VAPOR-LIQUID EQUILIBRIA OF METHYL OR ETHYL ACETATE WITH 1-CHLOROPENTANE OR 1-CHLOROHEXANE AT 101.32 kPa PRESSURE

JUAN ORTEGA* AND JUAN A. PEÑA

Laboratorio de Termodinámica y Fisicoquímica, Escuela Superior de Ingenieros Industriales, 35071-University of Las Palmas de G.C, Canary Islands, Spain

Key Words: Vapor Liquid Equilibrium, Chloroalkanes, Esters

The *T-x-y* data for binary mixtures composed of methyl acetate + (1-chloropentane or 1-chlorohexane) and ethyl acetate + (1-chloropentane or 1-chlorohexane) have been measured ebulliometrically at 101.32 kPa using a dynamic method. In thermodynamic calculations using these data, the vapor phase was considered to be non-ideal, and the four systems studied exhibit positive deviations from Raoult's law. The activity coefficients and vapor phase compositions have been compared with those predicted by using UNIFAC and ASOG models.

Introduction

This paper reports experimental isobaric vaporliquid equilibrium (VLE) data for four binary mixtures at 101.32kPa. The four mixtures employed were: methyl acetate(MA)+1-chloropentane(1Cl5), methylacetate+ 1-chlorohexane (1Cl6), ethyl acetate (EA) + 1-chloropentane, and ethyl acetate + 1-chlorohexane. The literature contains no values for these mixtures. The study of systems containing chloroalkanes is of great interest in the field of thermodynamics of mixtures, even though not many VLE data have been published for mixtures containing such components that would there by make it possible to validate existing theoretical models. Moreover, there are very few reliable data on the physicochemical properties of the above-mentioned halogenated hydrocarbons. Apartial explanation for this situation is that the reactivity of such components increases as working temperature increases, making handling difficult. The literature consulted makes reference to similar systems, but we have only been able to find isothermal VLE values for ethyl acetate + 1-chlorobutane at various temperatures, reported by Khurma et al.⁶

We also investigated the usefulness of the ASOG and UNIFAC models in calculating equilibrium values for the mixtures considered.

1. Experimental Section

All the chemicals used in this study were purchased from Fluka. **Table 1** lists the chemicals and their stated purities. However, before use they were degassed by ultrasound and stored in darkness on a molecular sieve (ref. 69828 from Fluka) for several days prior to use.

The most important physical properties of the ace-

tates and 1-chloroalkanes, NBP, ρ , and n_D , were determined experimentally, and the values so obtained did not differ significantly from the literature values (Table 1).

Isobaric vapor-liquid equilibria for binary systems containing these compounds were measured using a recirculating still made by us. The description and operation of this still were described previously by Ortega *et al.* ¹⁰⁾ However, when working with 1-chloroalkanes, the system was modified slightly by hermetically sealing in glass the upper section of the still, which was subjected to high temperature. Temperature measurements were made by sensors enclosed in glass tubes welded to the outside of the still.

Pressure was regulated electronically, using a Fisher VKH100 controller, and the total pressure in the experimental equipment was measured using a MKS Instrument System with reading intervals of ±0.001 kPa. The accuracy of the reading was better than ±0.02 kPa. Temperaturemeasurements were taken using a Comark-6800 digital thermometer with platinum probes and reading intervals of ±0.05 K. Calibration of this equipment recorded measurement errors of ±0.1 % in the readings.

Vapor and liquid samples were analyzed by densimetry, using an Anton Paar 60/602 vibrating-tube densimeter calibrated with water and n-nonane as described by Ortega etal. ⁹⁾ employing standard curves for density-concentration obtained beforehand for binary mixtures (x_1 methyl acetate or x_1 ethyl acetate + x_2 1-chloropentane or x_2 1-chlorohexane) at (298.15 \pm 0.01) K. The polynomial equations used to estimate the vapor and liquid phase concentrations were:

$$\rho = 876.94 + 14.32 x_1 + 26.75 x_1^2 - 8.45 x_1^3 + 17.47 x_1^4$$
 (1)
(MA + 1Cl5)

VOL. 27 NO. 3 1994 351

^{*} Received October 18, 1993. Correspondence concerning this article should be addressed to J. Ortega.

