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Abstract— Structural frames robust optimum design under
uncertain loads is handled simultaneously minimizing the constrained
mass (adding structural mass and constraint average distribution), as
well as the constraint violation distribution standard deviation, using
the non-dominated sorting genetic algorithm NSGA-II. The
consideration of external loads as random variables is handled by the
use of Monte-Carlo simulations for each structural candidate
solution. A variance-reduction inspired simulation procedure based
in engineering design knowledge is proposed and applied in a test
case, allowing a high computational cost reduction without harming
the non-dominated front quality. Results obtain a solution set that
allow selecting minimum mass optimum designs and maximum
robustness for external load uncertainty.
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I. INTRODUCTION

HE consideration of uncertainties in optimum design has

been a focus on the research activities of a wide range of
engineering fields, such as aeronautic or structural optimum
design applications, see e.g. [1].

When dealing with optimum design constraint problems, as
is often usual in the structural engineering field (constraints in
terms of stresses, displacements or buckling considerations),
the optimum solutions lie in the border of the feasible region,
which is limited by the constraints. That is, those solutions
that fit more accurately the constraints are the optimum ones.
Here, the deterministic optimum design (where no
uncertainties are taken into account) serves as reference for
the robust optimum design (where some parameters are
random variables). From an engineering interest point of view,
the solutions set of robust design are related with the
deterministic optimum design. It is taken advantage of this
engineering knowledge-based information, proposing a
variance-reduction Monte Carlo simulation technique. It
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allows reducing the number of structural fitness function
evaluations.

The multiobjective optimization of the constrained mass and
the constraint violation standard deviation is performed using
evolutionary multiobjective algorithms [2], [3], [4],
concretely, the non dominated sorting genetic algorithm,
NSGA-II [5], is used.

In section 2, the handled structural problem is described,
both in terms of the deterministic and robust design
optimization. Section 3 shows the frame test case used in this
paper. Then section 4 describes the standard and reduced
procedure results, showing the advantages of our proposal.
Finally, section 5 ends with the conclusions.

II. THE STRUCTURAL PROBLEM

A. Deterministic Design

Discrete optimization of bar structures using evolutionary
algorithms was introduced in [6] and the first application of
multiobjective  evolutionary  algorithms in  structural
engineering was in [7].

No uncertainties (that is, no random variable consideration)
are taken into account in the deterministic design problem.
The fitness function, in order to perform the constrained mass
minimization, has to consider the proper requirements of the
bar structure to fulfil its function. Its value is directly related
with the acquisition cost of raw material of the metallic frame.
The information needed by the fitness function is obtained
through a finite element code and the applied constraints in
order to guarantee the appropriate functionality of the
structure are defined in terms of stresses, compressive
slenderness and displacements:

Stresses of the bars, where the limit stress depends on the
frame material and the comparing stress takes into account the
axial and shearing stresses by the shear effort, and also the
bending effort. For each bar, (1) has to be accomplished.

Oc¢o ~ Olim <0 (D
Compressive slenderness limit, for each bar where the
buckling effect is considered (depending on the code used it

could have different values); (2) has to be satisfied.
A= i <0 b)
Displacements of joints or middle points of bars are also a
possible requirement, as observed in (3).
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Uro — Ulim <0 (3)
With these constraints, the fitness function constrained
mass, which integrates the constraints violations as mass
penalties, is shown in (4).
Nbars Nviols
FitnessFunction = [ Z A - p - }[1 +k - z (viol, —=1)] “)
i=1 j=1
Where:
A; = area of the section type of bar i; p; = density of bar i; /; =
length of bar i; k = constant that regulates the equivalence
between mass and restriction (suitable values around the unity
order); viol; = for each violated restriction j, is the quotient
between the violated restriction value (stress, displacement or
slenderness) and its reference limit.

