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Rayco Toledo, Juan J. Aznárez, Orlando Maeso and David Greiner

Abstract The inclusion of sound barriers for abating road traffic noise is a broadly

used strategy that is often constrained by the requirements associated with its effec-

tive height. Due to this fact, the searching process has to deal with compromise

solutions between the effective height and the acoustic efficiency of the barrier,

assessed by the insertion loss (IL) in this paper. Two different barrier designs are

studied herein for two different receivers configurations and for three clearly dis-

tinguishable regions in terms of closeness to the barrier. These models are based on

the optimization of the IL of thin-cross section profiles proposed by an Evolutionary

Algorithm. The special nature of these sort of barriers makes necessary the imple-

mentation of a dual BEM formulation in the optimization process. Results obtained

show the usefulness of representing complex thin-cross section barrier configura-

tions as null boundary thickness-like models.

1 Introduction

The inclusion of sound barriers for abating the negative effects of road traffic noise

near residential areas is a broadly used strategy. Considerable research work and

studies focused on sound diffraction around barriers have been carried out in the past

two decades, specifically in the prediction of the performance and the development

of more efficient designs. Amongst all of the different theoretical methods proposed

concerning the issue, the Boundary Element Method (BEM hereinafter) has been

previously used by the authors of this work [6] in the analysis of complex barrier

configurations.
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Evolutionary Algorithms (EA) have been widely used for Shape Design Opti-

mization problems in numerous Engineering fields. The combined use of optimiza-

tion problems using EA with a BEM code has been implemented in sound barriers

design problems within the institute where this work is developed (see [2], [4] and

[3]).

The Insertion Loss coefficient (IL henceforward) is a valuable estimator to assess

the acoustic efficiency of the barrier. This parameter represents the sound pressure

level difference in the situation with and without the presence of the barrier at a

particular point (receiver). Whilst the parameters involving the efficiency are nu-

merous, the effective height of the barrier (heff) is the factor with greatest influence.

Constraints related to this factor force the searching process to find compromise so-

lutions between the effective height and the acoustic efficiency of the barrier. These

profiles generally feature complex configurations and its implementation in opti-

mization processes is often found to be difficult in terms of validating its topologi-

cal feasibility. Two different barrier designs are studied in this work. These models

are based on the optimization of the acoustic efficiency of thin-cross section profiles,

idealized as null boundary thickness, proposed by an EA. The special nature of these

sort of barriers makes necessary the implementation of a dual BEM formulation in

the optimization process.

2 Modelling and discretization by implementing a dual BEM

formulation

The next lines are devoted to the implementation of a dual BEM formulation in thin

noise barriers idealized as null boundary thickness profile (see Fig. 1). The special

nature of these sort of barriers makes necessary the addition of a complementary

formulation (hyper-singular) that coupled with the conventional BEM formulation

yields a compatible system of equations.

2.1 Singular BEM formulation

The integral equation for the i boundary point to be solved by the singular BEM

formulation can be expressed as follows:

ci pi +−

∫

Γb

p
∂ p∗

∂n j

dΓ = p∗0 +
∫

Γb

∂ p

∂n j

p∗dΓ (1)

This integral equality just involves the boundary of the barrier under investiga-

tion. The −

∫

symbol represents the integral along the boundary to be understood in

the Cauchy principal value sense, once the singularity around the collocation point

i has been extracted (ci). In Ec. (1), p is the acoustic pressure field over the barrier

surface and p∗ is the half-space fundamental solution (the acoustic pressure field
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when the source is placed at the collocation point i over a plane with admittance

βg (ground admittance)) and ci is the free term. On the whole: ci = θ/2π , where θ
represents the inner angle to the boundary measured in radians. It is easily shown

that ci = 0.5 for smooth boundaries.

The expressions of the fundamental solution and its derivative for a perfectly

reflective ground for bi-dimensional, harmonious problems are:

p∗(k,r) =
1

2π
[K0(ikr)+K0(ikr)]

∂ p∗

∂n
=−

ik

2π

[

K1(ikr)
∂ r

∂n j

+K1(ikr)
∂ r

∂n j

] (2)

being i the imaginary unit, k the wave number, r and r the distances from the source

and the image point to the observation point respectively, and K0 and K1 the Bessel

modified functions of order 0 and 1 respectively.