Table 1. Experimental physical characteristics of chemicals of and constants used in the treatment of VLE data and their comparison with data found in the literature

	purity %	NBP [K]	ρ [kg·m ⁻³] 298.15 K	n _D 298.15 K	T_c [K]	p _c [MPa]	$[m^3 \text{ kmol}^{-1}]$	μ/10 ⁻³⁰ [cm]	ω	Z _{RA}
MA	>99.95	330.05 330.0187 (15) 330.076 (1)	927.07 927.9 (15) 927.3 (21)	1.3590 1.3589 (15)	506.9 (16) 506.55 (15)	4.69 (16) 4.75 (15)	0.228 (16) 0.228 (15)	5.74 (15)	0.326 (14)	0.256 (13)
EA	>99.5	350.30 350.261 (15) 350.213 (1)	894.34 894.55 (15) 894.0 (21)	1.3701 1.3698 (15)	524.1 (16) 523.3 (15)	3.85 (16) 3.88 (15)	0.286 (16) 0.286 (15)	6.07 (15)	0.362 (14)	0.254 (13)
C15	>99	380.91 380.54 (15)	876.92 877.00 (15) 877.1 (21)	1.4099 1.4100 (15)	559.36 ^a	3.35ª	0.364ª	6.47 (2)	0.316 ^b	0.259°
C16	>99	408.05 408.07 (1)	873.33 873.9 (21)	1.4174	590.04ª	2.98ª	0.419 ^a	6.54ª	0.360 ^b	0.256 ^c

^a values estimated using ref. (2)

 Table 2. Experimental vapor pressures of pure compounds as a function of temperature

T	$p_i{}^o$	T	$p_i^{\ o}$
[K]	[kPa]	[K]	[kPa]
	Ethyl :	acetate	
334.1	59.3	352.0	109.4
336.8	65.3	352.5	111.3
338.6	69.7	353.1	113.5
340.2	73.7	354.0	116.9
342.1	78.6	354.5	118.8
343.5	82.5	355.3	121.9
345.1	87.1	356.3	125.9
345.8	89.3	356.9	128.3
347.6	94.7	357.7	131.6
348.6	98.1	358.5	134.9
349.5	100.8	359.1	137.4
349.9	102.3	-	-
	1-Chlore	opentane	
350.0	37.6	380.8	100.7
354.0	43.2	382.7	106.4
359.5	52.0	385.2	114.1
364.2	60.5	387.5	121.8
368.4	69.2	390.1	130.8
373.0	79.8	392.4	139.2
378.1	93.1	393.8	144.6
	1.Chlor	ohexane	
373.8	36.3	405.2	93.3
379.9	44.2	408.1	101.0
384.7	51.4	411.2	109.6
389.0	58.7	414.3	118.8
392.7	65.5	416.1	124.3
395.6	71.3	419.3	134.7
399.3	71.3 79.2	421.7	143.0
402.0	85.5	741.7	143.0
402.0	65.5	-	<u>-</u>

$$\rho = 873.29 + 12.69 x_1 + 34.18 x_1^2 - 25.70 x_1^3 + 32.55 x_1^4$$
 (2)
(MA + 1Cl6)

$$\rho = 876.90 + 1.50 x_1 + 11.20 x_1^2 + 4.73 x_1^3$$

$$(EA + 1Cl5)$$

$$\rho = 873.36 + 4.47 x_1 + 4.23 x_1^2 + 12.22 x_1^3$$

$$(EA + 1CI6)$$

which yielded correlation coefficients very close to unity. In addition, the uniform distribution of v^E values