B. Design including Uncertainties

The deterministic optimum design of a bar structure is
defined frequently by the imposed constraints in terms of
stress, displacement or buckling, which are conducted to their
limit values, without surpassing them. The variation condition
in loads is in real structures frequent, and it is considered in
the design codes. So, a deterministic optimized structure, due

robust design. The principal objective of robust design is to
find a solution with less sensitive structural performance to
the fluctuations of parameters without eliminating their
variation.

The variation of the load actions which act over a structure
from the viewpoint of the probabilistic or semi-probabilistic
safety criteria, is associated with considering the loads as
stochastic variables and to the existence of some limit ultimate
states that guide to the total or partial ruin of the structure and
limit service states that when achieved produce its
malfunctioning. Here, in order to define the actions, it is
assumed that their variation follows a Gaussian probability
density function. The characteristic value of an action is
defined as the value that belongs to the 95% percentile, that is,
a probability of 0.05 to be surpassed, which is considered as
the deterministic value in no uncertainty consideration case.

In this paper, in order to model the stochasticity of the
actions, standard Monte Carlo simulations are performed
considering variable distribution of the external loads. In
addition, an improved strategy is proposed, and detailed in
section IV.B, called reduced procedure, allowing a high

to the fact that has their constraints near the limit values is reduction of the required structural fitness function
expected to be more sensitive to those random variations. An  evaluations.
analysis of those uncertainties is required to guarantee a
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. TEST CASE

The considered reference test case is based on a problem
taken from Hernandez Ibafiez [8] for single objective mass
minimization using continuous variables. The solution
reported in the previous reference using classical optimization
methods was improved using evolutionary algorithms in
Greiner et al. [9]. This last deterministic evolutionary
optimum design is taken as reference in this work and
compared with the robust optimum design non-dominated
front.

Fig. 1 shows the test case, where lengths (10 and 20) and
height (6) are in meters and the loads in T/m. (1.5, 1.0 and
0.2). There is a constraint of maximum displacement of
middle point of bar 2 equal to length/300, that is 6.67 cm. It is
a discrete domain problem, belonging the cross-section types
to the IPE class (16 different types per bar). It has been taken
into account the buckling effect, and also its own gravitational
load. The considered density (7.85 T/m®) and Young modulus
(2100 T/cm?) are common steel values and the yield stress is
235.2 Mpa.

The Monte Carlo simulation has been performed
considering 30" simulations per structural design in order to
construct its constraint violation distribution, being N the
number of different variables considered. Here the simulated
variables correspond to the linear uniform loads of the frame
structure which are three, belonging to each loaded bar (1, 2
and 4).

The distribution of each linear uniform load is simulated
through a Gaussian distribution, which is calculated
considering the test case load value as the characteristic value
and its coefficient of variation being 6,1% for the vertical
loads (bars 1 and 2) and 30,5% for the lateral load (bar 4).
Their distributions are graphically represented in Fig. 2.

IV. RESULTS AND DISCUSSION

A. Standard Procedure

Results based in this standard procedure are reported
successfully in [10]. Ten independent executions were
performed for each multiobjective evolutionary algorithm. A
population size of 200 individuals, uniform crossover,
uniform mutation rate of 0.06, and a stop criterion of 100
generations were considered in all cases. Results are
graphically represented in Fig. 3, using the NSGA-II
algorithm. The x-axis belongs to the constrained mass value
(in kg), obtained by adding the mass of the particular
structural design and the average of the constraints violation
distribution in terms of mass. The y-axis belongs to the
standard deviation of the constraints violation distribution in
terms of mass. In Fig. 3a, the accumulated final non-
dominated fronts of the ten executions are represented; on the
other hand, in the right part, the total corresponding non-
dominated front of each algorithm is depicted. Fig. 3b shows
the final non-dominated front evaluated from the accumulated
total number of executions performed.

A total of twelve different frame structural designs compose
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the obtained Pareto optimal front. Due to the stochastic
modeling of Monte Carlo simulations, it is possible to achieve
different values of the objective functions for a single design.
However, the differences among them are minor, indicating
the suitable performance of the stochastic load simulation.