By discretizing the boundary, the integral kernels of the fundamental solution of

the singular BEM formulation are yielded:

h
i j
k =

∫

Γj

∂ p∗

∂n j

φkdΓj ; g
i j
k =

∫

Γj

p∗ φk dΓj (3)

A system of equations is obtained from this process and leads to values of acous-

tic pressure on the barrier boundary.

2.2 Hyper-singular BEM formulation

The integral equation for the i boundary point to be solved by the hyper-singular

BEM formulation can be written as follows:

ci

(

∂ pi

∂ni

)

+=
∫

Γ
p

∂ 2 p∗

∂ni∂n j

dΓ =−

∫

Γ

∂ p∗

∂ni

∂ p

∂n j

dΓ +
∂ p∗0
∂ni

(4)

where the =
∫

and −

∫

symbols represent the integral along the boundary to be under-

stood in the Hadamard finite part integral and in the Cauchy principal value sense,

respectively. The hyper-singular formulation of the method demands that the source

placement (collocation point i) be inside the element (non-nodal collocation point)

(see [8]). Thus, in (4) it is satisfied that ci = 0.5.

Expression (5) shows the values of the fundamental solution and its derivative

for the hyper-singular formulation:
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∂ p∗

∂ni

=−

ik

2π

[

K1(ikr)
∂ r

∂ni

+K1(ikr)
∂ r

∂nI

]

∂ 2 p∗

∂ni∂n j

=
(ik)2

2π

[(

K2(ikr)
∂ r

∂ni

∂ r

∂n j

+
K1(ikr)

r
ni ·n j

)

+

(

K2 (ikr)
∂ r

∂nI

∂ r

∂n j

+
K1(ikr)

r
nI ·n j

)]

(5)

Similarly to Ec. (2), i is the imaginary unit, k the wave number and r, r the

distances to the observation point from the collocation point and its symmetric point

with respect to the ground plane, respectively. It is worth making a distinction here

regarding the normal vectors involved in the expressions above. n j is the normal

to the boundary at the integration point and ni (n
i
x, ni

y), nI (n
i
x,−ni

y) represent the

normal vectors to the real boundary at the collocation point (i) and at its symmetric

point (I) placed on a fictitious, symmetric boundary with respect to the ground plane,

respectively. K1 and K2 represent the Bessel modified functions of order 1 and 2,

respectively.

After a discretization process along the boundary, expression (4) yields a numer-

ical solution from which the integral kernels of the hyper-singular BEM formulation

are obtained, for i collocation point when integrated over j element:

m
i j
k =

∫

Γj

∂ 2 p∗

∂ni ∂n j

φk dΓj ; l
i j
k =

∫

Γj

∂ p∗

∂ni

φk dΓj (6)

The numerical resolution of these integrals deserve a thorough treatment and can

be consulted in [8] and [7].

2.3 Dual BEM formulation

Fig. 1 represents a generic thin-cross section noise barrier to be solved by dual BEM

formulation. After a discretization process, each node holds the values of pressure

and flux with respect to the boundary normal, i.e., both at the left and at the right

according to the direction of travel on the boundary (p+, q+, p−, q− hereinafter).

Fig. 1 (a) Idealization of

a generic thin-cross sec-

tion noise barrier profile as

null thickness boundaries.