Table 3. Antoine constants obtained for pure compounds used in this work, standard deviations, $s(p_i)$, and from the literature

Compound	ref.	Α	В	C	s (p;º) [kPa]
Methyl acetate	(10)	6.4934	1329.46	33.52	0.04
	(15)	6.2441	1183.70	50.74	
Ethyl acetate	this work	7.1649	1856.18	10.21	0.06
	(15)	7.06309	1224.673	57.44	
1-Chloropentan	ethis work	6.0408	1294.54	60.15	0.07
	(15)	6.81151	1271.16	58.15	
1-Chlorohexane	this work	5.8292	1259.51	79.78	0.06
	(1)	7.05136	1461.72	57.58	

for each of the mixtures was also verified, these results being compared with those determined by us and published previously^{8, 11)}, with average errors for all mixtures of less than 1 %. The concentration values for the liquid phase obtained using Eqs. (1)-(4) were accurate to ± 0.0025 ; however, the uncertainty for those of the vapor phase was slightly higher, including the high volatility of the methyl acetate in the least favorable cases.

2. Results and Discussion

2.1 Vapor pressures

The correlations employed for the vapor pressures exert a considerable influence on the thermodynamic treatment of VLE data. The Antoine equation is the best known, and the literature contains values for the components used in this experiment, though values for the 1-chloroalkanesarenotabundant. Therefore, experimental (T, p_i^o) values were determined over a temperature range similar to that for the working conditions employed in this study using the same equilibrium still. **Table 2** sets out the vapor pressure measurement values for ethylacetate, 1-chloropentane, and 1-chlorohexane. The vapor

b values estimated using ref. (15)

c values estimated using ref. (22)

Table 4. Experimental Vapor-Liquid Equilibrium Data at (101.32 \pm 0.02) kPa for the mixtures $x_1H_3CCOOC_uH_{2u+1}$ (u=1,2) + x_2 1 - ClC_vH_{2v+1} (v=5,6)