NSGA-II is capable to locate the extreme frame structural
design solutions. The number of final Pareto front designs
located considering the non-dominated front obtained by
accumulating the whole solution set is 14. The algorithm also
found all the twelve design solutions (as can be seen in Fig.
3b).
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The deterministic optimum design, whose loads have the
characteristic value of the imposed Gaussian distributions, has
no constraint violations and it has a mass of 3324.3 kg. Its
correspondent design under uncertain loads is highlighted in
bold type in Table 1. When the robust design is considered
including the load variations, it is observed, that this design
violates the constraints in certain occasions, being the
standard deviation of its distribution of 24.1 kg. and its mean
of 3.8 kg. Therefore, the engineer or decision-maker, should
select an individual among this deterministic optimum design
and the most right solution of the front, which has no
constraint violations at all, even in the stochastic case.
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B. Reduced Procedure

The standard simulation procedure described in the
previous section implies the calculation of 30°=27000
structures for each evolutionary computation solution
candidate in the handled test case of this paper. In this section,
a variance reduction procedure inspired in the well known
Importance Sampling Monte Carlo variance reduction
technique [11] and based in engineering design knowledge is
introduced to diminish the computational effort without losing
solution quality.

Each structural evaluation is necessary in order to calculate
the possible constraints produced by each load case and
therefore, their contribution value to the constraint
distribution, whose standard deviation is chosen as structural
robustness measure of each structural design: the structure
with the lowest mass that has zero standard deviation
corresponds to the most right solution of the Pareto Front; on
the contrary, the structure with the highest standard deviation
and lowest mass corresponds to the most left solution of the
Pareto Front.

Considering the constant load distribution as the
characteristic value (that is, the value belonging to the 95%
percentile) of the Gaussian model, it is proposed for each
structural design to evaluate only those load cases that surpass
at least one of its characteristic values (1.96, 9.8 and 14.7
kN/m, as shown in Fig. 2. Therefore, only 1-0.95° = 0.142625,
equal to 14.2625% of 27000 (3850 structures) are needed to
be evaluated with this reduced simulation procedure. The
benefit in terms of computational cost is of 16% in NSGA-II
(slightly higher compared versus the fitness function saving
due to the inherent cost of the evolutionary algorithm). The
rest of cases are estimated to have null contribution to the
constraint distribution. With this assumption, the obtained
results are described as follows.

A total of thirty-three different frame structural designs
compose the obtained Pareto optimal front. They are detailed
graphically in Fig. 4. The number of final Pareto front designs
located considering the non-dominated front obtained by
accumulating the whole solution set is 33 (as can be seen in
Fig. 4b).

Comparing these results with the standard procedure ones,
we can observe that the reduced simulation procedure
achieves a wider front. It can be seen both in terms of number
of obtained structural designs (33 versus 12) as well as in
terms of numerical values (the left non-dominated solutions
reach 781.7 kg and 2999.9 kg in terms of standard deviation
and constrained mass average, respectively, versus the
standard distribution most left values of 79.5 kg. and 3277.1
kg, respectively). As the contribution to the constraint
distribution is limited to the cases where the load
characteristic value is surpassed, there are structures that have
more reduced constraint average (it is added to the structural
mass and considered in the x-axis fitness function value) than
in the standard simulation (where they were dominated
designs) and therefore they appear as new non-dominated
solutions in the front.
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each of the ten independent executions by NSGA-II. Reduced Distribution.

However, if the engineer or decision-maker preferences are
taken appropriately into account in this structural problem,
both procedures obtain equivalent non-dominated frame
designs. He has to choose a structural design between two
extremes:

1) The most right extreme: The solution of the front
(highest constrained mass and null standard deviation) that
represents the structural design which despite of the
uncertainty of the loads, has none constraints violation.

2) The most left extreme: The solution of the front that in
the case there were no load uncertainties, has the lowest mass
and no constraints violation, which corresponds to the
structural design coincident with the deterministic optimum.

Considering this, both procedures produce identical non-
dominated fronts when the useful functional space is restricted
to those abovementioned extremes, as can be seen in Fig. 5.