(b) Strategy used to avoid

the singularity around the

collocation point in BEM for-

mulation.
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Fig. 1(b) represents the strategy used to isolate the singularity of the method in

this sort of domains. Thus, the matrix equality of the singular BEM formulation for

thin-cross section noise barriers can be expressed as follows:

ci

(

p+i +p−i
)

+
N

∑
j=1

(

H+
j p+j +H−

j p−j

)

=
N

∑
j=1

(

G+
j q+j +G−

j q−j

)

(7)

being N the overall nodes number of the discretization over the boundary. Conside-

ring that n+ = n− at the collocation point j, it is easily shown that:

H+
j =−H−

j ; G+
j = G−

j (8)

For internal noise sources and smooth boundaries, the final expression can be

written as follows (see [5]):

(

1

2

)

Σ pi +
N

∑
j=1

H+
j ∆ p j =

N

∑
j=1

G+
j Σq j + p∗0 (9)

where:

Σ pi = p+i + p−i ; ∆ p j = p+j − p−j ; Σq j = q+j + q−j (10)

Deriving (7) with respect to n+
i an integral equality of the hyper-singular BEM

formulation is obtained:

ci

(

∂ p+i

∂n+
i

+
∂ p−i

∂n+
i

)

+
N

∑
j=1

(

M+
j p+j +M−

j p−j

)

=
N

∑
j=1

(

L+
j q+j +L−

j q−j

)

(11)

where:

∂ p−i

∂n+
i

=−qi ; M+
j =−M−

j ; L+
j = L−

j (12)

The hyper-singular formulation of the method requires that the collocation point

i be inside the element (see [8]) what assurances that the inner angle to the boundary

at that point is always θ = π . In this way, the final dual BEM expressions for internal

noise sources for both the singular and hyper-singular formulation are:

(

1

2

)

Σ pi +
N

∑
j=1

H+
j ∆ p j =

N

∑
j=1

G+
j (A

+Σ p j +A−∆ p j)+ p∗0

(

1

2

)

(A−Σ pi +A+∆ pi)+
N

∑
j=1

M+
j ∆ p j =

N

∑
j=1

L+
j (A

+Σ p j +A−∆ p j)+
∂ p∗0
∂ni

(13)
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being:

∆q j = A−Σ p j +A+∆ p j ; Σq j = A+Σ p j +A−∆ p j

A+ =−(1/2) ik (β++β−) ; A− =−(1/2) ik (β+
−β−)

(14)

Finally, expression (13) can be expressed matricially as:
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2
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A

2

−

I -L+A+ A

2

+

I+M+-L+-A−



















Σ p

∆ p









=









p∗o

∂ p∗o

∂n+
i









(15)

3 Problem definition

Fig. 2 represents the general configuration of the model under study. It deals with a

two-dimensional model concerning an infinite, coherent mono-frequency source of

sound, placed parallel to an infinite noise barrier of thin cross-section that stands on

a flat plane (ground) of uniform admittance at ds = 10m. Both the ground and the

barrier feature a perfectly reflective surface in this article (βg = βb = 0). A trape-

zoidal section holds the area for feasible profiles, defined by the barrier projection

to the ground, that is constant and dp = 1m, and the maximum effective height to

be achieved, that is heff = 3m at the median of the rectangle trapezium.

Table 1 Data concerning regions under study.

Region ds(m) dp(m) dr1
(m) dr2

(m) ∆x(m) ∆y(m)

1

10.0 1.0

0.5 10.0 2.0 1.0

2 10.5 40.0 8.0 2.0

3 50.5 50.0 10.0 5.0

Two different receiver configurations are studied. In one configuration (Ca) a

group of four receivers placed on the ground and separated ∆x from one another is

considered. In the other configuration (Cb), four groups of four receivers are studied.

The first group is laid on the ground and the remaining ones are placed at different

heights, separated among them by a distance of ∆y. In accordance with the former

configuration, the horizontal distance among the receivers of a group is ∆x.

In addition to this, three clearly distinguishable regions in terms of closeness to

the median of the feasible region (dr1
) are proposed for both receiver configurations.

Table 1 holds the data concerning these regions.

The results achieved are given in terms of insertion loss (IL), defined as follows:
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IL =−20log10

(

PB

PHS

)

(dB) (16)

on every frequency of the band spectra, and represents the sound pressure level

at the receiver points as a difference between the situation with (PB) and without

(PHS) considering the barrier. This parameter is a widely used estimator to assess

the acoustic efficiency of sound barriers.

Fig. 2 Two-dimensional configuration for thin cross-section acoustic barriers.