	(v = 5, 6)	- u - 2u + 1 (**	-, -,	010V112V+1	375.55	0.0576	0.1891	1.589	1.000
	$(\mathbf{v} - \mathbf{J}, 0)$				374.85	0.0701	0.2173	1.530	0.998
					374.35	0.0797	0.2357	1.477	0.999
T[K]	x_1	y_1	γ_1	γ_2	373.95	0.0867	0.2505	1.458	0.999
			*1		373.65	0.0963	0.2651	1.401	0.999
	Methyl	acetate + 1-Ch	loropentane		372.55	0.1084	0.2944	1.423	1.004
376.65	0.0207	0.1131	1.449	1.019	371.65	0.1218	0.3168	1.396	1.013
373.10	0.0447	0.2195	1.418	1.020	370.25	0.1546	0.3792	1.367	0.997
370.35	0.0649	0.2891	1.377	1.020 1.029	369.45	0.1792	0.4158	1.321	0.990
366.70	0.1011	0.3802	1.274	1.042	367.85	0.2175	0.4683	1.281	0.991
364.70	0.1208	0.4291	1.267	1.044	366.35	0.2497	0.5087	1.264	1.001
361.75	0.1579	0.5009	1.223	1.045	364.95	0.2897	0.5526	1.230	1.005
358.65	0.2026	0.5697	1.178	1.051	362.85	0.3634	0.6191	1.166	1.019
356.75	0.2020	0.6034	1.165	1.066	361.15	0.4388	0.6697	1.097	1.058
354.00	0.2673	0.6532	1.163	1.076	360.05	0.4728	0.6949	1.091	1.078
353.00	0.2805	0.6682	1.164	1.084	359.05	0.5143	0.7253	1.078	1.088
351.05	0.2803	0.7036	1.154	1.084	358.25	0.5534	0.7507	1.062	1.102
346.95	0.3136	0.7036	1.154	1.089	357.25	0.5958	0.7800	1.056	1.110
346.93 345.65	0.3891	0.7899		1.093 1.099	356.65	0.6263	0.7963	1.044	1.134
343.65 342.65		0.7899	1.144 1.122	1.122	355.75	0.6674	0.8235	1.041	1.138
342.65	0.4917		1.122	1.122	355.15	0.7054	0.8451	1.029	1.150
340.95	0.5424	0.8538	1.100	1.155	354.35	0.7454	0.8670	1.023	1.174
339.05	0.6032	0.8784	1.079	1.190	353.75	0.7843	0.8878	1.014	1.193
336.35	0.7001	0.9102	1.049	1.289	352.95	0.8292	0.9118	1.010	1.217
335.05	0.7550	0.9274	1.033	1.343	352.25	0.8726	0.9329	1.003	1.271
334.15	0.7854	0.9388	1.035	1.383	351.45	0.9167	0.9544	1.002	1.358
332.15	0.8835	0.9659	1.010	1.488	350.85	0.9538	0.9737	1.001	1.442
331.15	0.9446	0.9805	0.991	1.863	350.55	0.9787	0.9868	0.998	1.586
	Mathyl	acetate + 1-Ch	lorohovono						
395.65	0.0407	0.3067	1.306	1.008			cetate + 1-Chlor		
390.65	0.0609	0.7085	1.292	1.012	403.05	0.0221	0.1409	1.626	1.003
387.40	0.0009	0.4677	1.279	1.012	399.35	0.0418	0.2298	1.516	1.013
382.30	0.1015	0.5547	1.267	1.022	396.15	0.0579	0.2955	1.510	1.030
377.60	0.1013	0.6244	1.270	1.028	393.65	0.0739	0.3493	1.478	1.038
377.60	0.1504	0.6807	1.283	1.028	392.75	0.0803	0.3657	1.454	1.046
369.70	0.1794	0.7245	1.267	1.041	391.05	0.0910	0.4026	1.468	1.047
366.70	0.1794	0.7579	1.266	1.041	390.45	0.1026	0.4147	1.360	1.057
		0.7379	1.245	1.052	388.85	0.1180	0.4494	1.330	1.061
364.50 360.60	0.2245 0.2613		1.243	1.052	386.75	0.1358	0.4927	1.331	1.062
360.60		0.8185 0.8590	1.244	1.049	384.65	0.1554	0.5356	1.330	1.060
355.85	0.3224		1.204	1.059	384.25	0.1707	0.5437	1.241	1.074
353.05	0.3551	0.8789	1.210 1.199	1.064 1.074	382.35	0.1939	0.5815	1.224	1.075
350.20	0.3971	0.8978	1.199	1.074	379.85	0.2277	0.6259	1.194	1.086
347.85	0.4427	0.9128	1.171	1.089	377.55	0.2683	0.6675	1.145	1.097
345.80	0.4925	0.9244	1.132	1.127	374.55	0.3149	0.7167	1.132	1.101
342.55	0.5795	0.9421	1.081	1.193	372.35	0.3658	0.7525	1.084	1.119
340.00	0.6390	0.9545	1.075	1.217	369.35	0.4282	0.7959	1.062	1.134
339.70	0.6597	0.9561	1.052	1.262	366.35	0.4853	0.8330	1.065	1.145
337.85	0.7088	0.9650	1.048	1.275	364.05	0.5398	0.8603	1.055	1.164
336.90	0.7487	0.9699	1.027	1.324	361.35	0.6061	0.8886	1.048	1.195
335.70	0.7873	0.9749	1.020	1.376	359.25	0.6647	0.9121	1.043	1.199
335.15	0.8099	0.9771	1.011	1.440	357.35	0.7336	0.9315	1.021	1.264
333.75	0.8631	0.9832	0.999	1.563	355.35	0.8054	0.9515	1.008	1.323
333.00	0.8887	0.9863	0.997	1.624	353.85	0.8601	0.9646	1.002	1.425
332.60	0.9147	0.9876	0.983	1.951	352.65	0.9043	0.9742	0.999	1.591
331.95	0.9254	0.9905	0.991	1.975	351.95	0.9369	0.9824	0.993	1.693
					351.45	0.9666	0.9874	0.983	2.336

