extreme(15%) Extreme (87%)
Non-existent(100%) Non-existent(100%)
0, 0,
2 33,148% Low(67%) 24,074% Low(69%)
High(32%) High(0%)
Extreme(0%) Extreme(0%)
Non-existent(100%) Non-existent(100%)
0, V)
3 11,11% Low(0%) 4151% Low(29%)
High(O%) High(70%)
Extreme(0%) Extreme(0%)

Finally, Table 11 shows an overview of the results provided
by the fuzzy-based forest fire controller corresponding to the
proposed input environmental dataset. Results of prevention
module (forest fire risks) and those of the detection module
(evidence of fire outbreak occurrence) may be related in some
cases but not in others. With respect to this, a wildfire incident
may be caused by malicious attackers even when there are no
forest fire risks due to the existence of stable environmental
conditions in that forest area. In this case, the result of the
detection module may indicate “high” or “extreme” proba-
bilities that a forest fire has begun although the prevention
module may indicate “low” or “nonexistent” forest fire risks.
This case corresponds to the analysed results of P3 and is the
consequence of detecting unusual concentrations of polluting
gases.

8. Conclusions and Future Works

This work describes a proposal aimed at performing a
short-term estimation of forest fire risks to enhance the
response time of emergency corps and existing forest fire
prevention, detection, and monitoring systems. In order to
do it, real-time environmental monitoring of dynamic forest
fire risk factors is carried out through WSNs and novel IoT
technologies.

A fuzzy-based forest fire controller has been proposed
to analyse measured environmental information, aiming at
estimating the existence of forest fire risks, detecting recent
wildfire incidents, and activating environmental alerts.
Besides, a decision-making method based on AHP has
been used to determine nearby forest areas with favourable
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environmental conditions to be affected by close fire
outbreaks and to favour fire spread.

Those elements have been integrated into a Web service
and a mobile application to improve the coordination of
emergency corps. Moreover, open data sources have been
integrated to provide an additional support and external
environmental information of interest, such as weather data,
vegetation layers, and other forest resources.

Special attention has been paid to the implementation
of security mechanisms to ensure integrity, confidentiality,
and authenticity of communications between WSN nodes
and between any WSN node and the Web service. For
this purpose, an authentication method based on Lamport’s
authentication scheme and Lamport-Diftie signature has
been implemented using SHA-3 hash function, and environ-
mental information has been encrypted through AES 256 in
CBC mode.

The proposal described here is part of work in progress.
Several open research lines are the introduction of machine
learning in the WSN in order to provide an enhancement in
the detection of unusual environmental events in every mon-
itored forest area. For this purpose, training environmental
datasets generated in controlled environments might favour
a dynamic configuration process of the fuzzy sets proposed
for every monitored environmental variable and each forest
area. Besides, the fuzzy-based forest fire risk controller might
be also improved if new sensors are assembled into the
proposed IoT devices, so that new variables such as the
existence of smoke or the distance to the fire could be
measured. Finally, blockchain is currently highlighting as a
novel technology that might be used to favour the planning of
WOSN distribution in order to propose decentralized schemes
for authenticating new nodes.
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