4 Methodology

This section provides an overview of the proposed methodology for the optimization

of thin-cross section noise barriers idealized as null boundary thickness-like models.

4.1 Shape optimization

Shape design optimization is carried out by the combined use of an EA and a code

that implements a dual BEM formulation. The EA software used in this work applies

the GAlib package [9]. This library is a collection of C++ genetic algorithm (GA)

components from which it is possible to quickly construct GA’s to attack a wide

variety of problems.

In this paper, a steady-state genetic algorithm is used replacing the two worst

individuals (in terms of their fitness function) at every generation, with a population

size of 100 individuals. A single-point crossover operator is used in this study, with

a crossover rate of 0.9. The considered mutation rate is 1/nch, where nch is the

chromosome length (nch = 8xn, being n the overall number of the design variables

-of 8 bits precision each-). Five independent executions of the optimization process

are considered for each model and configuration. The stop-criterion condition is met

for 20,000 evaluations of the fitness function (FF).
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A transformed domain is considered (see [3]). This domain holds the set of de-

sign variables of the model under study, denoted by (ξi, ηi), and represents the

rectangular search space for the GA (see left part of Fig. 3). Every (ξi, ηi) point

in the transformed domain has its image (xi, yi) in the Cartesian space, that is the

real domain where the barrier operates. In this paper heff = 3m is proposed. This

generates a trapezoidal search space in the Cartesian barrier domain (see right part

of Fig. 3).

Fig. 3 Design variables and models under study.

Two acoustic barrier designs are studied along this paper (Fig. 3). The horizontal

projection (dp) and the effective height (heff) are identical for each design. Both

models are built from seven points, being the first and the last one on the ground

and on the effective height line respectively. The vertical distance among the points

is di = 1/6 in the search space (transformed domain) and they are just allowed to

feature horizontal movements. Model A is a polygonal curve-shaped barrier built

from points through which straight slopes pass. Model B is a 6th degree Bézier

curve-shaped barrier built from seven control points of which only the first (0) and

the last (7) belong to it.

4.2 Assessment of the insertion loss

Taking into account the overall value of the IL of the frequency band spectrum

analyzed for each receiver seems to be a more realistic estimator to evaluate the

efficiency of a sound barrier. Consequently, (17) represents the average IL value

for each frequency and receiver when using the ISO 717.2 normalized traffic noise

spectra for third-octave band center frequencies [1], ranging from 100 to 2,000 Hz.

IL =−10 · log10











NF

∑
i=1

10(Ai−ILi)/10

NF

∑
i=1

10Ai/10











(dBA) (17)
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being NF the studied spectra number of frequencies, i.e. NF = 14, Ai the spectra

A-weighted noise level and ILi the insertion loss value for sources pulsing at every

frequency of the spectra.

4.3 Definition of the fitness function

Shape optimization is carried out entirely based on the overall IL mean value of all

receiver points.

FF =
NR

∑
j=1

ILj/NR (18)

being ILj the IL mean value for each receiver (see (18)) and NR the total number of

receivers. This value corresponds to the fitness function (FF) to be maximized, so

the higher its value the higher the acoustic efficiency of the sound barrier.

5 Results and Discussion

Tables 2 and 3 collect the acoustic efficiency and the coordinates of the design vari-

ables (see Fig. 3) of the best individuals respectively, for each receiver configuration,

region and model.

Fig. 4 and 5 show the barrier profile of the best individuals of the models un-

der study, in terms of its acoustic efficiency as well as the average frequential IL

evolution of the receivers for each region and model.

Fig. 6 and 7 show the evolution of the average of the fitness function (FFAverage),

the best individual (FFBest) and the average of the standard deviation for both models

under study and every receiver configuration.

In the light of the results the following analysis is carried out:

• The polygonal-shaped barrier outperforms the acoustic efficiency of the 6th de-

gree Bézier curve-shaped model for the near region when the receivers are placed

on the ground (Ca configuration). However, the latter model performs a better

acoustic behaviour for non-near regions (over 1 dBA).

• Both models under study display similar acoustic performances when a grid of

receivers is considered in the shadow region of the barrier, with the exception

of the intermediate region in which the Bézier model outperforms the polygonal

design in half a decibel.