376.85

375.95

375.55

0.0289

0.0505

0.0576

pressure values for methyl acetate were measured by the authors earlier and were reported in a recent paper¹³. The data in Table 2 were regressed using the Antoine equation with three constants:

$$\log p_i^o = A - B / (T - C) \tag{5}$$

The values for the three constants A, B, and C so obtained appear in **Table 3** together with the standard deviations, $s(p_i^o)$, for the experimental values and other literature values.

2.2 Vapor-liquid equilibrium data

The isobaric vapor-liquid equilibrium data p, T, x_1 and y_1 for the binary mixtures $\{x_1 \text{CH}_3 \text{COOC}_u \text{H}_{2u+1} \ (u=1,2) + 1 \text{-Cl C}_v \text{H}_{2v+1} \ (v=5,6)\}$ obtained by direct experimentation at a pressure of $(101.32 \pm 0.02) \text{ kPa}$, (760 ± 0.15) Torr, are given in **Table 4**. To shed light on

the behavior of the above mixtures, the activity coefficient, γ_i , for both mixture components were calculated by applying the equation:

Ethyl acetate + 1-Chloropentane

2.023

1.626

1.589

1.010

1.003

1.000

0.1249

0.1714

0.1891

$$\phi_i p y_i = \gamma_i p_i^o x_i \phi_i^o \exp\left[v_i^L(p - p_i^o) / RT\right]$$
 (6)

where the fugacity coefficients, ϕ_i and ϕ_i^o , were calculated using the second virial coefficients computed from Tsonopoulos empirical correlations²³. The molar volumes of the liquid pure components, v_i^L , and changes in these values with temperature were calculated using a modified version of Rackett's equation [see Spencer and Danner¹⁸]. Rackett's parameters, z_{RA} , for the 1-chloroalkanes were estimated from the (ρ, T) values published²². As set out in Table 1, the critical properties and other properties for the 1-chloroalkanes were estimated

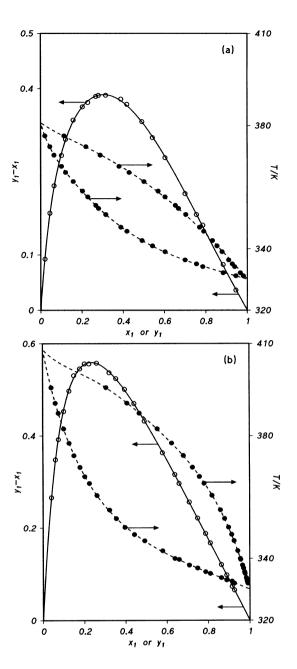
VOL. 27 NO. 3 1994 353

Table 5. Coefficients obtained for Eqs. (7) and (8) and standard deviations s(Q) for the different correlations