This is explained because both simulation procedures
(standard and reduced) produce identical constraint
distributions in those non-dominated structural designs where
the characteristic load values are surpassed. Indeed, the first
design where both non-dominated front procedures are
coincident, becomes this deterministic optimum design
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solution; so, comparing both distributions could lead to a
method that achieves the deterministic optimum design in case
of no load uncertainties. The slight variations in the depicted
solutions are due to the stochastic nature of the Monte Carlo
simulation, but the proximate points represent the same
structural design.
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Fig. 5 Final Non-Dominated Fronts obtained by the Standard (crosses) and
Reduced (rhombus) distributions, starting with the deterministic optimum
solution at top left. Both are coincident.

The detailed numerical values of the non-dominated

Civil Engineering and Mechanical Engineering

structural frame designs corresponding to the reduced
procedure shown in Fig. 5, are in Table 1.

V. CONCLUSION

Robust optimum design of frame structures with real
discrete cross-section types has been handled successfully in
this paper, having considered the modeling of uncertain loads
by Monte Carlo simulation and the multiobjective
optimization using NSGA-II. Moreover, a variance-reduction
inspired simulation procedure is proposed, which allows
reducing the structural evaluations required and indeed the
computational cost, drastically (85% in the handled test case),
obtaining equivalent non-dominated solutions considering
appropriately the engineer or decision-maker preferences,
showing additionally that significantly computational cost
gains can be achieved by the use of appropriate Monte Carlo
variance reduction techniques, which constitutes a promising
research line for the near future.

Dealing with uncertainty has been performed including all
the possible factors of constraints violation (stresses,
displacements and buckling effect) into the final designs. Two
objectives were simultaneously minimized: first, the
constrained mass, by adding the mass of the structure and the
average of constraints violation penalty distribution; and
second, the standard deviation of the constraints violation

DETAILED NON-DOMINATED STRUCTURAL FRAME DESIGNS OF FIG. 5 (REDUCED PROCEDURE)

TABLE 1

Constrained  Constraint ~ Constraint Cross Cross Cross Cross
Mass Violation Violation Section Section Section Section
(kg) Standard Average Type Bar  Type Bar  Type Bar  Type Bar
Deviation (kg) 1 2 3 4
(kg)
3328.26 24.002 3.946 IPE330 IPE500 IPE450 IPE500
3328.27 23.806 3.955 “ “ “ “
3392.12 18.823 2.335 IPE400 IPE550 IPE220 IPE450
3392.13 18.182 2.347 « « « «
3392.21 18.018 2.427 « « « «
3394.53 13.249 1.285 IPE360 IPE550 IPE300 IPE450
3394.55 13.202 1.305 « « “ «
3394.59 13.162 1.346 « « “ “
3394.61 12.869 1.364 “ « “ “
3405.85 8.056 0.516 IPE330 IPE500 IPE500 IPE500
3405.87 7.635 0.536 “ “ “ “
3408.38 4.867 0.222 1PE400 IPE550 IPE160 IPE500
3408.41 4.832 0.252 « « « «
3426.17 3.047 0.114 IPE400 IPE550 IPE180 IPE500
3426.18 3.002 0.123 « « « «
3434.8 2.984 0.106 IPE360 IPE550 IPE330 IPE450
3447.76 1.861 0.041 IPE400 IPE550 IPE200 IPE500
3470.81 0.692 0.014 TPE400 IPE550 IPE220 IPES00
3482.26 0.202 0.003 IPE360 IPE550 IPE360 IPE450
3492.94 0 0 IPE400 IPE550 IPE160 IPE550
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penalty distribution.

A well known frame test case has been solved, obtaining a
non-dominated final front, where an optimum design (minimal
mass) without any constraint violation despite the uncertainty
of the external loads is achieved. Their solution designs have
been also compared with the deterministic optimum design,
which is also included in the final front. In this test case, the
consideration of the five percent excess over the characteristic
load has guided to an increment of 5% in structural mass. It is
an indicator of the failure probability allowed in the used limit
state theory.
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