• According to the comparative analysis between the optimized models and the

straight barrier the need to study designs alternative to the latter is suggested,

even for far regions.

• Model B displays a wider variety among best individuals of the population than in

the case for Model A according to the evolution of the highest standard deviation
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(Fig. 6 and 7), meaning that the convergence of the optimization process turns

out to be more cumbersome in Model B (optimization process is easier in Model

A).

Table 2 Acoustic efficiency of the models under study.

RC∗ Region Model Lc(m) ∆Lc(m) FFbest(dBA) ∆FFbest(dBA)

Ca

1
A 4.08177 +1.08177 17.92628 +4.32966

B 3.60547 +1.60547 16.77495 +3.17833

2
A 3.97839 +0.97839 12.93384 +1.02711

B 3.51863 +0.51863 14.08611 +2.17938

3
A 3.52785 +0.52785 12.46634 +1.04716

B 3.84417 +0.84417 13.57048 +2.15130

Cb

1
A 4.10065 +1.10065 16.95941 +2.41822

B 3.41333 +0.41333 16.83553 +2.29434

2
A 3.63842 +0.63842 14.36767 +0.92615

B 3.71865 +0.71865 14.87088 +1.42936

3
A 3.60034 +0.60034 13.64344 +0.88584

B 3.68994 +0.68994 13.75215 +0.99450

∗Receiver configuration.

Table 3 Design variables of the best individuals.

Design variables

RC∗ Region Model ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

Ca

1
A -0.48824 0.06078 0 .01765 0.35098 0.02941 0.49608 -0.31961

B -0.01373 0.05882 -0.48235 -0.57647 0.17647 -1.23529 0.50000

2
A -0.39412 -0.02549 0.39020 0.08824 0.04902 0.48039 0.34314

B -0.50000 0.36471 -1.44706 -0.01176 0.38823 -1.02353 0.40980

3
A -0.44902 -0.08039 -0.22549 0.35490 0.44510 0.26078 0.32353

B 0.43726 -0.95294 0.15294 -1.30588 0.38824 -1.23529 0.31177

Cb

1
A 0.50000 0.22941 -0.15882 0.32745 -0.03333 0.37843 -0.44118

B -0.06078 -0.17647 0.10588 -0.92941 0.74118 -0.90588 0.50000

2
A -0.22156 -0.50000 0.29216 0.37451 0.50000 0.50000 0.31569

B -0.46470 -0.67059 2.05882 -0.95294 1.37647 -0.90588 0.50000

3
A -0.25294 -0.50000 0.24902 0.37843 0.50000 0.50000 0.29608

B -0.48039 -0.62353 2.01176 -1.04706 1.49412 -0.88235 0.50000

∗Receiver configuration.
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Fig. 4 Ca receiver configuration. Left, barrier profile of the best individuals for each region and

model. Right, average frequential IL evolution for models A and B and for the 3m height straight

barrier.
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Fig. 5 Cb receiver configuration. Left, barrier profile of the best individuals for each region and

model. Right, average frequential IL evolution for models A and B and for the 3m height straight
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Fig. 6 Ca receiver configuration. Left, model A. Right, model B.
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Fig. 7 Cb receiver configuration. Left, model A. Right, model B.
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6 Conclusions

A methodology to successfully optimize thin cross-section noise barriers by idealiz-

ing their profiles as null cross-section boundaries has been presented. This procedure

has been applied to two specific noise barrier models although its applicability cov-

ers a wide designs spectra, ranging from complex straight boundary configurations

to curve-shaped profiles like those built from Spline expressions, amongst others.

The versatility of the algorithm responsible for the geometry generation of the

barrier makes the building of the profile to be easily accomplished. This is a signif-

icant advantage over the case when dealing with geometries of real barrier profiles,

as the evaluation process for the feasibility of the design proposed by the EA is often

complex and difficult to establish.

The procedure here presented is a useful method to assess the behaviour of

complex noise barriers configurations and yields conclusions that might have been

hardly drawn without its implementation.
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