correlation	k	A_0	A_1	A_2	A_3	s
	x ₁ Met	hyl acetat	$e + x_2 - 1 - 0$	Chloropent	ane	
$(y_1 - x_1)$ vs. x_1	0.236			9.495		0.002
T vs. x_1	0.228	-189.0	402.3	-477.5	232.5	0.1
$T \text{ vs. } y_1$	4.788	15.1	71.7	-89.8	-2.0	0.1
	x_1 Me	thyl acetat	$xe + x_2 1 - $	Chlorohex	ane	
$(y_1 - x_1)$ vs. x_1	0.170	8.721	-10.293	3 2.444	-	0.002
T vs. x_1	0.142	-279.7	214.7	-131.3	145.1	0.2
T vs. y_1	0.836	4.3	270.7	-502.9	392.9	0.2
	x, Eth	nyl acetate	+ x ₂ 1-C	hloropenta	ine	
$(y_1 - x_1)$ vs. x_1	0.048	11.367	-35.64	48.046	-23.285	0.003
T vs. x_1	0.030	-833.7	2807.5	-3471.3	1481.0	0.1
$T \text{ vs. } y_1$	0.672	-4.9	36.1	-34.2	-	0.1
	x_1 Et	hyl acetate	$x_2 + x_2 - 1 - 0$	Chlorohexa	ne	
$(y_1 - x_1)$ vs. x_1	0.292	6.243	$-1\overline{2.920}$	12.448	-5.042	0.004
T vs. x_1	0.058	-92.0	-459.3	787.4	-272.9	0.3
$T \text{ vs. } y_1$	0.178	-139.1	811.7	-1302.9	683.1	0.1

by a variety of methods, always trying to ensure that the empirical expressions included at least one characteristic parameter value for the components determined by the authors themselves, e.g., molar refraction or the Parachor index, as in the case of the expressions recommended by Meissner [see Bretsznajder²].

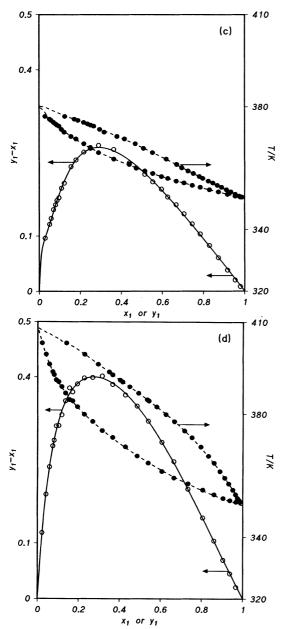
Some consistency tests were applied to reduce the equilibrium data. So, for each set of isobaric data the ln (γ_1/γ_2) values were plotted against x_1 and the values of the areas above and below the x_1 -axis were calculated. In accordance with the method put forward by Herington⁵⁾, the value of D was compared with the empirical quantity, J. The value of D-J was not less than 10 % for any of the four systems considered herein, although D < J was verified in all cases, on account of the large differences in the boiling points of the pure components, which ranged between 30.6 K for the mixtures consisting of (ethyl acetate + 1-chloropentane) and 78 K for the mixture consisting of (methyl acetate + 1-chlorohexane). A modified version of the test of Van Ness et al. 24) was also applied, using a subroutine based on Tsonopoulos' 23) empirical expressions instead of the procedure of Hayden and O'Connell [see Fredenslund et al.3)] that had yielded good results in earlier studies 12, 13). Using this version of the point-to-point test, the four systems considered herein yield positive consistency values overall, that is, average deviations values for the vapor phase, y_1 , of less than 0.01.


The data were correlated using the equation:

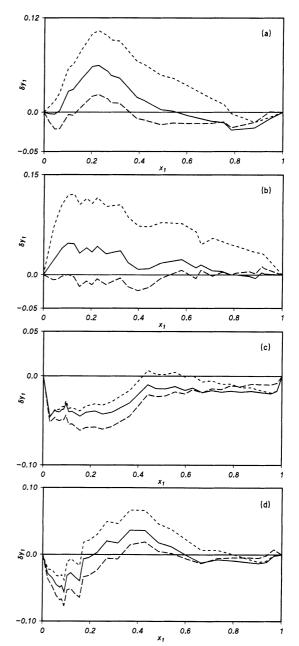
$$Q = x_1 x_2 \sum A_i [x_1 / (x_1 + kx_2)]^i$$
 (7)

Thus, composition values were fitted by setting Q equal to y_1 - x_1 , whereas the temperature values were fitted using an equation similar to that for binary mixtures proposed by Tamir¹⁹⁾, which for the liquid phase took the form:

$$T = \sum x_i T_i^o + Q \tag{8}$$


where Q is identical to Q in Eq. (7), and x_i and T_i^o are,

respectively, the mole fraction and the boiling point for the pure component i at the working pressure. Application of Eq. (7) to the data was carried out using a method of least squares for a given value of k, and the degree of the polynomial was optimized using a statistical criterion (F-test). The minimum standard deviation, s(Q), for the data was calculated iteratively by applying this procedure for various values of k.


Table 5 shows the values for the coefficients of Eq. (7) and for s(Q) obtained by correlating the function (y_1-x_1) and T on the composition values. **Figure 1** depicts the corresponding plots for the four mixtures considered.

The activity coefficients, γ_i and the composition values for the vapor phase, y_i , at 101.32 kPa were predicted on the basis of the T vs. x_1 data for the (alkyl acetate+1-chloroalkane) systems using the UNIFAC and ASOG theoretical models. As applied, the UNIFAC model assumed that ester/chlorine interaction took the

Fig. 1 Experimental vapor-liquid equilibria for the binary systems $(x_1 \text{ alkyl acetate} + x_2 \text{ 1-chloroalkanes})$ at 101.32 kPa: (O), $(y_1\text{-}x_1)$ vs x_1 ; (O), T vs x_1, y_1 ; (—) calculated by Eq. (7); (---) calculated by Eq. (8), (a), MA + 1Cl5; (b), MA + 1Cl6; (c), EA + 1Cl5; (d) EA + 1Cl6

form COOC/CCl and used the parameter values published by Tiegs $et \, al.^{20}$ The estimation of activity coefficients gave an average error smaller than 5%. The other version of UNIFAC (Modified UNIFAC), by Gmehling $et \, al.^{4}$, was also applied to our mixtures and the estimations for γ_i values were very similar in all cases. The ASOG model considered that the ester/chloride interaction took the form COO/Cl and two sets of values for that interaction were used: those from original version of Kojima and Tochigi⁶, and others published more recently 21 . Using these last values, predictions of γ_i were good with an average error smaller than 6% for the four mixtures. However, using the parameters of Kojima and

Fig. 2 Differences between the experimental values and those estimated by different theoretical models for the binaries $(x_1$ alkyl ethanoate $+x_2$ 1-chloroalkanes). (—), UNIFAC²⁰; (---), Modified UNIFAC⁴; (---), ASOG²¹). (a), (MA + 1Cl5); (b), (MA + 1Cl6); (c), (EA + 1Cl5) (d), (EA + 1Cl6).

Tochigi⁷⁾ the errors obtained were higher. In **Fig. 2** we have represented the differences obtained for the values of y_i , between the experimentals from Table 4 and those theoreticals calculated with the models above mentioned. In these cases, major discrepancies appear in the mixtures, (a) (MA + 1Cl5) 10 %, (b) (MA + 1Cl6) 11 % using the ASOG model.

Acknowledgments

The authors are grateful to DGICYT (M.E.C.) from Spain for financial support for project PB92-0559. One of us (J.A.P.) is indebted to Consejeria Educación (G.A. Canarias).

VOL. 27 NO. 3 1994 355

Nomenclature

A, B, C	= Antoine equation constants
A_i	= Coefficients in Eq. (7)
k	= Parameter in Eq. (7)
NBP	= Normal boiling point [K]
n_D	= Refractive index
p	= Total pressure [kPa]
$p_i^{\ o}$	= Vapor pressure of pure component i [kPa]
S	= Standard deviation
T	= Temperature [K]
T_i^o	 Normal boiling temperature
•	of pure component i, NBP [K]
R	= Universal gas constant $[JK^{-1} \text{ kmol}^{-1}]$
v_i^L	= Molar volume of pure component i [m ³ kmol ⁻¹]
x	= Liquid-phase molar fraction [-]
y	= Vapor-phase molar fraction [-]
ρ	= Density [kgm ⁻³]
γ	= Activity coefficient of component i
ϕ_i	= Fugacity coefficient of component i
μ	= Dipolar moment [Cm]
ω	= Acentric factor
w	- 710011110 140101

Literature Cited

- Boublik, T., V. Fried and E. Hala: "The Vapor Pressures of Pure Substances. Elsevier, Amsterdam (1973)
- Bretsznajder, S.: "Prediction of Transport and Other Physical Properties of Fluids" Pergamon Press, Oxford (1971)
- Fredenslund, Aa., J. Gmehling and P. Rasmussen: "Vapor-liquid Equilibria Using UNIFAC. A Group Contribution Method", Elsevier, Amsterdam (1977)
- Gmehling, J., J. Li and M. Schiller: *Ind. Eng. Chem. Res.*, 32 (1), 178-193 (1993)
- 5) Herington, E.F.G.: J. Inst. Petrol., 37, 457-463 (1951)
- Khurma, J.R., O. Muthu, S. Munjal and B.D. Smith: *J. Chem. Eng. Data* 28, 86-93 (1983)
- Kojima, K., and K. Tochigi: "Prediction of Vapor-liquid Equilibria by the ASOG Method", Kodansha Ltd. Tokyo (1979)

- 8) Ortega, J., J.S. Matos, M.I. Paz-Andrade and J. Fernandez: *J. Chem. Eng. Data*, **32**, 464-466 (1987)
- 9) Ortega, J., J.S. Matos, M. I. Paz-Andrade and E. Jimenez: *J. Chem. Thermodyn.*, **17**, 1127-1132 (1985)
- Ortega, J., J.A. Peña and C. de Alfonso: J. Chem. Data 31, 339-342 (1986)
- Ortega, J., J.A. Peña and J.S. Matos: J. Indian Chem. Soc. 65, 551-553 (1988)
- Ortega, J., P. Susial and C. de Alfonso: J. Chem. Eng. Data, 35, 216-219 (1990)
- 13) Ortega, J., and P. Susial: *J. Chem. Eng. Japan.*, **23**, 621-626 (1990)
- Prausnitz, J.M., T.Anderson, E. Grens, C. Eckert, R. Hsieh, and J. O'Connell: "Computer Calculations for Multicomponent Vapor-LiquidandLiquid-LiquidEquilibria", Prentice-Hall, N.J. (1980)
- 15) Reid, R.C., J.M. Prausnitz and B.E. Poling: "The Properties of Gases and Liquids", McGraw Hill. 4th ed. New York, (1987)
- 16) Riddick, J.A., W.B. Bunger and T.K. Sakano: "Organic Solvents. Techniques of Chemistry", vol. II, 4th ed. Wiley Interscience, New York (1986)
- 17) Simmrock, K.H., R. Janowsky, and A. Ohnsorge: "Critical Data of Pure Substances", Chemistry Data Series, vol. II, part 1 Dechema. Frankfurt-Main (1986)
- 18) Spencer, C.F. and R.P.J. Danner: J. Chem. Eng. Data, 17, 236-241 (1972)
- 19) Tamir, A.: Chem. Eng. Sci., 36, 1453-1465 (1981)
- 20) Tiegs, D., J. Gmehling, P. Rasmussen and Aa Fredenslund: *Ind. Eng. Chem. Res.* 26, 159-161 (1987)
- Tochigi, K., D. Tiegs, J. Gmehling and K.J. Kojima: *Chem. Eng. Japan* 23, 453-463 (1990)
- 22) T.R.C.Thermodynamic Tables of Non-Hydrocarbons. Texas A& M, University College Station, TX (1990)
- 23) Tsonopoulos, C.: AIChE J. 20, 263-272 (1974)
- 24) Van Ness, H.C., S.M. Byers and R.E. Gibbs: AIChE J. 19, 238-244 (1972)